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Amelogenesis imperfecta is a group of rare inherited disorders that affect tooth enamel

formation, quantitatively and/or qualitatively. The aim of this study was to identify

the genetic etiologies of two families presenting with hypomaturation amelogenesis

imperfecta. DNA was isolated from peripheral blood samples obtained from participating

family members. Whole exome sequencing was performed using DNA samples from

the two probands. Sequencing data was aligned to the NCBI human reference genome

(NCBI build 37.2, hg19) and sequence variations were annotated with the dbSNP build

138. Mutations in MMP20 were identified in both probands. A homozygous missense

mutation (c.678T>A; p.His226Gln) was identified in the consanguineous Family 1.

Compound heterozygous MMP20 mutations (c.540T>A, p.Tyr180∗ and c.389C>T,

p.Thr130Ile) were identified in the non-consanguineous Family 2. Affected persons in

Family 1 showed hypomaturation AI with dark brown discoloration, which is similar to the

clinical phenotype in a previous report with the same mutation. However, the dentition of

the Family 2 proband exhibited slight yellowish discoloration with reduced transparency.

Functional analysis showed that the p.Thr130Ile mutant protein had reduced activity of

MMP20, while there was no functional MMP20 in the Family 1 proband. These results

expand the mutational spectrum of the MMP20 and broaden our understanding of

genotype-phenotype correlations in amelogenesis imperfecta.
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INTRODUCTION

Non-syndromic amelogenesis imperfecta (AI), hereditary enamel defects, can be divided into 3
major categories based on the quantity and quality of the enamel (Witkop, 1988). In hypoplastic
AI, the enamel is thin with interdental spacing and the affected individuals are often sensitive
to thermal changes and possess an increased tendency of anterior open bite (Ravassipour et al.,
2005). In hypocalcification AI, the affected enamel is extremely soft with normal thickness
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prior to tooth eruption, which may be lost rapidly after
eruption leaving the remaining enamel rough, discolored, and
thin. Hypomaturation AI is caused by failures during the
maturation stage of amelogenesis. The resulting phenotype
is characteristically (dark) brown or yellowish discolored less
mineralized enamel with normal thickness. But because the
enamel is not matured well, prolonged attrition can result
in excessive enamel wear facets or localized enamel fractures
(Wright et al., 2011). However, definitive characterization of
the phenotype may be challenging in some cases. Therefore, a
broader classification scheme with two categories has been used:
hypoplastic AI and hypomineralized AI. The hypomineralized
AI includes hypocalcification AI and hypomaturation AI
(Prasad et al., 2016).

To date, mutations in more than 17 genes are involved in non-
syndromic AI. Hypoplastic AI can be caused by mutations in
AMELX (MIM: 300391), ENAM (MIM: 606585), AMBN (MIM:
601259), LAMB3 (MIM: 150310), LAMA3 (MIM: 600805),
COL17A1 (MIM: 113811), ITGB6 (MIM: 147558), and ACPT
(MIM: 606362) (Lagerstrom et al., 1991; McGrath et al., 1996;
Rajpar et al., 2001; Yuen et al., 2012; Kim et al., 2013; Wang
et al., 2014; Poulter et al., 2014a,b,c; Seymen et al., 2016).
Autosomal dominant hypocalcificationAI is caused bymutations
in FAM83H (MIM: 611927) (Kim et al., 2008). Some AMELX
mutations can cause hypomaturation AI with enamel hypoplasia
(Hart et al., 2000). Recessive mutations in SLC24A4 (MIM:
609840), WDR72 (MIM: 613214), MMP20 (MIM: 604629),
KLK4 (MIM: 603767), and GPR68 (MIN: 601404) cause
hypomaturation AI (Wright et al., 2003; Hart et al., 2004; Kim
et al., 2005; El-Sayed et al., 2009; Parry et al., 2013, 2016).
Clinical phenotype caused by autosomal recessive mutations of
C4orf26 (MIM: 614829) and autosomal dominant mutation of
AMTN (MIM: 610912) were reported as hypomineralization AI
(Parry et al., 2012; Smith et al., 2016).

Two proteinases secreted by ameloblasts during mammalian
enamel formation are matrix metalloproteinase 20 (MMP20,
enamelysin) and kallikrein 4 (KLK4) (Hu et al., 2002). MMP20
is the early protease expressed by ameloblasts throughout the
secretory stage and early maturation stage of amelogenesis. KLK4
is the late protease expressed by ameloblasts from the transition
stage to the maturation stage. Lack of proteinase function in
the maturing enamel matrix prevents proper degradation and
removal of the enamel matrix proteins resulting in enamel
hypomaturation AI.

Here we report the identification of MMP20 mutations in
two Turkish families with hypomaturation AI by whole exome
sequencing and themutational effect on the protein secretion and
proteolytic activity.

MATERIALS AND METHODS

Identification and Enrollment of AI Families
Clinical and radiographic examinations of the probands and their
available family members were performed, and blood samples
were collected with the understanding and written consent
of each participant according to the Declaration of Helsinki.
Affected individuals were healthy, except hypomaturation

enamel defects. The study protocol was independently reviewed
and approved by the Institution Review Board at the Seoul
National University Dental Hospital, the University of Istanbul
and the University of Michigan.

DNA Isolation and Whole-Exome
Sequencing
Genomic DNA was isolated from peripheral whole blood.
The purity and concentration of the DNA were quantified by
spectrophotometry measurement and the OD260/OD280 ratio
obtained. Whole-exome sequencing was performed with the
DNA sample of the probands using Illumina HiSeq 2000
platform. The NimbleGen (Roche Diagnostics, Indianapolis, IL,
USA) exome capture reagent was used for exome capturing.

Autozygosity Mapping
The affected individuals in family 1 (IV:3 and IV:4) were
genotyped with the Affymetrix Genome-Wide Human
SNP array 6.0 (DNALINK INC., Seoul, Korea). The
annotated SNP files were analyzed with HomozygosityMapper
(http://www.homozygositymapper.org/) (Seelow et al., 2009)
to identify the shared regions of homozygosity in the affected
individuals.

Segregation Analysis by Polymerase Chain
Reaction (PCR)
The sequence variations in the MMP20 gene and segregation
within each family was confirmed by Sanger sequencing with
primers and conditions described previously (Kim et al., 2005).
PCR amplifications were done with the HiPi DNA polymerase
premix (Elpis Biotech, Daejeon, Korea), and DNA sequencing
was performed at a DNA sequencing center (Macrogen, Seoul,
Korea).

Cloning and Mutagenesis of the MMP20

cDNA
Human MMP20 cDNA, previously cloned into the pcDNA3.1
vector, was used to introduce the identified mutations using
PCR mutagenesis (sense: 5′-TACCGTTGCTGCTCAAGAATT
TGGCCATGC, antisense: 5′-GCATGGCCAAATTCTTGAGCA
GCAACGGTA for the p.His226Gln and sense: 5′-GAATATCTA
AATACATACCTTCCATGAGTT, antisense: 5′-AACTCATGG
AAGGTATGTATTTAGATATTC for the p.Thr130Ile) (Lee et al.,
2010). Sequences of normal and mutant MMP20 pcDNA3.1
vectors were confirmed by direct plasmid sequencing.

Transfection
HEK293T cells were grown and maintained in DMEM

supplemented with 10% FBS and antibiotics in a 5% CO2

atmosphere at 37◦C. Cells at ∼2 × 105 quantity were seeded

in each well of the 6-well culture dish. Each plasmid construct

at 2 ug quantity was transiently transfected into HEK293T
cells with Genjet in vitro DNA transfection reagent (SigmaGen

Laboratories, Ijamsville, MD, USA). The culture medium of each
well was harvested after 30 h of incubation and concentrated

using Amicon ultra-4 centrifugal filter units (Millipore, Bedford,
MA, USA).
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Zymography
Fourml of conditioned medium from the culture was collected
and concentrated to 50 ul. The concentrated media of 20 ul was
mixed with 4 ul of 5x non-reducing buffer, then loaded onto the
11% SDS-polyacrylamide gel with β-casein (Sigma-Aldrich, St.
Louis, MO, USA) as a substrate. The zymogram was developed,
stained with Coomassie brilliant blue R-250 staining solution
(Bio-rad, Hercules, CA, USA) for 20min, and visualized after
incubation in a destaining solution (10%MeOH, 10% acetic acid)
for 3 h.

Western Blot
Concentrated media and cell lysates were run on the 11%
SDS-polyacrylamide gel and subjected to Western blotting.
Specifically, 50 ug cell lysate from each sample and 10 ul of
concentrated media were used. After gel transfer to the PVDF
membrane and blocking, MMP20 was detected by incubating
the membrane with primary antibody overnight at 4◦C and with
secondary antibody for 2 h at room temperature. The primary
antibodies used were a rabbit polyclonal anti-MMP20 antibody
(ab39038, abcam plc., Cambridge, UK) and a mouse monoclonal
anti-ACTB antibody (A2228, Sigma-Aldrich, St. Louis, MO,
USA); both of which were diluted in 1:10,000.

RESULTS

Clinical Phenotype
The proband of Family 1 (IV:4) was an 11-year-old girl from
a consanguineous marriage of first cousins (Figure 1A).

Her prenatal and perinatal history was uneventful and
her parents reported no other medical problem. Her teeth
exhibited generalized brown discoloration with exogenous
black pigmentation mainly on occlusal surface of the posterior
teeth (Figures 1B–D). Maxillary left central incisor was
lost due to trauma. The radiopacity of enamel did not
contrast well with dentin in the panoramic radiograph,
consistent with hypomineralization (Figure 1E). Her 24-
year-old brother (IV:3) was also affected and almost all
of his teeth have been reconstructed with full-coverage
prosthodontics. His remaining natural teeth exhibited
dark brown discoloration with exogenous pigmentation
(Figure S1).

The proband of the family 2 (III:1) was a 10-year-old girl from
a non-consanguineous family (Figure 2A). Her past medical
history was unremarkable. Her anterior permanent teeth were
not severely discolored, but slightly yellow and less transparent
than normal teeth (Figures 2B,C). Her right second premolar
was congenitally absent based on the panoramic radiograph
(Figure 2D).

Mutational Analysis
Sequencing reads were aligned to the UCSC human reference
genome (hg19) with Burrow-Wheeler Aligner, and the sequence
variations were annotated by referencing dbSNP build 138, which
preceded variant calling with SAMtools and GATK (Table S1).
Annotated variants were filtered with the criteria of minor allele
frequency of 0.01.

FIGURE 1 | Pedigree and clinical phenotype of the proband of Family 1. (A) Pedigree of family 1. (B) Frontal view of the proband (IV:4) at age 11. (C) Maxillary

occlusal view. (D) Mandibular occlusal view. (E) Panoramic radiograph of the proband at age 11. Numbers in the subject symbol indicate the number of siblings. Plus

symbols indicate individuals who participated in this study.
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FIGURE 2 | Pedigree and clinical phenotype of the proband of Family 2. (A) Pedigree of family 2. (B) Frontal view of the proband (III:1) at age 10. (C) Frontal

view with bite open. (D) Panoramic radiograph of the proband at age 10. Plus symbols indicate individuals who participated in this study.

Autozygosity mapping of the family 1 revealed 3 shared
regions of loss of heterozygosity: chr4:65,904,881–82,427,846,
chr11:83,358,629–113,318,007, and chr21:11,039,570–17,728,224
(Figure S2). The exome data in the shared regions of the proband
in family 1 revealed a homozygous variant in exon 5 of the
MMP20 gene (NM_004771.3: c.678T>A). This transversion of
thymine to adenine changed histidine to glutamine at amino acid
position 226 (p.His226Gln). There was no other variation in the
known AI-causing genes and the MMP20 mutation (c.678T>A,
p.His226Gln) was previously reported as an AI-causing mutation
(Ozdemir et al., 2005; Wright et al., 2011).

Whole exome sequencing of the Family 2 proband revealed
compound heterozygous MMP20 mutations (c.389C>T and
c.540T>A). There was no other variation in the known AI-
causing genes. A cytosine to thymine transition in exon
3 changed threonine to isoleucine at amino acid position
130 (p.Thr130Ile). This variation was listed in the Exome
Aggregation Consortium (ExAC) database (rs61730849) with an
allele frequency of 0.00165 (200/121176). But the frequency was
relatively high (0.0294) in a certain subset of small population
(ss86247256, AGI_ASP_population; Coriell Apparently Healthy
Collection). In addition, it was previously reported as a disease-
causing mutation (Gasse et al., 2013). The other variation, a
transversion of thymine to adenine in exon 4, would introduce
a premature stop codon (p.Tyr180∗) and the mutant transcript
would be degraded by the nonsense-mediated decay system. This
variant was not listed in any database.

Segregation within the families by Sanger sequencing

confirmed that the nonsense mutation (c.540T>A, p.Tyr180∗)
was transmitted paternally and the missense mutation
(c.389C>T, p.Thr130Ile) was transmitted maternally to the
proband (Figure 3A, Figure S3). These amino acids at the
mutation sites (Thr130, Tyr180, and His226) are strictly
conserved among eutherian mammal orthologs (Figure 3B).

Western blotting and zymography determining the function
of the MMP20 mutants demonstrated that the p.Thr130Ile
mutant protein was secreted at a reduced amount and had
proteolytic activity. Western blot of cell lysate revealed that the
p.His226Gln mutant protein was retained in the cell and likely
not able to be secreted (Figures 3C,D).

DISCUSSION

MMP20 is one of 23 human matrix metalloproteinases. It
processes structural enamel matrix proteins into functional
fragments in the secretory stage and facilitates the removal
of those proteins during the maturation stage. MMP20 gene
is located in a cluster with 7 other MMPs on chromosomal
location 11q22.3. MMP20 encodes a 483-amino-acid protein,
which has a signal peptide (Met1 to Ala22), a prodomain (Ala23
to Asn107), a catalytic domain (Tyr108 to Gly271), a linker
(Pro272 to Leu295) and a hemopexin domain (Cys296 to Cys483)
(Llano et al., 1997).

The homozygous missense mutation (c.678T>A,
p.His226Gln) identified in Family 1 was previously reported
(Ozdemir et al., 2005; Wright et al., 2011). His226 is one of the
three histidine residues involved in the coordination of zinc ion
at the active site (Llano et al., 1997). This study showed that
the p.His226Gln mutant protein cannot be secreted into the
developing extracellular matrix, probably due to a structural
change in the core area of the protein.

The Family 2 proband had a paternal nonsense mutation
(c.540T>A, p.Tyr180∗) and a maternal missense mutation
(c.389C>T, p.Thr130Ile) (Gasse et al., 2013). This novel
nonsense mutation would introduce a premature stop codon
in exon 4, so the mutant mRNA transcript would be
degraded by the nonsense-mediated decay system. This study
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FIGURE 3 | Orthologs alignment, sequencing chromatograms and in vitro translation. (A) Sanger sequencing chromatograms of the probands (IV:4 of family

1 and III:1 of family 2). The mutated nucleotide is indicated by a red arrow and underlined (Y; C or T and W; A or T). (B) Sequence alignment of vertebrate orthologs.

Amino acids affected by the mutations are indicated with bold character and gray highlight. Numbers above the amino acids are based on the human MMP20

sequence. (C) Casein zymography indicated that the p.Thr130Ile mutant protein retains proteolytic function, but the p.His226Gln mutant protein has no proteolytic

activity. Western blot of the conditioned media revealed that the secretion of the p.Thr130Ile mutant protein into the culture media was greatly reduced, but the

p.His226Gln mutant protein cannot be secreted at all. (D) Western blot of the cell lysate demonstrated that the p.His226Gln mutant protein remained in the cell.

(ACTB: beta actin).

TABLE 1 | Disease-causing mutations of the MMP20 gene.

Location cDNA Protein Mode of inheritance References

Exon 1 c.102G>A p.Trp34* AR homo Papagerakis et al., 2008; Chan et al., 2011

Exon 2 c.359delA p.Asn120Ilefs*3 AR paternal Gasse et al., 2013

Exon 3 c.389C>T p.Thr130Ile AR maternal / AR homo Gasse et al., 2013

Exon 4 c.540T>A p.Tyr180* AR paternal This report

Exon 4 c.611A>G p.His204Arg AR homo Wang et al., 2013

Exon 5 c.678T>A p.His226Gln AR homo Ozdemir et al., 2005; Wright et al., 2011

Exon 6 c.910G>A p.Ala304Thr AR homo Lee et al., 2010

Intron 6 c.954-2A>T p.0 or p.Ile319* or p.Ile319Serfs*20 AR homo Kim et al., 2005; Wright et al., 2011

Exon 7 c.1054G>A p.Glu352Lys AR homo Seymen et al., 2015

*Sequences based on the reference sequence for mRNA (NM_004771.3) and protein (NP_004762.2), where the A of the ATG translation initiation codon is designated as nucleotide 1.

showed that the p.Thr130Ile mutant protein could be secreted
into the developing enamel matrix and retained proteolytic
function.

The functional analysis suggested that the Family 2 proband
would have reduced MMP20 activity, while there’s no functional
MMP20 in the Family 1 proband. This reduced functional
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activity of MMP20 potentially explains the difference in clinical
phenotype between the probands of these two families. Among
ninemutations inMMP20 gene reported to date (Kim et al., 2005;
Ozdemir et al., 2005; Papagerakis et al., 2008; Lee et al., 2010;
Wright et al., 2011; Gasse et al., 2013; Wang et al., 2013; Seymen
et al., 2015), mutations presumed to have retained functional
activity would likely present less severe discoloration compared
to nullifying mutations (Table 1). The degree of discoloration
could be an indicator of the enamel porosity and reflects an
altered level of maturation. Therefore, such clinical feature
reflecting enamel quality should be considered by clinicians when
devising a treatment plan for the patient.

As mutations of the MMP20 gene are characterized, their
functional impact investigated, and clinical features of the
affected individuals documented, it will enhance our ability to
establish genotype and phenotype correlation and provide the
needed evidence to improve clinical diagnosis and management
of patients with AI.
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