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Imputing single-cell RNA-seq data
by combining graph convolution
and autoencoder neural networks

Jiahua Rao,1 Xiang Zhou,1 Yutong Lu,1 Huiying Zhao,2 and Yuedong Yang1,3,4,*

SUMMARY

Single-cell RNA sequencing technology promotes the profiling of single-cell tran-
scriptomes at an unprecedented throughput and resolution. However, in scRNA-
seq studies, only a low amount of sequenced mRNA in each cell leads to missing
detection for a portion of mRNA molecules, i.e. the dropout problem which hin-
ders various downstream analyses. Therefore, it is necessary to develop robust
and effective imputation methods for the increasing scRNA-seq data. In this
study, we have developed an imputation method (GraphSCI) to impute the
dropout events in scRNA-seq data based on the graph convolution networks.
Extensive experiments demonstrated that GraphSCI outperforms other state-
of-the-art methods for imputation on both simulated and real scRNA-seq data.
Meanwhile, GraphSCI is able to accurately infer gene-to-gene relationships and
the inferred gene-to-gene relationships could also provide powerful assistance
for imputation dynamically during the training process, which is a key promotion
of GraphSCI compared with other imputation algorithms.

INTRODUCTION

Compared to bulk cell RNA sequencing (Wang et al., 2009) (RNA-seq), single-cell RNA sequencing tech-

nology (Kolodziejczyk et al., 2015) (scRNA-seq) has greatly promoted the profiling of transcriptomes at sin-

gle-cell level and helped researchers to improve understanding of complex biological questions. It allows

people to study cell-to-cell variability at a much higher throughput and resolution, such as studies of cell

heterogeneity, differentiation and developmental trajectories (Saliba et al., 2014).

Despite its improvements, various technical deviations occurred due to the upgrade of sequencing tech-

niques frombulk samples to single cells. Typically, the low RNA capture rate and sequencing efficiency lead

to a large proportion of expressed genes with false zero counts in some cells, defined as ‘dropout’ event

(Svensson et al., 2017; Kharchenko et al., 2014). For example, protocols based on droplet microfluidics (Zi-

lionis et al., 2017) and Fluidigm C1 platform usually have a high dropout rate in the scRNA-seq data due to

their technical limitations. And new droplet-based protocols, such as inDrop (Klein et al., 2015) and 10X

Genomics (Zheng et al., 2017), have improved the detection rates but still have relatively low sensitivity,

leading to the dropout events. On the other hand, although many of the zero counts represent the true

absence of gene expression in specific cells, a considerable fraction is due to the dropout phenomenon

where a truly expressed gene is undetected in some cells, resulting in zero or low read counts. Therefore,

it is important to note the distinction between the truly expressed zeros and the false zeros in statistical

analysis. Not all zeros can be considered as the missing values to be imputed. Imputation methods should

impute the non-zero space but preserve the true-zero expression.

As a result, methods such as MAGIC (Van Dijk et al., 2018), SAVER (Huang et al., 2018), scImpute (Li and Li,

2018), scVI (Lopez et al., 2018), DCA (Eraslan et al., 2019), and DeepImpute (Arisdakessian et al., 2019) have

been developed to correct the false zero read counts in order to recover true expression levels in scRNA-

seq data. These approaches estimate ‘‘corrected’’ gene expressions by borrowing information across

similar genes or cells. For example, MAGIC imputes gene expression data for each gene across similar cells

based on Markov transition matrix, while SAVER takes advantage of gene-to-gene relationships by using

Bayesian approach to infer the denoised expression. Both MAGIC and SAVER would recover the expres-

sion level of each gene in each cell including those unaffected by dropout events. ScImpute, on the other
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hand, determines the dropout entries based on a mixture model and imputes only the likely dropout en-

tries across similar cells. However, MAGIC and SAVER fail to learn the non-linear relationships and the

counting structures in the scRNA-seq data. Thus, with the development of deep learning, neural

network-based imputation methods have been proposed such as SAVER-X (Wang et al., 2019), DCA and

DeepImpute. By combining a deep autoencoder with a Bayesian model, SAVER-X extracts transferable

gene�gene relationships to impute scRNA-seq data sets. DCA proposes an imputation method based

on an Autoencoder, a kind of deep neural networks used to reconstruct data in an unsupervised manner.

DeepImpute, in another way, constructs multiple sub-neural networks to impute genes in a divide-and-

conquer approach, which utilizes dropout layers and loss functions to learn patterns in the data. In the

imputation of each cell, DCA minimizes the zero-inflated negative binomial (ZINB) (Risso et al., 2018)

model-based loss function to learn gene-specific distribution in scRNA-seq data.

However, these existing imputation methods for scRNA-seq aim at learning the similarity of cells or genes

but not considering gene-to-gene relationships and cell-to-cell correlations simultaneously, resulting in

the fact that they cannot retain biological variation across cells or genes. And decades of molecular biology

research have taught us much about the principles of gene interaction and their influence on gene expres-

sion (Bhardwaj and Lu, 2005; Fraser et al., 2004). For example, the gene is truly not expressed due to gene

regulation, but imputed by similar cells, which makes it difficult to study cell-to-cell variation and down-

stream analysis. This means that our imputation method not only needs to take advantage of the informa-

tion between similar cells but also gene-to-gene relationships. More importantly, as imputation proceeds,

the imputed gene expression matrix could infer more accurate gene-to-gene relationships while the in-

ferred gene-to-gene relationship helps improve the accuracy of imputation. Therefore, our imputation

method needs to be able to dynamically integrate the imputation of gene expressions and inference of

the gene-to-gene relationships during the training process.

Accordingly, in this paper, we developed a Single-Cell Imputation method that combines Graph convolu-

tion network (GCN) and Autoencoder neural networks, called GraphSCI, to impute the dropout events in

scRNA-seq by systematically integrating the gene expression with gene-to-gene relationships. We will use

gene-to-gene relationships as prior knowledge to recover gene expression in a single cell because gene-

to-gene interactions are likely to affect gene expression sensitively. And the combination of GCN and

autoencoder neural networks makes it possible for us to dynamically utilize the increasingly accurate

gene-to-gene relationships to impute gene expressions. By stacking the GCN and autoencoder network,

GraphSCI is capable of exploring the gene-to-gene relationships in an explicit way, so as to impute the

dropout events effectively. Furthermore, the deep generative model with gene-specific distribution such

as ZINB and NB distribution could learn the true data distribution of scRNA-seq data and then impute

the dropout events and avoid overfitting.

The gene-to-gene relationships can be regarded as a gene graph, in which the gene is the node and the

edge is the relationship. As a consequence, the imputation task of gene expression can be converted into

the node recovering problem on graphs. GCN (Kipf and Welling, 2017) is a very powerful neural network

architecture for machine learning on graphs. It was designed to learn hidden layer representations that

encode both local graph structure and features of nodes and edges. A number of recent studies describe

applications of GCN such as node recovering problem (Meng et al., 2019; Gong et al., 2014; Chakrabarti et

al., 2014; Yang et al., 2017). Inspired by the co-embedding attributed network (Meng et al., 2019), we

combine GCN and autoencoder neural network to systematically learn the low-dimensional embedded

representations of genes and cells. GCN exploits the spatial feature of gene-to-gene relationships effec-

tively while Autoencoder neural network learns the non-linear relationships of cells and counting structures

of scRNA-seq data, and thus the deep learning framework reconstructs gene expressions by integrating

gene expressions and gene-to-gene relationships dynamically in the backward propagation of neural

networks.

Our proposed method was shown to outperform competing methods over both simulated and real data

sets by diverse downstream analyses. To assess the performance of the imputation methods, we evaluate

their improvement on several downstream analyses. Firstly, we perform cell clustering and use clustering

metrics to demonstrate their effectiveness to impute the dropout events. And then we also perform the

differential expression analysis to evaluate their improvement of the identification of differentially ex-

pressed genes (DEGs). The evaluation performance illustrates the rationality and effectiveness of our
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proposed method. Furthermore, our method takes advantage of the gene-to-gene relationships in the

framework that infers new reliable relationships simultaneously. Altogether, we demonstrate that our pro-

posed method is highly scalable and parallelizable via graphical processing units (GPUs).

RESULTS

Overview of the GraphSCI algorithm

GraphSCI is a deep neural network model that combines the GCN and autoencoder neural network to

impute gene expression levels in scRNA-seq data. The overview of our method is shown in Figure 1 and

the detailed model architecture is shown in Figure 2.

Usually, the expressions of genes are correlated by their related genes or interacting genes because the co-

expressed genes are controlled by the same transcriptional regulatory program, functionally related, or

members of the same pathway or protein complex (Weirauch, 2011). Therefore, given the log-normalized

expression data X , we first construct gene co-expression networks, called Gene Graph, from the raw

expression data through the Pearson correlation coefficient (PCC). When the PCC between two genes is

greater than 0.3 or less than �0.3, we assume that the two genes are co-expressed and there is an initial

edge between them in the gene network. Obviously, our initial gene co-expression networks have a

high rate of false positives because of dropout events in scRNA-seq data. We therefore combine the

GCN and autoencoder neural network (AE) to dynamically integrate the imputation of gene expression

and the inference of the gene co-expressed network where GCN encodes the gene co-expressed network

with expression levels to the latent vector Z and then reconstructs the edges in gene co-expression

network. AE encodes the gene expression matrix with gene co-expression network and finally sample Z

from ZINB or NB distributions to reconstruct gene expression matrix.

This model enables us to utilize gene-to-gene relationships to impute the dropout events and further refine

the gene co-expression network. The gene-to-gene network is an undirected graph, where each node cor-

responds to a gene and each edge between two genes indicates there is a significant co-expression rela-

tionship between them (Stuart et al., 2003). And the excellent characteristics of GCN allow us to regard the

gene expression levels in different samples as node (gene) features in gene co-expression network and uti-

lize them in the learning of gene network.

GraphSCI identifies cell types in simulated data

In order to assess our method, we followed the same way as the previous study (Eraslan et al., 2019) to

construct two simulated data sets by Splatter (Zappia et al., 2017) package: (1) 2000 cells belonging to

two types clustered by expression data of 3000 genes (namely SIM-T2) and (2) 3000 cells belonging to

six types of cells clustered by expression data of 5000 genes (namely SIM-T6). On the SIM-T2 data with a

simpler case, GraphSCI achieved imputed expression with a mean absolute error of 0.226, which is

21.2% lower than 0.274 by DCA.We further projected the imputed gene expression by t-SNE and clustered

Figure 1. The overview of GraphSCI algorithm

The input of GraphSCI framework is a gene expression matrix from scRNA-seq, and we construct the gene graph from the raw expression data through PCC.

And GraphSCI combines the graph convolution network and autoencoder neural network to impute the dropout events in data. Finally, Extensive

downstream analysis experiments demonstrated the effective and robustness of GraphSCI.
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the cells by K-Means algorithm. As shown in Figure 3A, GraphSCI achieved 0.977, 0.994, 0.609 for ARI, CA,

and SC values with standard deviation of 0.0038, 0.0043, 0.0024, respectively. These results are better than

0.920, 0.922 and 0.581 achieved by DeepImpute. Results with DCA, SAVER-X, scImpute are detailed in Ta-

ble S1. By comparison, the clustering over original expression data without any imputation achieved 0.716,

0.508, 0.342 for ARI, CA and SC. Figure 3B shows 2000 cells by using the first two principle components

obtained from t-SNE (Maaten and Hinton, 2008). Obviously, GraphSCI clearly separates two types of cells,

while both DeepImpute and DCA have a small number of cells mixed together. The original data can’t

separate the cells at all.

When tested on the SIM-T6 data set with six cell groups, similar results were obtained. As shown in Fig-

ure S1A, our method achieved 0.818, 0.859, and 0.34 for ARI, CA, and SC values, respectively. These are

5.1, 3.2, and 16.4% higher than those by DeepImpute, and 6.6%, 2.0%, and 19.7% higher than DCA. Table

S1 details results by the raw data, SAVER-X and scImpute. The visualization consistently indicated that our

method separates the six types of cells better than other methods (Figure S1B). Figure S2 shows the image

of gene expression matrix (X) before and after imputation ( bX ) in our simulated experiments. This compar-

ison again demonstrates that GraphSCI could recover the original cell types effectively both in the Sim-T2

and the Sim-T6 data sets.

GraphSCI recovers transcriptome dynamics in real single-cell data

Another key criterion to evaluate the imputation methods is their ability to recover transcriptome dynamics

in real single-cell data set. Therefore, we applied our method to three real scRNA-seq data sets and made

comparisons with other methods. The first data set was obtained from mouse ES cells(Klein et al., 2015),

which were measured to analyze the heterogeneity of mouse embryonic stem cells in different stages after

leukemia inhibitory factor (LIF) withdrawal. We selected four different LIF withdrawal intervals (0, 2, 4, and

7 days) and put all cells together as the input of imputation. The imputed data were clustered by t-SNE. As

shown by Figure 4A, GraphSCI separated the four stages of mouse ES cells clearly except that a few blue

samples were mixed with the yellow. In comparison, the clustering obtained from the scImpute and DCA

methods seriously mixed the blue samples with the yellow ones. As indicated by Figure 4B, ARI, CA, and SC

of GraphSCI were significantly higher than DeepImpute and DCA. Results of ARI, CA, and SC with all

methods are detailed in Table S2.

GraphSCI was further applied to two large data sets generated by the 10X scRNA-seq platform (Zheng

et al., 2017), one of which is involved by the transcriptome of peripheral blood mononuclear cells (PBMCs)

from a healthy donor. The data set contains 5247 PBMCs of 11 cell types. Because the same type of cells has

similar expression profiles, we randomly selected 80% of PBMCs to train the model and used the remained

for the independent test set. The imputed data on the independent set was conducted with dimension

reduction results by t-SNE for visualizations. Figure 5A shows that the imputations by GraphSCI could

Figure 2. The architecture of GraphSCI model

The input of GraphSCI is the gene expression matrix and the gene-to-gene relationships. The Inference model f4 is to learn the low-dimensional

representations of genes and cells based on a combination of graph convolution network and Autoencoder neural network. The Generative model gf

utilizes the posterior distributions to reconstruct gene expression and gene-to-gene relationships respectively.
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separate brown and dark samples well in the low-dimension representation. The orange samples had a div-

ing line with other samples. In comparison, the results obtained by DeepImpute and DCA didn’t show

obvious differences among the black, red, and green samples. The results of ARI, CA, and SC on the inde-

pendent test set also showed that GraphSCI outperformed other methods (Figure 5B). In details, our

method achieved 0.472, 0.552, and 0.177 for ARI, CA, and SC values, respectively. These are 1.7%, 0.7%,

4.7% and 14.0, 9.7, 34.1% greater than those by DeepImpute and DCA respectively. More detailed results

are shown in Table S2.

In the E18 Mouse data set, �12,000 brain cells of 16 cell types were profiled from the 10X scRNA-seq

platform. We applied GraphSCI to the large-scale scRNA-seq data set to demonstrate its robustness

and scalability. As shown in Figure S3A, GraphSCI is able to separate cells of 16 cell types effectively in

the low-dimension representation, while DeepImpute and DCA have mixed many subcellular types

together. GraphSCI again achieved ARI, CA, and SC of 0.316, 0.422, and 0.030, respectively, consistently

the greatest among all methods (Figure S3B and Table S2).

GraphSCI recovers gene expression levels in bulk RNA-seq data set

The efficacies of GraphSCI in recovering gene expression levels were further evaluated by a real RNA

sequencing data set. The RNA sequencing data was obtained from C. elegans development experiments

by Francesconi et al. (Francesconi and Lehner, 2014), which was used to simulate single-cell RNA-seq data

with dropout rates ranging from 50% to 70%. The three data sets were generated by adding the single-cell

specific noises through gene-wise subtracting values drawn from the exponential distribution. Since bulk

Figure 3. GraphSCI identifies cell types in simulated data with two cell groups (SIM-T2)

(A) The comparison of clustering performances of scRNA-seq, scImpute, SAVER, DCA, DeepImpute, and GraphSCI,

measured by ARI, CA, and SC.

(B) The two principle components by t-SNE from simulated scRNA-seq data, imputed matrix by scImpute, SAVER, DCA,

DeepImpute, GraphSCI. Each cell is colored by cell groups.
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RNA-seq data contains less noise than scRNA-seq, PCC was used to evaluate the effectiveness of imputa-

tion on real RNA-seq data set. As shown by Figure 6, GraphSCI outperformed DCA in recovering the gene

expression levels in real RNA-seq data set. In details, the median of PCCs reached by GraphSCI in three

data sets are 0.858, 0.807, and 0.788 respectively, consistently greater than 0.821, 0.765, and 0.742 achieved

by DCA, and 0.787, 0.718, and 0.604 achieved by SAVER.

GraphSCI improves differential expression analysis on scRNA-seq data

An effective imputation method should lead to an improvement in differential expression analysis because

scRNA-seq data provide insight into gene expression in a single cell. To evaluate whether the identification

of DEGs are more accurate after imputation, we utilized a scRNA-seq data set with corresponding bulk

RNA-seq data to compared differential expression analysis results using DESeq2. This data set, generated

by Chu et al. from H1 human embryonic stem cells (H1) differentiated into definitive endoderm cells (DEC),

has six samples of bulk RNA-seq and 350 samples of scRNA-seq (212 for H1 ESC and 138 for DEC). We

applied GraphSCI and DeepImpute to impute the gene expression on scRNA-seq data and performed

DE analysis on the raw data and the imputed data respectively. The percentages of zero gene expression

are 49.1% in raw scRNA-seq data that results in the lowest DEGs identification results. In contrast, GraphSCI

and DeepImpute have improved the identification of DEGs and share more DEGs with bulk samples. In Fig-

ure 7A, we definedmore quantitative evaluationmetrics such as the area under the receiver operating char-

acteristic curve (AUC), the accuracy (ACC), and F-scores for DEGs detection. In detail, our method achieved

0.913, 0.782, and 0.608 for AUC, ACC, and F-score values, respectively. Moreover, Figure 7B and Figure 7C

show that the expression profiles of DEC and ESC marker genes (SOX2 and LEFTY1) after GraphSCI impu-

tation could better reflect the gene expression signatures on recovering the expression patterns of signa-

ture genes. The performance of other signature genes including NANOG, DNMT3B, GATA6, and CXCR4

et al. has been shown in Figure S4.

Figure 4. The performances on Mouse embryonic stem cells data set

(A) shows the t-SNE visualization reproduced from scRNA-seq, scImpute, SAVER, DCA, DeepImpute, and GraphSCI from

top to bottom, from left to right.

(B) The comparison of clustering performances of scRNA-seq, scImpute, SAVER, DCA, DeepImpute, and GraphSCI,

measured by ARI, CA, and SC.
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GraphSCI infers gene-to-gene relationships from scRNA-seq data

GraphSCI can not only impute gene expression data of scRNA-seq effectively, but also infer gene-to-gene

relationships from the data. Due to the dropout events in raw scRNA-seq data (Zheng et al., 2017; Iacono

et al., 2019), it is challenging to obtain accurate gene interactions directly from correlation coefficients be-

tween gene expression (Aibar et al., 2017). Here, we applied our method to raw scRNA-seq data sets and

reconstructed gene relations during imputation. By compared with the known interactions from the

STRINGdb (Szklarczyk et al., 2017), the gene interactions constructed by GraphSCI had a precision of

0.713 with the threshold of 0.5. Specifically, the true positive (TP) was 232647 and the false positive (FP)

was 93,812. Figure 8 shows the imputed gene-to-gene relationships obtained by Cytoscape (Smoot

et al., 2010). The true positive (TP) is an outcome where the model correctly predicts the gene-gene rela-

tionships and the false positive is an outcome where the model incorrectly predicts the gene-gene relation-

ships. They showed the accuracy of our model to infer the gene-gene relationships from the raw scRNA-seq

data. Similar results were also observed in previous experiments on the mouse ES cells data set. The con-

structed gene relations had a precision of 0.682 with 199291 true positives and 92,924 false positives. As a

comparison, we utilized the PCC to infer gene-gene relationships from the raw scRNA-seq data, which ob-

tains the precision of 0.598 and 0.492 respectively. It again verifies the effectiveness of our method, empir-

ically showing that it facilitates the inference of the gene-to-gene relationships during the training process.

DISCUSSION

In this study, we presented an imputation method, GraphSCI, based on GCNs, which are particularly suit-

able for single-cell RNA-seq data. Our method focused on imputing gene expression levels by integrating

the gene expression with gene-to-gene relationships. By using gene-to-gene relationships as prior

Figure 5. The performances on 5k peripheral blood mononuclear cells (PBMC) data set

(A) shows the t-SNE visualization reproduced from scRNA-seq, scImpute, SAVER, DCA, DeepImpute, and GraphSCI from

top to bottom, from left to right.

(B) The comparison of clustering performances of scRNA-seq, scImpute, SAVER, DCA, DeepImpute, and GraphSCI,

measured by ARI, CA, and SC.
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knowledge, this method avoided introducing excess biases during imputation and removed technical var-

iations resulted from scRNA-seq.

To our best knowledge, this is the first study to integrate gene-to-gene relationships into deep learning

framework for imputations on scRNA-seq. It is also the first attempt to employ GCN for learning the rep-

resentation of gene-to-gene relationships in imputation study. Most importantly, extensive experiments

were conducted on different kind of scRNA-seq data sets to demonstrate the superiority of our method.

GraphSCI was evaluated on both simulated and real data, which was identified with the best performances

on diverse downstream analyses in comparison with other methods. In simulated data sets, GraphSCI was

found to outperform other methods on the data with both small and large numbers of cells and cell types.

The better performance of GraphSCI was further observed when it was applied in real data sets like bulk

RNA-seq data and scRNA-seq data. In addition, another advantage of GraphSCI is its ability to infer the

new gene-to-gene relationships, which is an absence of existing methods.

Applications of GCNs and exploiting gene-to-gene relationships for imputation, however, may also bring

uncontrollable errors. For instance, the reliability of gene-to-gene relationships may influence the results of

imputation. To solve this problem, we tried a variety of methods to build the gene-to-gene relationships,

such as setting different thresholds to build edges or selecting original co-expressed samples to calculate

PCC.We found that better performance could be achieved with the adjacencymatrix obtained by selecting

original co-expressed samples and PCC of >0.3 to determine edges. Figures S5 and S6 show the influence

of the input gene-to-gene relationships on the overall results.

Another challenge for real data is that the evaluation of imputation may be difficult due to lack of ground

truth. Therefore, we performedmany clustering metrics, such as ARI, CA, and SC, to describe the effective-

ness and robustness of competing methods, while we also utilized visualization to make the results clearer

and more convincing. As shown in Figure S7, we could find that t-SNE showed better display results and

GraphSCI consistently yields better performance with different clustering approaches.

The current GraphSCI was tested on data sets including simulated data and real data. The imputation po-

wer could be further improved with the increasing number of cells in the training set. Additionally, the deep

learning networks by GraphSCI enable parallelization using GPUs to speed up training on large scRNA-seq

data sets (Figure S8).

Resource availability

Lead contact

Yuedong Yang (yangyd25@mail.sysu.edu.cn) is the lead contact for this work.

Figure 6. GraphSCI recovers gene expression levels in bulk RNA-seq data

Box diagram (A–C) depict the Pearson correlation coefficient between simulated data or imputed data and original data.

And the box represents the interquartile range, the horizontal line in the box is the median, and the whiskers represent 1.5

times the interquartile range.
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Materials availability

This study does not generate any new materials.

Data and code availability

The scRNA-seq data sets used in this manuscript are publicly available and their details are summarized in

Table S3. The C. elegans time course experimental data was provided by the supplementarymaterial of Frances-

coni. et al. The mouse embryonic stem cells data was downloaded fromGSE65525. The 5k PBMC from a healthy

donorand10Kbraincells fromanE18Mousewereprovidedby the10XscRNA-seqplatformand thewebsiteof the

data are https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.1.0/5k_pbmc_protein_v3

and https://support.10xgenomics.com/single-cell-gene-expression/datasets/3.0.0/neuron_10k_v3. The human

embryos cells scRNA-seq data was downloaded fromGSE44183. The Human ESC scRNA-seq data set for differ-

ential expression analysis was downloaded fromGSE75748. The code generated during this study is available at

https://github.com/biomed-AI/GraphSCI.We tunedmodel hyper-parameters based on the experimental results

on simulated data sets and used them across all data sets (Figures S9 and S10).

METHODS

All methods can be found in the accompanying transparent methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2021.102393.
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Supplemental figures and legends 

 

 
  

Figure S1. GraphSCI identifies cell types in simulated data with six cell groups (SIM-T6), Related 
to Figure 3. (A) The comparison of clustering performances of scRNA-seq, scImpute, SAVER, DCA, 
DeepImpute and GraphSCI, measured by ARI, CA and SC. (B) The two principle components by t-
SNE from simulated scRNA-seq data, imputed matrix by scImpute, SAVER, DCA, DeepImpute and 
GraphSCI. Each cell is colored by cell groups.  



 

  

Figure S2. The image of gene expression matrix (X) before and after imputation (𝑿") in our 
simulated experiments, Related to Figure 3. The X axis represents cells and arranges the same cell 
types are nearby and the Y axis represents genes and similar genes nearby. (A) The comparison of 
gene expression matrix (X) before and after imputation (𝑋$) on Sim-T2. (B) The comparison of gene 
expression matrix (X) before and after imputation (𝑋$) on Sim-T6. After imputation using GraphSCI, 
we could find that the original cell-types can be recovered effectively both in the Sim-T2 and the 
Sim-T6 datasets. The cells of the same cell types are effectively clustered. This result verifies the 
effectiveness of our algorithm.  



 

 
  

Figure S3. The performances on 10k Brain Cells from an E18 Mouse dataset, Related to Figure 5. 
(A) shows the t-SNE visualization reproduced from DCA, DeepImpute and GraphSCI from left to right. 
(B) The comparison of clustering performances of scRNA-seq, DCA, DeepImpute and GraphSCI, 
measured by ARI, CA and SC. 



 

 
  

Figure S4. The performances of differential expression analysis, Related to Figure 7. The expression 
for signature genes (NANOG, SOX2, DNMT3B, POU5F1, ZFP42; GATA6, CER1, EOMES, LEFTY1, 
CXCR4) of H1 and DEC cells, respectively. 



 

  

Figure S5. The analysis of different PCC cut-offs to construct the input gene-to-gene relationships, 
Related to Figure 1-2. We vary the cut-off of Pearson Correlation in {0.2, 0.3, 0.4, 0.5} to investigate 
their influences on the overall results. We could see that all relatively large cut-offs could achieve 
convergence, but the middle two could obtain better results. One possible reason is that the highest cut-off 
of Pearson Correlation might lead to a sparse adjacency matrix while the small cut-offs lead to more false-
positive edges. It makes sense since a sparse adjacency matrix or an adjacency matrix with many false-
positive edges would prevent our model from obtaining better results. It also proves that our algorithm 
could achieve stable final results if the cut-off is in a proper range. 



 

  

Figure S6. The comparison of different methods to construct gene-to-gene relationships (PCC and 
PIDC), Related to Figure 1-2. From the visualization and the clustering performance, we could find that the 
gene regulatory network inference tools such as PIDC could facilitates the imputation of scRNA-seq data using 
GraphSCI. We attribute the remarkable improvement to the accuracy of the input gene-to-gene relationships. 



 

 
  

Figure S7. The comparison of different dimensional reduction algorithms and clustering approaches, 
Related to Figure 3. (A) We examined the influence of different cell visualization algorithms among 
UMAP, t-SNE, and PHATE from left to right. We could find that t-SNE showed better display results with 
closer inner-group distance and larger between-group distances. (B) We compared different clustering 
approaches (PCAreduce, SC3 and KMeans) through the clustering performance (ARI). We observed that 
GraphSCI consistently yields better performance with different clustering approaches, showing that our 
algorithm could achieve stable and better results under the same conditions. It again illustrates the 
rationality and effectiveness of our algorithm. 



 

 

  

Figure S8. The runtimes for imputation with different numbers of cells down-sampled from 1.3 
million mouse brain cells, Related to Figure 1-2. We analyzed the largest scRNA-seq data set in our 
experiments, which consists of 1.3 million mouse brain cells from 10X Genomics. The 1.3 million cell 
data matrix was down-sampled to 1,000, 2,000, 5,000, 10,000 and 100,000 cells and each subsampled 
matrix was imputed, and the runtime measured. We could find that the runtime of DCA and GraphSCI 
scaled linearly with the number of cells and the other methods took hours to impute 100,000 cells. It 
makes sense since DCA and GraphSCI are the neural network-based method that could be accelerated by 
GPU and the other methods failed to run due to the memory limitations on the large dataset. 



 

  

Figure S9. The optimization of our method, Related to Figure 1-2. We utilized the Adam optimizer 
with an initial learning rate of 0.01 and allowed it to decay exponentially with decay_rate = 0.9 and 
decay_steps = 50  during learning. The calculation of decayed learning rate in each step is: 
decayed_learning_rate = learning_rate	 ∗ 	𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒(BCDE/GDHIJ_BCDEB). The green line represents the 
decay trend of learning rate during training. The blue line illustrates the trend of total loss during training. 



 

  

Figure S10. The exploration of Hyper-parameters, Related to Figure 1-2. During training, we 
randomly sampling 10% samples of each dataset as validation data and evaluate them in each iteration. 
The loss function of our method could be divided into two parts, one of which is the ZINB loss of gene 
expressions and the other is the cross entropy of gene-to-gene relationships. Due to the limitation of 
cluster metrics, we just utilize the losses of expressions and relationships on validation set to explore 
hyper-parameters in experiments. (a) is the ZINB loss of expressions on validation set with different size 
of hidden layers. (b) is the cross entropy of adjacency in validation with different size of hidden layers. 
(c) is the ZINB loss of expressions on validation set with different dropout rates. (d) is the cross entropy 
of adjacency on validation set with different dropout rates.  



Supplemental tables 
Table S1. The Results of SIM-T2 and SIM-T6 datasets, Related to Figure 3. 

  

Datasets Methods 
Adjusted Rand 

Index (ARI) 
Clustering 

Accuracy (CA) 
Silhouette 

Coefficient (SC) 

SIM_T2 

GraphSCI 0.977 0.994 0.609 
DeepImpute 0.920 0.922 0.580 

DCA 0.914 0.925 0.582 
scImpute 0.779 0.528 0.382 

SAVER-X 0.845 0.654 0.449 
scRNA-seq 0.716 0.508 0.342 

SIM_T6 

GraphSCI 0.818 0.859 0.340 
DeepImpute 0.778 0.832 0.292 

DCA 0.767 0.842 0.284 
scImpute 0.426 0.562 0.098 

SAVER-X 0.671 0.752 0.254 
scRNA-seq 0.318 0.371 0.019 



Table S2. The Results of Mouse ES, PBMC and Mouse Brain Cells datasets, Related to 
Figure 4-5. 

Datasets Methods 
Adjusted Rand 

Index (ARI) 
Clustering 

Accuracy (CA) 
Silhouette 

Coefficient (SC) 

Mouse ES 

GraphSCI 0.791 0.862 0.761 
DeepImpute 0.762 0.833 0.673 

DCA 0.733 0.824 0.665 
scImpute 0.647 0.818 0.634 

SAVER-X 0.691 0.822 0.652 
scRNA-seq 0.393 0.754 0.423 

PBMC 

GraphSCI 0.472 0.552 0.177 
DeepImpute 0.464 0.548 0.169 

DCA 0.414 0.503 0.132 
scImpute 0.289 0.478 0.102 

SAVER-X 0.387 0.489 0.094 
scRNA-seq 0.312 0.457 0.071 

Mouse 
Brain 

GraphSCI 0.316 0.422 0.030 
DeepImpute 0.234 0.360 -0.090 

DCA 0.233 0.351 -0.050 
RAW 0.157 0.268 -0.170 

 
  



Table S3. The summarization of datasets in this manuscript, Related to Figure 3-8 

Datasets Sample size / 

cell number 

Number of genes Number of cell 

types 

SIM-T2 2000 3000 2 

SIM-T6 3000 5000 6 

C. elegans time-course 206 15855 - 

Mouse ES cells 2717 24175 4 

5K PBMC 5247 33570 11 

10K Neuron Cells 11843 31053 16 

Human ES cells 30 14766 - 

 
  



Table S4. Main notations in our paper, Related to Figure 1-2. 

Symbol Description 

𝒢 an undirected gene network with expressions and 

relations 

𝒩 set of nodes (genes) 

ℳ set of scRNA-seq samples 

ℰ set of edges (gene-to-gene relationships) 

𝑁 = |𝒩| number of nodes (genes) 

𝑀 = |ℳ| number of samples 

𝐷 dimension of latent variables 

𝐴 ∈ ℝW×W adjacency matrix of nodes 

𝑋Y ∈ ℝW×Z raw gene expression matrix 

𝑋 ∈ ℝW×Z normalized gene expression matrix 

𝑍𝒩 ∈ ℝW×\ latent representation matrix for all nodes 

𝑍ℳ ∈ ℝZ×\ latent representation matrix for all samples 

𝐴] ∈ ℝW×W reconstructed adjacency matrix of nodes 

𝑋$ ∈ ℝW×Z imputed gene expression matrix 

 
  



Transparent Methods 
The proposed model GraphSCI imputes gene expression levels in scRNA-seq data based on a 

combination of the graph convolution network and Autoencoder neural network, with the input of gene 

expression matrix 𝑋 and gene-to-gene relationships 𝐴. In our framework, GCN encodes the gene-to-

gene network with expression matrix 𝑋 to the latent vector 𝑍 and then reconstructs the edges in gene-

to-gene network. AE encodes the gene expression matrix with gene-to-gene network and finally sample 

𝑍 from ZINB or NB distributions to reconstruct gene expression matrix.  

By using 𝑀  single cells RNA-seq data with 𝑁  genes, an undirected gene graph with gene 

expressions and gene-to-gene relationships can be constructed. Let 𝒩 and ℳ be a set of genes and 

samples respectively, an undirected gene graph can be denoted as 𝒢 = (𝒩,ℳ, ℰ), where ℰ is the set 

of gene-to-gene relationships. Thus, we introduce an adjacency matrix 𝐴 ∈ ℝW×W and a gene expression 

matrix 𝑋 ∈ ℝW×Z for 𝒢, with 𝐴_` representing the edge of the 𝑖-th gene and the 𝑗-th gene and 𝑋_` 

being the expression value with rows representing genes and columns representing cells. Table S4 

summarizes our main notations for scRNA-seq data.  

Data processing and normalization. There are two inputs to our proposed model: (1) a gene 

expression matrix 𝑋 ∈ ℝW×Z, (2) an adjacency matrix 𝐴 ∈ ℝW×W, and our final goal is to construct an 

imputed gene expression matrix 𝑋$  with the same dimensions. First, in raw scRNA-seq read count 

matrix 𝑋Y, genes with no reads in any cell would be filtered out. Then, the library size of cell 𝑖 is 

denoted as 𝑙_  and is calculated as the total number of read counts of cell 𝑖. The size factor 𝑠_ of cell 

𝑖 is 𝑙_ divide by the median of total counts per cell. Therefore, we make a normalized matrix 𝑋 by 

taking the log transformation with a pseudo count and scale of the read counts: 

 𝑋_` = log f
ghi
j

∑ glim
lno

× 𝑚𝑒𝑑𝑖𝑎𝑛r𝑋 s + 1v  (1) 

where 𝑖 = 1,2, … ,𝑁 representing each gene and 𝑗 = 1,2, … ,𝑀 representing each sample. 

Secondly, we attempt to obtain the adjacency matrix 𝐴 ∈ ℝW×Wfrom a graph where genes are nodes 

and edges indicate genes which are likely to be co-expressed. For the simulated datasets generated from 

Splatter(Zappia et al., 2017), we introduce the adjacency matrix 𝐴 ∈ ℝW×W  by Pearson correlation 

coefficient (PCC) as: 

 𝐴_` = 𝜌gh,gi =
Yz{(gh,gi)

|}h|}i
; 𝑖 = 1,2, … ,𝑁; 	𝑗 = 1,2, … ,𝑁  (2) 

where 𝐶𝑜𝑣(𝑋, 𝑌) and 𝜎g  is the covariance between 𝑋  and 𝑌  and the standard deviation of 𝑋 

respectively.  

Imputation based on graph convolution network. The preprocessed gene expression matrix and 

adjacency matrix are treated as the input for GraphSCI. Two neural network models, i.e., the inference 

model 𝑓�  and the generative model 𝑔�  were used to constructed the model for the probabilistic 

encoder 𝑞�  and probabilistic decoder 𝑝�  respectively, to preform gradient descent for learning all 

trainable parameters. 



To infer the embeddings of cells and genes, we apply a two-layer graph convolution network and a 

two-layer fully connected neural network mapping the adjacency matrix A and the gene expression 

matrix X to the low-dimensional representations of the posterior distribution (i.e. Gaussian distributions 

and ZINB distributions) respectively. In particular, the two-layer GCN is defined as:  

 𝐻𝒩
(�) = 𝑅𝑒𝐿𝑈(𝐴�𝑋𝑊𝒩

(�)) (3) 

 [𝜇𝒩, 𝜎𝒩� ] = 𝐴�𝐻𝒩
(�)𝑊𝒩

(�)  (4) 

where 𝜇𝒩  and 𝜎𝒩�  are the mean and variances of the learned Gaussian distribution parameters, 

𝑅𝑒𝐿𝑈(⋅) = max	(0, ⋅)  is the non-linear activation function, 𝐴� = 𝐷�
o
�𝐴𝐷�

o
�  is the symmetrically 

normalized adjacency matrix with the 𝒢�s degree matrix 𝐷__ = ∑ 𝐴_`` , and 𝜙 = [𝑊𝒩
(�),𝑊𝒩

(�)] are the 

trainable parameters of GCN layers. 

The two-layer fully connected layers for inferring ZINB distribution of single cell samples are defined 

as: 

 𝐻ℳ
(�) = tanh	(𝑋 r𝑊ℳ

(�)⨀𝐴s + 𝑏(�))  (5) 

 [𝜇ℳ, 𝜃ℳ, 𝜋ℳ] = σ(𝐻ℳ
(�)𝑊ℳ

(�) + 𝑏(�))  (6) 

where 𝜇ℳ, 𝜃ℳ and 𝜋ℳ are the parameters of the ZINB distribution: mean, dispersion and dropout 

probability, the operation ⨀  is the Hadamard (element-wise) product, tanh(⋅)  and σ(⋅)  are the 

activation functions and 𝜙 = [𝑊ℳ
(�),𝑊ℳ

(�), 𝑏(�), 𝑏(�)] are the trainable parameters of fully connected 

layers. 

In particularly, the ZINB distribution is applied for count data that exhibit over-dispersion and excess 

zeros, which is parameterized with the mean (𝜇) and dispersion (𝜃) of the negative binomial distribution 

as well as the dropout probability (𝜋) representing the probability of zeros (dropout events). But droplet-

based scRNA-seq (such as 10X) are supposed to follow a NB distribution. A count matrix X that is 

ZINB-distributed with (𝜇, 𝜃, 𝜋) or NB-distributed with (𝜇, 𝜃) are denoted as:  

 𝑁𝐵(𝑋|𝜇; 𝜃) = ¨(g©ª)
¨(ª)¨(g©�)
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ª©¬

­
ª
« ¬
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  (7) 

 𝑍𝐼𝑁𝐵(𝑋|𝜇; 𝜃; 𝜋) = 𝜋𝛿�(𝑋) + (1 − 𝜋)𝑁𝐵(𝑋|𝜇; 𝜃)  (8) 

where Γ(x) and 𝛿�(𝑥) is the Gamma function and Dirac function respectively. Therefore, we could 

estimate the parameters 𝜇, 𝜃, 𝜋 of ZINB distribution from the hidden layer in Eq. (6): 

 𝜇ℳ = exp	(𝐻ℳ
(�)𝑊ℳ

(�) + 𝑏(�))  (9) 

 𝜃ℳ = 𝑠𝑜𝑓𝑡𝑝𝑙𝑢𝑠(𝐻ℳ
(�)𝑊ℳ

(�) + 𝑏(�))  (10) 

 𝜋ℳ = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝐻ℳ
(�)𝑊ℳ

(�) + 𝑏(�))  (11) 



where exp(⋅) is the exponential function and softplus(⋅) and sigmoid(⋅) are the non-linear activation 

functions. 

After having obtained the parameters of the learned distributions, the reparameterization method could 

help us transform the latent variables ([𝜇𝒩, 𝜎𝒩� ], [𝜇ℳ, 𝜃ℳ, 𝜋ℳ]) to deterministic variables, denoted as 

𝑍𝒩, 𝑍ℳ . Therefore, the generative model in our framework could decode from the deterministic 

variables 𝑍𝒩 and 𝑍ℳ to generative random variables, where the gene expressions and gene-to-gene 

relationships can be reconstructed.   

Specifically, given embeddings of gene 𝑖 and cells 𝑗, we compute 𝜇ℳ� , 𝜃ℳ�  and 𝜋ℳ�  by: 

 [𝜇ℳ� , 𝜃ℳ� , 𝜋ℳ� ] = 𝑔�o(𝑍_
𝒩, 𝑍ℳ)  (12) 

where 𝑔�o  is a neural network for reconstructing gene expression matrix and 𝜑� is the trainable 

parameter in 𝑔�o. Then an imputed gene expression 𝑋$_` can be generated by the following process: 

 𝑝�or𝑋$_`·𝑍_
𝒩, 𝑍ℳs = 𝑍𝐼𝑁𝐵 «𝜇ℳ� (_,`), 𝜃ℳ

�
(_,`), 𝜋ℳ

�
(_,`)­  (13) 

 𝑝�or𝑋$_`·𝑍_
𝒩, 𝑍ℳs = 𝑁𝐵 «𝜇ℳ� (_,`), 𝜃ℳ

�
(_,`)­  (14) 

where 𝑍𝐼𝑁𝐵 «𝜇ℳ� (_,`), 𝜃ℳ
�
(_,`), 𝜋ℳ

�
(_,`)­  is the ZINB distribution parameterized by 𝜇ℳ� (_,`), 𝜃ℳ

�
(_,`) 

and 𝜋ℳ� (_,`), 𝑁𝐵 «𝜇ℳ
�
(_,`), 𝜃ℳ

�
(_,`)­ is the NB distribution parameterized by 𝜇ℳ� (_,`) and 𝜃ℳ� (_,`) , and 

𝑝�o is the probabilistic decoder given the latent embeddings 𝑍_𝒩 and 𝑍ℳ. 

Therefore, we could implement the generative model 𝑔�o by: 

 𝑋$_` = 𝑔�or𝑍_
𝒩, 𝑍ℳs = 𝑑𝑖𝑎𝑔(𝑠 ) × 𝑍ℳ  (15) 

where diag(⋅) is the diagonal matrix constructed by the vector (⋅) and 𝑠  is the size factor of cell 𝑗. 

Similarly, given embeddings of two genes 𝑖 and 𝑗, we can compute 𝜇𝒩�  and 𝜎�𝒩
�  by: 

 ¹𝜇𝒩� , 𝜎�𝒩
� º = 𝑔��(𝑍_

𝒩, 𝑍𝒩)  (16) 

where 𝑔�� is a neural network for reconstructing gene-to-gene relationships and 𝜑� is the trainable 

parameter in 𝑔��. Then an observed edge between two genes 𝑖 and 𝑗 can be generated by: 

 𝑝��r𝐴]_`·𝑍_
𝒩, 𝑍𝒩s = 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝒩� (_,`), 𝜎
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𝒩
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where 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝒩� (_,`), 𝜎
�
𝒩
�
(_,`))  is the Gaussian distribution parameterized by 𝜇𝒩� (_,`)  and 

𝜎�𝒩
�
(_,`) and 𝑝�� is the probabilistic decoder given the latent embeddings 𝑍_𝒩 and 𝑍𝒩. 

The generative model 𝑔�� to reconstruct gene-to-gene relationships could be defined as: 

 𝐴]_` = 𝑔��r𝑍_
𝒩, 𝑍𝒩s = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍_𝒩

 𝑍𝒩)  (18) 



where sigmoid(⋅) is the sigmoid function.  

Optimization. The optimization was performed to obtain accurate embeddings of both genes and cells 

in an unsupervised way. For this purpose, 𝑍𝒩 and 𝑍ℳwere optimized by the variational lower bound 

ℒ: 

							ℒ(𝜙, 𝜑) ≜ 𝔼¿À Á Â log𝑝�or𝑋$_`·𝑍_
𝒩, 𝑍ℳs

_∈𝒩,`∈ℳ

Ã + 𝔼¿À Álog Â log𝑝��r𝐴]_`·𝑍_
𝒩, 𝑍𝒩s

_,`∈𝒩

Ã

− 𝐷ÄÅ «𝑞�(𝑍ℳ|𝐴, 𝑋 )||𝑝(𝑍ℳ)­ − 𝐷ÄÅ(𝑞�(𝑍𝒩|𝐴, 𝑋)|Æ𝑝(𝑍𝒩)­.																													(19)	

 where 𝔼¿À  is the cross entropy function with the probabilistic distribution 𝑞�  and 

𝑝�and	𝐷𝐾𝐿(𝑞||𝑝) = ∑𝑝(⋅) log
𝑝(⋅)
𝑞(⋅)

 is the Kullback-Leibler (KL) divergence between q(⋅) and p(⋅). In 

the above equation, 𝑞�(𝑍ℳ|𝐴, 𝑋 ) and 𝑞�(𝑍𝒩|𝐴, 𝑋) is defined as the probabilistic encoder with the 

input of 𝐴, 𝑋   and 𝐴, 𝑋  respectively, aiming at producing the representations 𝑍𝒩, 𝑍ℳ . Similarly, 

𝑝�or𝑋$_`·𝑍_
𝒩, 𝑍ℳs and 𝑝��r𝐴]_`·𝑍_

𝒩, 𝑍𝒩s are the probabilistic decoders for construct the imputed gene 

expression matrix 𝑋$ and gene-to-gene relationships 𝐴]. Furthermore, the KL divergence in optimization 

could be interpreted as the regularization to make the predicted posterior distributions closer to the prior 

distributions 𝑝(𝑍ℳ), 𝑝(𝑍𝒩). 

With the help of reparameterization trick, we could represent the distributions with deterministic 

variables: 

 [𝜇ℳ, 𝜃ℳ, 𝜋ℳ] ∈ 𝑍𝐼𝑁𝐵(𝑋|𝜇ℳ, 𝜃ℳ, 𝜋ℳ) or  [𝜇ℳ, 𝜃ℳ] ∈ 𝑁𝐵(𝑋|𝜇ℳ, 𝜃ℳ) (20) 

 [𝜇𝒩, 𝜎𝒩� ] ∈ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝒩, 𝜎𝒩� )  (21) 

These deterministic variables are differentiable and capable to be calculated in backpropagation 

process. We could directly derivate Eq. (18) based on Monte Carlo estimates: 
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Therefore, with the optimization, the gradient-based optimization techniques can be used to train the 

end-to-end model. 

Evaluation metrics. To evaluate the accuracy of imputation, we examine the reconstruction accuracy 

and clustering performance to the scRNA-seq datasets. The reconstruction accuracy on the simulated 

dataset can be measured by mean absolute error (MAE), which is the reconstruction error between the 

true expression matrix and imputed matrix. Clustering performance can be measured by the clustering 

metrics: adjusted Rand index (ARI)(Hubert and Arabie, 1985), clustering accuracy (CA) and Silhouette 



Coefficient(Rousseeuw, 1987) (SC). To fairly quantitate the performance of differentially expressed 

genes (DEGs) detection using scRNA-seq data, we calculated the accuracy (ACC), F-score and AUC for 

each DEG detection. 

The adjusted Rand index (ARI) is the corrected-for-chance version of the Rand index. The Rand index 

is a measure of the similarity between two data clustering and the ARI is adjusted for the chance grouping 

of elements. Given a set of n samples, the two clusters of these samples are  𝑉 = {𝑉�, 𝑉�, … , 𝑉Ï} and 

𝑈 = {𝑈�, 𝑈�, … , 𝑈C} and 𝑛_`  is defined as 𝑛_` = |𝑉_ ∩ 𝑈 |. Let 𝑎_ = ∑ 𝑛_`C
`Ê� , 𝑖 = 1,… , 𝑟 and 𝑏 =

∑ 𝑛_`Ï
_Ê� , 𝑗 = 1,… , 𝑡, the ARI could be defined as 

 𝐴𝑅𝐼 =
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  (23) 

The CA is defined as the accuracy of the clustering assignments. Given a sample 𝑖, let 𝑠_ be the 

ground truth label and 𝑟_ be the assignments of clustering, then the CA is  

 𝐶𝐴 = max
×

∑ Ø(Bh,×(Ïh))
Ò
hno

Ù
  (24) 

where 𝑛  is the number of samples, 𝑚  is the set of one-by-one mapping between clustering 

assignments and true labels and 𝛿(x, y) = 1 if x = y otherwise 0.   

The SC measured the similarity between a single cell and its cluster. The silhouette ranges from −1 to 

+1, where a high value indicates that the object is well matched to its own cluster. It could be defined as 

 𝑆𝐶 = Û(_)�I(_)
ÜÝÞ	{I(_),Û(_)}

  (25) 

where 𝑎(𝑖) is the mean distance between sample 𝑖 and all other samples in the same cluster and 

𝑏(𝑖) is the minimum distance of sample 𝑖 to all points in any other cluster. 

In the experiments of differential expression analysis, we took the DEG detection as the problem of 

predicting a gene is DEG or not, and the gold standard are obtained from bulk RNA-seq. Therefore, the 

accuracy (ACC), F-score and AUC could be calculated by: 

 𝐴𝐶𝐶 = CßD	àDÙD	_B	\áâ
\áâB

× 100%  (26) 

The F-score is calculated from the precision and recall of the DEG predictions, where the precision is 
the number of correctly detected genes divided by the number of all DEGs and the recall is the number 
of correctly detected genes divided by the number of all DEGs that should have been detected. It could 
be defined as: 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  å
 å©o�(æå©æW)

  (27) 

where TP is the true positive meaning that the correct DEG have been detected, FP is the false positives 
and FN is the false negatives. 

AUC - ROC curve is a performance measurement for the classification problems at various threshold 
settings, which could be applied to evaluate the detection of DEGs. The AUC is calculated by the area 
under the ROC-curve, which represents the degree or measure of separability.  



Simulated datasets. Our simulated data are generated by Splatter(Zappia et al., 2017) R package, a 

widely used package for simulating the scRNA-seq count data. First, we simulated a dataset with two 

cell groups, 2000 cells of 3000 genes by setting 27% of data values to zero mimicking dropout events. 

During the simulation, we set the parameter 𝑑𝑟𝑜𝑝𝑜𝑢𝑡. 𝑠ℎ𝑎𝑝𝑒 = −1 , 𝑑𝑟𝑜𝑝𝑜𝑢𝑡.𝑚𝑖𝑑 = 0  and 

𝑑𝑒. 𝑓𝑟𝑎𝑐𝑆𝑐𝑎𝑙𝑒 = 0.3 for simulating the dropout events and the other parameters are set to default values. 

Hence, we could obtain the true counts before dropout and the raw counts after dropout, which are the 

simulated scRNA-seq data. Furthermore, we simulated a complex dataset of 3000 cells by 5000 genes to 

evaluate the robustness of our model, The 3000 cells are divided into six groups and the parameter were 

set to 𝑑𝑟𝑜𝑝𝑜𝑢𝑡. 𝑠ℎ𝑎𝑝𝑒 = −1 , 𝑑𝑟𝑜𝑝𝑜𝑢𝑡.𝑚𝑖𝑑 = 0 , 𝑑𝑒. 𝑓𝑟𝑎𝑐𝑆𝑐𝑎𝑙𝑒 = 0.3  and the other parameters 

with default values.  

C. elegans time course experimental data. We obtain the bulk transcriptomics data from the 

supplementary material of Francesconi. et al, which contains 15855 detected genes during 12 hours of C. 

elegans development(Francesconi and Lehner, 2014). We analyzed the dataset after simulating single-

cell transcriptomics dropout noises and the bulk transcriptomics data can be the ground truth for 

evaluation. Hence, we compared our method with the existing method DCA(Eraslan et al., 2019) by 

Pearson correlation coefficient.  

Mouse embryonic stem cells data. Klein. et al. profiled the single-cell transcriptomics by droplet-

microfluidic approach and applied it on embryonic stem cells(Klein et al., 2015). They analyzed the 

heterogeneity of mouse embryonic stem cells differentiation after leukemia inhibitory factor (LIF) 

withdrawal. Here, we selected the four different LIF withdrawal intervals (0, 2, 4, 7 days) and construct 

a scRNA-seq dataset with 2717 cells of 24175 detected genes. And the cell types are determined by the 

intervals of LIF withdrawal. 

Human ESC scRNA-seq dataset for differential expression analysis. Chu et al generated bulk and 

scRNA-seq data from H1 human embryonic stem cells (H1) differentiated into definitive endoderm cells 

(DEC). This dataset contains six samples of bulk RNA-seq (four for H1 ESC and two for DEC) and 

scRNA-seq of 350 single cells (212 for H1 ESC and 138 for DEC). The percentage of zero expression is 

14.8% for the bulk RNA-Seq dataset and 49.1% for the scRNA-Seq dataset. 

5k peripheral blood mononuclear cells (PBMC) from a healthy donor. The dataset was provided 

by 10X scRNA-seq platform(Zheng et al., 2017), profiling the transcriptome of the peripheral blood 

mononuclear cells (PBMCs) from a healthy donor. The total number of cells was 5247 after filtering 

process and the cell types were identified by graph-based clustering on the platform. 

10K Brain Cells from an E18 Mouse dataset. The dataset was also provided by 10X scRNA-seq 

platform, profiling the brain cells from a combined cortex, hippocampus and sub ventricular zone of an 

E18 mouse. We could obtain the dataset containing 11843 mouse brain cells of 31053 detected genes 

and the cell types were identified by graph-based clustering on the platform. 



Human Embryos cells scRNA-seq data. Xue et al. performed a comprehensive analysis of 

transcriptome dynamics by weighted gene co-expression network analysis(Xue et al., 2013). Therefore, 

we could obtain the dataset containing 30 samples from oocyte to morula in human embryos samples 

from their experiments. Here, we utilized the dataset to demonstrate the effectiveness of our method on 

inferring the gene-to-gene relationships. 

Implementation. We implemented the proposed model with Tensorflow 1.11.0(Abadi et al., 2016). 

In the training process, we utilized the Adam(Kingma and Ba, 2014) optimizer with an initial learning 

rate of 0.01 and allowed it to decay exponentially with decay_rate = 0.9  and decay_steps = 50 

during learning. The total loss and learning rate decreased with epoch during training as shown in 

supplementary Fig. 4. The hidden layers of encoders were set as 16 neurons and we use a 32-dimensional 

of embedding latent variables in all experiments, denoted as 𝐷. To alleviate overfitting, we implemented 

the regularization methods such as dropout and L2 regularization. Dropout(Srivastava et al., 2014) rate 

0.2 was applied on the inference model and the coefficient of L2 regularization was 0.001. We explored 

hyper-parameters in a wide range and find the above hyper-parameters yields the highest performance, 

as supplementary Fig. 5 shown. We tuned model hyper-parameters based on the experimental results on 

simulated datasets and used them across all datasets. All experiments are repeated for 5 times, each with 

a different random seed.  
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