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ABSTRACT The phonon spectral density plays a key role in probing the dynamical and spectral behavior of molecular aggre-
gates. One may utilize the intimate connection between the one-phonon profile and the phonon spectral density to extract a
plausible form of the spectral density of media with rich structure using advanced optical spectroscopy. The excitonic tran-
sition is normally accompanied by a broad, asymmetric phonon-side band due to the coupling to the phonons in the surround-
ing protein matrix present in photosynthetic complexes. The asymmetry in the one-phonon profile of a homogeneous
absorption spectrum and other experiments performed on photosynthetic bacterial reaction centers (BRCs) led the Small
group to employ a half-Gaussian distribution function on the red side and half-Lorentzian distribution function on the blue
side of the absorption lineshape to account for the one-phonon profile asymmetrical shape and relaxation effects contributing
to spectroscopy and dynamics of BRCs at hand. Different research groups successfully employed the theory of Small to simu-
late their photosynthetic spectral data so they could calculate the homogeneous absorption and hole-burned spectra of photo-
synthetic complexes. Although this report does not directly use the formulae of homogeneous absorption, hole-burning, and
fluorescence line-narrowed spectra of BRCs, and photosynthetic complexes, developed by Hayes-Small, it builds on their idea
of the phonon sideband asymmetric shape in deriving an accurate and computationally efficient linear electronic transition
dipole moment time correlation function. Besides the compelling tractability and efficiency of this correlation function, it ac-
counts for excitonic coupling and eliminates all the inconsistencies arising in the Hayes-Small theory.
WHY IT MATTERS Different research groups successfully employed the Hayes-Small theory (where a half-Gaussian
function on the red side and half-Lorentzian distribution function on the blue side of the absorption spectrum is used to
account for the one-phonon profile asymmetrical shape and relaxation effects) for photosynthetic complexes to
simulate their photosynthetic spectral data to calculate absorption and hole-burned spectra in which the phonon
sideband of the absorption and nonlinear optical experiments exhibit asymmetry. This work derives an accurate and
computationally expedient dipole moment time correlation function for multimode systems. Besides the compelling
tractability and efficiency featured by the correlation function discussed here, it accounts for asymmetric phonon
profiles and excitonic coupling and eliminates all deficiencies and discrepancies arising in the Hayes-Small theory.
INTRODUCTION

Homogeneously broadened absorption spectra of
condensed molecular systems in the low-temperature
limit consist of a sharp peak called a zero-phonon
line (ZPL), accompanied by a broad phonon sideband
(PSB). Extensive research has been taking place to un-
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derstand the dynamics of molecular aggregates, espe-
cially pigment-protein complexes (1–5). The shapes of
linear homogeneous absorption spectra of condensed
molecular systems reveal a wealth of structural and
dynamical information about the nature of these
systems. Further, the shape and breadth of spectral
signals are affected by dephasing, relaxation, and dissi-
pative factors, reflecting information about the identity
of the molecular system at hand. These factors may
be accounted for by employing the correct phonon
spectral density, thereby leading to an accurate
PSB, especially the one-phonon profile (fundamental
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transition) on which the subsequent multiphonon tran-
sitions (overtones) build (6–12). These overtones fold
on the broadening of the fundamental transition (one-
phonon profile) as shown by the MBO model (13), Tou-
tounji et al. (11,14), and Hayes et al. (15). Their work
(13–15) reports a formalism whereby the width folding
of the overtones in the absorption spectra as the num-
ber of phonons associated with each transition, namely
quantized damping. However, the work in Refs. (13,14)
produces a symmetric one-phonon profile, namely Lor-
entzian distribution, since they assume Markovian
and Condon dynamics. The one-phonon profile, which
is an essential component of the PSB, is quite informa-
tive about the spectral density at work. Extracting the
operative spectral density from a disordered system
with rich structure, e.g., photosynthetic complexes, is
a difficult task (6–10,15–19). Evidently, Debye spectral
density does not seem tomodel the spectra in bacterial
reaction centers (BRCs) and photosynthetic complexes
(6–10,15–19).

The experiments performed on molecular chromo-
phores embedded in proteins, polymers, and
glasses have displayed asymmetric phonon profiles,
(6–9,15–20) whereas theory, on the contrary, normally
produces symmetric phonon profiles (vide supra).
These symmetric profiles are Lorentzian distribution,
resulting from Fourier transforming a simple time
exponential decay that arise in Markovian, Condon,
and harmonic dynamics. Small and co-workers em-
ployed hole-burning spectroscopy on chlorophylls
embedded in the protein complex of Rhodobacter
sphaeroides and Rhodopseudomonas (Rps.) viridis RCs
to obtain detailed information on the linear electron-
phonon coupling of protein phonons in antenna com-
plexes that is defined by the Huang-Rhys factor S
and the associated one-phonon profile. In these
pigment-protein complexes, the one-phonon profile
appears to be generally asymmetrically centered at
20–30 cm�1. Small et al. (10,16,17) showed, guided
by their experimental data, that a distribution function
composed of a half-Lorentzian function on the high-
energy side and a half-Gaussian function on the low-
energy side in the frequency domain satisfactorily
fits their spectra. Henceforth, the half-Gaussian distri-
bution function on the red side and the half-Lorentzian
distribution function on the blue side assignment of
the spectrum will be referred to as a G-L distribution.

In light of the above, a G-L distribution was
proposed to model the aforementioned asymmetric
one-phonon profiles (15). Hayes-Small formalism
(HSF) is frequency-domain based and has been uti-
lized to carry out spectral and dynamical calculations,
thereby interpreting experimental data successfully
(6,10,15,16,21,22). To this end, experiments performed
(6,9,10,15,16,21,22) on chlorophylls embedded in the
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protein complex showed that their spectra may satis-
factorily fit to a G-L distribution in the frequency
domain. In fact, Feng et al. (9) performed some calcu-
lations using parameters typically found in photosyn-
thetic complexes and showed that employing G-L
distribution to fit their spectral data was as gratifying
as the lognormal distribution (19).

However, the corresponding electronic transition
dipole moment time correlation function (or any
time-dependent quantities that generate asymmetric
PSB) of a photosynthetic dimeric complex using a
G-L distribution function whereby both exciton-exciton
coupling and exciton-phonon coupling are accounted
for has not been reported. Although the exciton-
exciton coupling will shift the vibronic bands, the
exciton-phonon coupling will reflect the coupling
strength of the matrix phonons to the excitonic transi-
tion, which, in our case, will lead to broad asymmetric
PSB. (The electronic transition dipole moment time
correlation function (EDMCF) may then be employed
to calculate nonlinear optical signals to further probe
pigment-protein complexes, as will be done in part II
of this series using optical nonlinear response theory.)
Although the phonon spectral density closely resem-
bles the one-phonon profile of the PSB, we will present
our new EDMCF in terms of the one-phonon profile
exclusively, as part III will independently deal with
more advanced spectral densities to probe linear and
nonlinear signals in pigment-protein complexes and
BRCs. Different environments have different phonon
distributions, and learning about the nature of the dis-
tribution present in pigment-protein complexes may
lead to better understanding of this protein vibrational
structure, especially when probed using advanced
spectroscopy techniques such as hole-burning, two-
dimensional electronic spectra, and stimulated photon
echo. As such, this would serve as an important bio-
logical implication of this work.

This work may be considered a first-time report
of the linear electronic transition dipole moment
correlation function in the time domain, whereby the
broadening effects, PSB asymmetry, exciton-exciton
coupling, and exciton-phonon coupling in BRCs are ac-
counted for correctly. To this end, HSF suffers from
discrepancies and deficiencies that are well elucidated
by Jankowiak et al (10). Although the pigment-
pigment interaction (excitonic coupling) treatment is
missing in both HSF (15) and their corrected forms
by Jankowiak et al. (10), the derived EDMCF herein ac-
counts for these missing factors. Additionally, the
computational expediency acquired by the derived
EDMCF herein should be noted. Finally, having an
EDMCF in the time domain, of which Fourier transform
leads to asymmetric one-phonon profile, will allow
a straightforward and expedient computation of



nonlinear optical signals, e.g., photon echo, pump-
probe, hole-burning, and two-dimensional electronic
spectra.

Despite the wide applicability, utility, and success of
HSF in monomeric subunit FMO and weakly excitoni-
cally coupled photosynthetic complexes (6,18,21,23),
the absence of the corresponding theory in the time
domain has led to my writing this manuscript. More
importantly, this work offers a remedy that eliminates
critical deficiencies experienced by HSF in the fre-
quency domain, especially for a multimode system
(10). In summary, HSF 1) is mathematically intrac-
table, hence computationally demanding, especially
for multimode pigment-protein complexes; 2) experi-
ences discrepancies and inconsistencies (in the case
of systems with many modes and strong electron-
phonon coupling, which is often the case in BRCs),
as pointed out by Reppert(10); and 3) pigment-
pigment coupling term, especially for a special pair
BRC, is absent. Although Reppert et al. (10) have
solved the discrepancies and inconsistencies experi-
enced by HST, they made it more complex and less
efficient computationally. As a point of fact, in the cur-
rent form of their expression (10), besides more
complexity, the expansion terms of the nested sums
therein keep growing as the pigment-complex strength
(Huang-Rhys factor, S) increases, especially at high
temperatures. Also, no numerical strategy was re-
ported for terminating these proportionally growing
expansion terms, thereby causing accuracy issues to
arise. As such, performing the direct inverse Fourier
transform of HSF (or that of Reppert et al. (10)) analyt-
ically or numerically will only reproduce the same is-
sues cited above. For this reason, it should be
avoided. Additionally, HSF does not lead to any time-
domain four-wave mixing signals, and the phonon pro-
files are reported using a conditional IF statement.
Also, HSF was never derived but postulated. On the
other hand, the work presented herein provides a deri-
vation of a linear EDMCF with correct Franck-Condon
factor (FCF), interpigment coupling, electronic dephas-
ing, and asymmetric one-phonon profile shape.
Although paper II (the second part of the series) will
address the applicability of our work to nonlinear opti-
cal photon echo, pump-probe, and 2D electronic sig-
nals, part III will provide detailed spectral formalism
of lognormal distribution function to linear and
nonlinear temporal signals.
Theoretical setup for dimeric complexes

Consider an excitonically coupled dimeric system with
nuclear vibrations coupled to a bath mode of harmonic
oscillators. Assuming the identical monomers inter-
acting through the dipole-dipole effect, the Hamilto-
nian of interest may be written as

H ¼
X2

m ¼ 1

εmBy
mBm þ

X
mn

Jmn By
mBn þ Hvib þ Hex� vib

þ Hbath þ Hex� vib� bath

(1)

where εm is the electronic transition energy of mono-
mer (pigment) m, By is the electronic excitation Fermi
m
creation operator, Bm is the electronic deexcitation
Fermi annihilation operator, and Jmn is the Coulombic
coupling between the electronic charge densities of
the pigments making up the dimer (the Coulombic ex-
change interaction term has been dropped). The vibra-
tional Hamiltonian reads

Hvib ¼
X
j

Ejb
y
j bj þ 1

�
2; (1a)

with Ej being the vibrational energy and byj ðbjÞ the cre-
ation (annihilation) boson operators. Although the

linear coupling exciton-vibrational Hamiltonian is

Hex� vib ¼
X
jmn

mju
2
j djmnBy

mBnqj ; (1b)

the bath Hamiltonian and the pigment-bath Hamilto-
nian Hex� vib� bath will be left unspecified for reasons

that will become apparent later. The typical pigment-
bath Hamiltonian in the literature reads

Hex� vib� bath ¼
X
jmn

yjnmBy
mBn

�
by
jþbj

�
; (1c)

where yjnm is the pigment-bath coupling constant.
Here q , m , u , and d are coordinate, mass, fre-
j j j jmn
quency, and the upper linear displacement of vibra-
tional mode j due to exciton-phono coupling,
respectively. The dimer Hamiltonian may also be
cast in the site basis set as

H ¼
X2

m ¼ 1

εmjmDCmj þ
X
mn

JmnjmDCnj þ
X
j

Ej j jDC jj

þ
X
jmn

mju
2
j djmn qj jmDCnj þ Hbath þ Hex� vib� bath

(2)

It is noteworthy that the electronic Hamiltonian for
monomer k may alternatively be written as

HelðkÞ ¼ HgkjgkDCekj þ HekjekDCgkj ¼ HgkBkB
y
k

þ HekB
y
kBk

(3)

Or simply written, for each monomer,
Hel ¼ HgjgDCgj þHejeDCej (4)
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to avoid clutter. By definition, Bk ¼ jgDCej and By
k ¼

jeDCgj. Here Hgk and Hek are the ground and excited
states nuclear Hamiltonians for site/monomer k.

Assuming an electronic transition from a ground
state jgD to an excited state jeD, the resulting homoge-
neous absorption spectrum will have intensity, shape,
and broadening, all of which are caused by the time
evolution of the Hamiltonian in Eq. 1. The FCFs will
give rise to the integrated intensity, whereas the ab-
sorption profile shape (e.g., Lorentzian, Gaussian, or
Voigt), symmetry, and broadening are caused by the
coupling to the bath and the associated dephasing
processes, whereby the bath spectral density plays
an essential role. Traditional treatment of dephasing
processes through spin-boson coupling Hamiltonian
would only result in symmetric Lorentzian or Gaussian
profile (24,25). However, experiments performed on
BRCs, show asymmetric absorption profile, half of
which is Gaussian on the low-energy side and the
other half is Lorentzian on the blue side of the spec-
trum. As such, although the bath form is left undeter-
mined, its effects are accounted for as guided by
experiments performed by Small et al. (15–17,21,22).
The next section will derive the linear EDMCF, whereby
the exciton-phonon coupling is accounted for that
leads to overtones that fold themselves on the funda-
mental transition (one-phonon profile) that has an
asymmetric shape made of half-Gaussian on the red
side and half-Lorentzian on the high-energy side
guided by Hayes-Small experimental findings (vide su-
pra). The linear EDMCF is given by

FðtÞ ¼ CPðtÞPð0ÞD (5)

where the electronic polarization PðtÞ ¼ P
m
mm
ðBy
m þBmÞ in which mm is the dipole moment operator

of monomer m. The linear EDMCF function in the Hei-
senberg representation reads

JðtÞ ¼ Tr
�
eiHt=ZPð0Þe� iHt=ZPð0Þreq

�
(6)

where the equilibrium density matrix is req given by
req ¼ e� bHjgDCgj
Z

(6a)

in which Z is the canonical partition function. The
trace in Eq. 6 is taken over electronic, nuclear, and

bath degrees of freedom. Although tracing over the
electronic basis will project FðtÞ over in the nuclear
and bath subspace, tracing over vibrations will give
rise to FCFs, of a linearly coupled system, and tracing
over the latter will lead to the spectral profile shape
and the associated broadening.

For simplicity purposes, one may initially evaluate
FðtÞ in the low-temperature limit for a vibrational
mode j that yields, precluding broadening effects
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(homogeneous dephasing) and assuming no popula-
tion transfer (24,25),

FjmnðtÞ ¼ exp
�� iεmntdmn � iJnmt

� Sjnm

�
1 � Rjnm

�
t;uj;gj

��� (7)

where Sjnm is the Huang-Rhys factor, which is respon-
sible for linear exciton-phonon coupling strength;

the reciprocal of gj signifies phonon dephasing
time (damping constant); and Rjnmðt;uj;gjÞ is the de-
coherence or nuclear dephasing function that
arises due to the dimer-bath coupling. As part of eval-
uating Rjnmðt;uj;gjÞ, the asymptotic condition
Rjnmðt;uj;gjÞ/e� iuj t as gj/0 should be imposed to
ensure the proper behavior of EDMCF. (Note that
Rjnmðt;uj;gjÞ affects only vibrational modes, which is
why it is appended with the index j and has nil effect
on the ZPL.) It is left unevaluated since the nature of
the bath and its coupling to the dimer are yet un-
known. Setting Rjnmðt;uj;gjÞ ¼ 0 will give rise to a
purely oscillatory correlation function in Eq. 7 and
does not exhibit any damping or decoherence since
bath effect has vanished (Rjnmðt;uj;gjÞ ¼ 0). The
ZPL profile has different symmetry, shape, and broad-
ening than the transitions (vibronics) in the PSB; as
such, the pure electronic and PSB regions undergo
considerably different dephasing processes (13–22).
To account for this spectral feature, the nuclear de-
phasing function Rjnmðt;uj;gjÞ will initially be set to
zero, only for now, so it only manifests itself in the
PSB. However, the theory by HSF indicates that the
ZPL adopts a Lorentzian profile, (13,14,26) leading to

FjnmðtÞ ¼ exp
�� iεmntdmn � iJnmt

� Sj

�
1 � e� iuj t

� � GZPLjtj
�
2
� (8)

Eq. 8 will render a ZPL width of GZPL and delta func-
tion (zero width) for all the subsequent phonon pro-
files (fundamental transition and overtones) on the
blue side of the spectrum. Upon comparing Eqs. 7
and 8, their difference would reveal the impact of the
nuclear dephasing function Rjnmðt;uj;gjÞ on the opti-
cal lineshape. Now that we have secured the correct
shape, symmetry, FCF, and width of the ZPL that is
consistent with HSF finding (13,14,26), we next try to
evaluate a plausible form of the nuclear dephasing
function Rjnmðt;uj;gjÞ that gives rise to an asymmetric
broadening of the phonon profiles only.

One possible way to attempt modeling the effect of
the bath on the system in the time domain is to look at
the asymmetric shape of the one-phonon profile
(fundamental transition) and its width first upon which
the subsequent profiles build, thereby finding the form
of Rjnmðt;uj;gjÞ. Accordingly, one may assume that the
k-phonon profile (k ) 0 transition), which will be



denoted Lk, of the homogeneous absorption lineshape
IðuÞ of mode j with frequency uj may be postulated as

Lkf

2
64u�u � k uj

� k=2p�
u � kuj

�2 þ �
kgj

�
2
�2

þ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

j

q u
�
kuj � u

�
e
�ðu� kujÞ2

.
2s2

j

3
75

(9)
where uðuÞ is the generalized unite-step function that
will ensure that the Gaussian profile evolution ensues

restrictively on the red side and Lorentzian profile of
an unequal width shows up on the blue side of the
spectrum profile-like scheme, and k > 0 (fundamental
transition and overtones for k ¼ 1 and kR 2, respec-
tively) is the vibrational quantum number signifying
the number of phonons associated with the vibronic
transition. (FCFs have been precluded in Eq. 9 for
clarity and simplicity.) For instance, in the case of
one-phonon profile, k ¼ 1

L1f

2
64u�u � uj

� gj

�
2p�

u � uj

�2 þ �
gj

�
2
�2

þ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

j

q u
�
uj � u

�
e
�ðu�ujÞ2

.
2s2

j

3
75

(9a)
and k ¼ 2 when it is a two-phonon profile (first
overtone)
L2f

2
64u�u � 2uj

� 2gj

�
2p�

u � 2uj

�2 þ �
2gj

�
2
�2

þ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

j

q u
�
2uj � u

�
e
�ðu� 2ujÞ2

.
2s2

j

3
75

(9b)
gj denotes the width (full width at half maximum) of
the Lorenzian profile associated with mode j, whereas

sj is the corresponding standard deviation of the
Gaussian distribution, yielding fwhm ¼ 2sj

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
.

In HSF, the one-phonon profile acts as the building
block of the subsequent transitions (overtones) since
they fold themselves with the one-phonon profile
(fundamental transition), which will, in turn, build on
the ZPL in the spirit of Born-Oppenheimer approxima-
tion. Henceforth, the subscript k will be dropped and j
will denote vibrational mode j, and Rjnmðt;uj;gjÞ will be
replaced with simply RjnmðtÞ to avoid clutter where
confusion is unlikely to arise. L1 in Eq. 9a is very
similar to the spectral density reported by many
groups (6,7,15–18,20–22,29).

Taking the inverse Fourier transform of L1 of Eq. 9a
yields the form of the nuclear dephasing function

RjnmðtÞ ¼ F� 1

2
64u�u � kuj

� k=2p�
u � kuj

�2 þ �
kgj

�
2
�2

þ 1ffiffiffiffiffiffiffiffiffiffi
2ps2

j

q u
�
kuj � u

�
e
�ðu� kujÞ2

.
2s2

j

3
75

k ¼ 1

(10)

Although the inverse Fourier transform of the first
term (half-Lorentzian) in Eq. 10 is

LjnmðtÞ ¼ 1

2p
e� iujt

n
iegj t=2Ei

�
�gj

2
t
�
þ e�gjt=2

h
p

� i Ei
�gj

2
t
�io

(11)

with Ei being the exponential integral function, the in-
verse Fourier transform of the second term (half-

Gaussian) in Eq. 10 is

GjnmðtÞ ¼ 1

2
e� iuj te

� s2
j
t2

.
2


1þErf



i sj tffiffiffi

2
p

��
(12)

A word of caution about performing the integration
in Eq. 10 that leads to the result in Eq. 11: the tabu-
lated integrals and symbolic integration software
produce a wrong result that excludes the p e�gjt=2.
The exponential integrals at iN (complex infinity)
that come up when evaluating Eq. 10 can be tricky,
and therefore one has to exercise care while
computing them, especially when Eið0Þ ¼ � N,
Eið0Þ ¼ N, Eið iNÞ ¼ ip, and Eið0Þ ¼ �N; these
values at infinity require adding a phase factor equal
to p, which appears in Eq. 11. The tables of integrals
shown in Ref. (30) seem to miss the factor p in Eq.
11. Multiple numerics have been performed to confirm
this finding. Thus, the dephasing function RjnmðtÞ of
the protein phonons for the vibrations reads

RjnmðtÞ ¼ LjnmðtÞ þ GjnmðtÞ (13)

E rf (.) in Eq. 12 is the error function typically found in
Fourier analysis. Note that here the relationship

sj ¼ gj=2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 ln 2

p
to link sj to gj, of which values may

be chosen to fit experimental data, as reported in
Ref. (15). Putting it together, Eq. 7 now reads

FjmnðtÞ ¼ exp
�� iεmntdmn � iJnmt

� Sjnm

�
1 � RjnmðtÞ

� � GZPLjtj
�
2
� (14)

Eq. 14 gives the linear EDMCF that treats the elec-
tronic dephasing and phonon relaxation processes
distinctively differently, unlike most mainstream
Biophysical Reports 4, 100146, March 13, 2024 5



dephasing and relaxation models, including the MBO
model. This feature alone makes this EDMCF unique,
thereby making it superior to other models in that it
is sensitive to both electronic dephasing and vibra-
tional relaxation processes, thereby leading to asym-
metric PSB in pigment-protein complexes (vide
supra). (27) A word is in order concerning the dephas-
ing function RjnmðtÞ role, utility, and significance. The
form of L1 of Eq. 9a draws on the findings of Small
et al. (15–17,22) that the one-phonon profile could
reasonably assume the form of Eq. 9a. However, it
was never reported anywhere in this compact form
as it appears in Eq. 9, especially introducing the unit
step function, which is essential to assimilate the
one-phonon profile correctly. The reason for calling
RjnmðtÞ a dephasing function is that it is the result of
the inverse Fourier transform of a frequency-domain
expression such as the one-phonon profile, which is
essentially the spectral density of the bath phonons
causing the dephasing and, hence, broadening. It
is the spectral density from which the broadening
effects emanate. As such, RjnmðtÞ encodes the
pigment-complex effect in that context in time
domain; it is the counterpart of one-phonon profile in
the frequency domain. For this reason, one-phonon
profile plays a significant role in probing dephasing,
hence the name. This explains why, when RjnmðtÞ ¼
0, we obtain an oscillatory function in Eqs. 7 and 14,
exhibiting virtually no phonon damping activity.
Thus, the utility of this dephasing function is to probe
the asymmetry exhibited by the collective phonon mo-
tion experienced by the asymmetric distribution of
phonons in the surrounding protein. This asymmetry
of the phonon distribution manifests itself in homoge-
neous spectra in the PSB of condensed systems such
as photosynthetic complexes.

The temperature dependence of the EDMCF may be
obtained with the aid of lineshape function theory by
utilizing (11,13,14)

FðtÞ ¼ exp

�
�

Z N

�N

1

2pu2



coth



bZu

2

�
ð1 � cosðutÞÞ

þ i sinðutÞ
�
CðuÞ du



;

(15)

where CðuÞ is the bath spectral density. Thus, the final
form of the optical EDMCF of mode j in the absence of

population transfer reads

FjnmðtÞ ¼ exp

�
� iεmntdmn � iJnmt � GZPLjtj

2
� Xjnm

�
(16)

where
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Xjnm ¼ Sjnm

�
coth



bZuj

2

��
1 � eiujt RjnmðtÞcos

�
ujt

��
þ ieiujtRjnmðtÞsin

�
ujt

��
(16a)

Note that the ZPL profile is Lorentzian of width GZPL

(full width, half maximum), whereas the multiphonon
transitions making up the PSB of mode j would adopt
half-Gaussian and half-Lorentzian distributions of
widths equal to sj

ffiffiffiffi
k

p
on the low-energy side and kgj

on the high-energy side, respectively. Finally, one
may obtain an expression of EDMCF for a multimode
system with linear electron-phonon coupling whereby
the PSB exhibits an asymmetric shape that may read

FjnmðtÞ ¼ exp

(
� GZPLjtj

2
�

XN
j ¼ 1

�
iεmnt dmn

þ iJnmtþXjnm

�) (17)

Eq. 17 represents the linear EDMCF of excitonically
coupled paired pigments at finite temperatures for
mode j and N-mode systems, assuming no population
transfer. The unique aspect of Eq. 17 is fourfold: 1) it
produces a homogeneous absorption spectrum that
accounts for the asymmetry of the PSB and the
symmetric shape of the ZPL; 2) it accounts for
pigment-pigment coupling and for N-mode system
correctly; 3) the one-phonon profile carries its width
over the overtones through folding; 4) it avoids the
N-convolutions that normally arise in the frequency
domain, thereby speeding up the computation process
significantly; and 5) it eliminates all the inconsis-
tencies, deficiencies, and difficulties associated with
the theory presented by HSF. It is also readily extend-
able to nonlinear spectroscopy, which will be pre-
sented in paper II.
Model and real system calculations

This section provides illustrative calculations for
both model and real systems to ratify the above-
derived EDMCF. Although the model calculation will
employ average parameters of photosynthetic an-
tenna pigment complexes where the pigment-pigment
coupling is negligibly small and thus may be treated
as a one-pigment system (6, 28, 19), the parameters
of light-harvesting CP29 chlorophyll pigment-protein
complex in green plants and the special pair reaction
center in bacteria (pigment dimer) will represent sys-
tem calculation. The adiabatic electronic energy
gap U ¼ 0 throughout the course of calculations
without loss of generality. For this reason, the ZPL,



fundamental transition, and overtones will be shifted
by the interpigment coupling J, rendering the ZPL
centered at J with U ¼ 0.

Fig. 1 uses model parameters U ¼ Jnm ¼ 0, Sj ¼
0:50, uj z 30 cm�1, GZPL ¼ 1.0 cm�1, gj ¼ 20 cm�1,
and sj ¼ 8:5 cm�1 commonly found in monomeric
pigment-protein complexes to calculate the linear ho-
mogenous absorption spectra at various tempera-
tures. These parameters are judiciously chosen to
explicitly display the structure brought about by taking
cm-1

)ua( noitprosbA

T=20

T=150

T=50

FIGURE 1 Linear homogenous absorption spectra at various tem-
peratures, using the commonly found parameters in monomeric
pigment-protein complexes with negligible excitonic coupling.
Sj ¼ 0:50, uj z 30 cm�1, GZPL ¼ 1.0 cm�1, gj ¼ 20 cm�1 and
sj ¼ 8:5 cm�1. All spectra show the ZPL as a sharp peak at u ¼ 0

since the adiabatic electronic gap U was set to 0, U ¼ 0. The
one-phonon profile is centered at u ¼ 30 cm�1, and hot bands arise
as the temperature increases.
the Fourier transform of Eq. 17. All spectra show the
ZPL as a sharp peak at u ¼ 0 since the adiabatic elec-
tronic gap U was set to 0, U ¼ 0. One can also see the
PSB, of which the one-phonon profile is the main
component, on the blue side; such a weakly intense
one-phonon profile centered at u ¼ 30 cm�1 is an arti-
fact of the weak exciton-phonon coupling Sj ¼ 0:50, in
line with the correct FCF of a linearly coupled system,
as shown in the top panel at T ¼ 50 K. As the temper-
ature goes up, as shown in both the middle and bot-
tom panels, although the ZPL intensity decreases,
that of PSB becomes more intense with a hot band
(1)0 transition) peaked at u ¼ � 30 cm�1 on the
red side. Further intensity loss of ZPL takes place as
the temperature is elevated to T ¼ 150 K, giving rise
to a stronger PSB and more hot bands on the low-en-
ergy side. Fig. 2 calculates homogenous absorption
spectra with linear exciton-phonon coupling (weak)
at various temperatures. The absorption spectra in
Fig. 2 utilize average parameters that are typically
found in pigment-protein complexes, e.g., CP29 and
B777: Sj ¼ 0:40, uj z 30 cm�1, GZPL ¼ 1.0 cm�1,
gj ¼ 60 cm�1, and sj ¼ 26 cm�1. The inset in the
top panel cuts off the ZPL to better show the one-
phonon profile. The inordinate ZPL strong intensity is
attributed to the very weak exciton-phonon coupling
(Sj ¼ 0:40) and its narrow width. As the temperature
goes up from T ¼ 50 K to 250 K, more hot bands arise,
giving more intensity to PSB. The inset in the top panel
is shown after chopping off the sharp ZPL intensity to
reveal the one-phonon profile better.

Finally, Fig. 3 uses the parameters of Rps. viridis
BRC to calculate linear homogeneous spectra at
different temperatures by Fourier transforming Eq.
17, where the mean frequency mode (um ¼ 30 cm� 1;
Sm ¼ 2:1, and gm ¼ 55 cm� 1) and the marker mode
(usp ¼ 145 cm� 1, Ssp ¼ 1:0, and gsp ¼ 50 cm� 1) are
included with the width of GZPL ¼ 3 cm� 1 due to
electronic decay, and the excitonic coupling
Jnm � 300 cm� 1. Fig. 3 reveals three linear homoge-
neous spectra Rps. viridis BRC calculated at various
temperatures. The PSB predominates at T ¼ 250 K,
whereas the ZPL diminishes. The ZPL and phonon
transitions (hot and cold) are shifted in all the spectra
by 300 cm� 1 due to excitonic coupling.
Concluding remarks

The novelty of this work lies in not only presenting the
electronic transition dipole moment correlation func-
tion in the time domain, which will allow an efficient
and quick extension to finding nonlinear optical
signals, but also using a G-L distribution function
whereby both exciton-exciton coupling and exciton-
phonon coupling are accounted for. This is an
Biophysical Reports 4, 100146, March 13, 2024 7
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FIGURE 2 Linear homogenous absorption spectra at various
temperatures. The spectra utilize the average parameters that are
typically found in one-system pigments; e.g., CP29 and B777:
Sj ¼ 0:40, uj z 30 cm�1, GZPL ¼ 1.0 cm�1, gj ¼ 60 cm�1, and
sj ¼ 26 cm�1. The inset in the top panel cuts off the ZPL to better
show the one-phonon profile. The inordinate strong intensity of
the ZPL is attributed to the very weak exciton-phonon coupling
(Sj ¼ 0:40) and its narrow width. As the temperature goes up,
more hot bands arise, giving more intensity to the PSB. The inset
in the top panel is shown after cutting off the sharp ZPL intensity
to reveal the one-phonon profile better.

)ua( noitprosbA
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T=250

T=50

T=10

FIGURE 3 Linear homogeneous spectra of Rps. viridis BRC at
different temperatures. Although the ZPL width is GZPL ¼ 3 cm� 1 ,
due to electronic decay, the excitonic coupling Jnm � 300 cm� 1.
The parameters of the low-frequency mode are um ¼ 30 cm� 1;

Sm ¼ 2:1, and gm ¼ 55 cm�1, whereas those of the marker mode
are usp ¼ 145 cm�1, Ssp ¼ 1:0, and gsp ¼ 50 cm�1. The PSB pre-
dominates at T ¼ 250 K, whereas the ZPL diminishes. The ZPL and
phonon transition (hot and cold) are shifted in all the spectra by
300 cm�1 due to excitonic coupling.
additional unique aspect of this work. As such, the
focus of this article is to report and shed some light
on the utility and correct applicability of G-L distribu-
tion function that experimentally seems to fit the
one-phonon profile in some photosynthetic complexes
in the time domain. One can, in turn, utilize the one-
phonon profile structure to deduce the vibrational
spectral density, which is a central quantity in probing
energy transfer, rate constants of exciton transfer,
exciton-phonon coupling strength, and lineshape cal-
culations. The one-phonon profile is described using
G-L distribution function with a coupling to a bath of
8 Biophysical Reports 4, 100146, March 13, 2024
low-frequency phonons governed by gðuÞDðuÞ, where
gðuÞ is density of states and DðuÞ is frequency-depen-
dent coupling. The broadening, which is a conse-
quence of the dynamical attributes of the molecules
of the sample in question, and shape of the PSB reflect
the nature of the constituent molecules making up the
sample and its coupling to the surrounding environ-
ment. For this reason, this work may play biological
role in ascertaining the nature of the phonon distribu-
tion embedded in the pigment-protein complexes,



thereby leading to a better understanding of the
phonons making up the surrounding protein and vibra-
tional structure of photosynthetic complexes, espe-
cially when probed using nonlinear spectroscopy
techniques such as hole-burning, two-dimensional
electronic spectra, and stimulated photon echo, all of
which will be explored in the next series of this work
in the future.

Although this work does not directly use the
formulae of homogeneous absorption, hole-burning,
and fluorescence line narrowing spectra of BRCs,
and photosynthetic complexes, reported by Small
et al. (15), it builds on their idea of the phonon side-
band asymmetric shape in deriving an accurate
and computationally efficient linear EDMCF that may
readily be extended to derive and compute all
nonlinear optical signals in frequency and time do-
mains. Although paper II of this series will present
illustrative nonlinear optical spectra of photosynthetic
complexes and BRCs with asymmetric PSB, paper III
will derive exact analytical expressions for the linear
and nonlinear EDMCF and homogeneous spectra of
the same system using lognormal distribution func-
tion (9,10,19) by using a newly developed spectral den-
sity called distorted Gaussian distribution that
accounts for the PSB asymmetry, correct FCF, inter-
pigment coupling, and electronic dephasing. The pur-
pose of the distorted Gaussian distribution is to
serve as an alternative to the lognormal spectral den-
sity that would circumvent the numerical challenges
posed by lognormal distribution function.
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