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Background: Lung adenocarcinoma (LUAD) stands as the most prevalent histological subtype of
lung cancer, exhibiting heterogeneity in outcomes and diverse responses to therapy. CD8 T cells are
consistently present throughout all stages of tumor development and play a pivotal role within the tumor
microenvironment (TME). Our objective was to investigate the expression profiles of CD8 T cell marker
genes, establish a prognostic risk model based on these genes in LUAD, and explore its relationship with
immunotherapy response.

Methods: By leveraging the expression data and clinical records from The Cancer Genome Atlas (TCGA)
and Gene Expression Omnibus (GEO) cohorts, we identified 23 consensus prognostic genes. Employing ten
machine-learning algorithms, we generated 101 combinations, ultimately selecting the optimal algorithm to
construct an artificial intelligence-derived prognostic signature named riskScore. This selection was based on
the average concordance index (C-index) across three testing cohorts.

Results: RiskScore emerged as an independent risk factor for overall survival (OS), progression-free
interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS) in LUAD. Notably, riskScore
exhibited notably superior predictive accuracy compared to traditional clinical variables. Furthermore, we
observed a positive correlation between the high-risk riskScore group and tumor-promoting biological
functions, lower tumor mutational burden (TMB), lower neoantigen (NEO) load, and lower microsatellite
instability (MSI) scores, as well as reduced immune cell infiltration and an increased probability of immune
evasion within the TME. Of significance, the immunophenoscore (IPS) score displayed significant
differences among risk subgroups, and riskScore effectively stratified patients in the IMvigor210 and
GSE135222 immunotherapy cohort based on their survival outcomes. Additionally, we identified potential
drugs that could target specific risk subgroups.

Conclusions: In summary, riskScore demonstrates its potential as a robust and promising tool for guiding

clinical management and tailoring individualized treatments for LUAD patients.
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Introduction

Lung cancer continues to pose a significant health
challenge, with increasing global incidence and mortality
rates. A defining characteristic of this disease is the
prevalence of non-small cell lung cancer (NSCLC), with
lung adenocarcinoma (LUAD) standing out as the most
common subtype (1,2). Despite significant advances in
cancer research and the development of various treatments,
the prognosis for LUAD patients remains compromised
due to late-stage diagnosis, metastasis, and recurrence.
Early-stage LUAD is particularly prone to metastasis,
resulting in a generally unfavorable prognosis, with a less
than 20% average 5-year survival rate (3,4). In clinical
practice, decision-making, therapeutic strategies, and
follow-up procedures still heavily rely on the conventional
anatomy-based tumor-node-metastasis (I'NM) staging
system for NSCLC. This system serves as both a prognostic
tool and a guide for treatment decisions. However, the
current system, primarily based on tumor histology and
morphology, falls short in comprehensively elucidating the
complexity of this disease. Notably, tumors with similar
histological characteristics or pathological stages do not
consistently exhibit similar clinical behaviors or respond
equally to identical treatments. In fact, a significant
proportion, ranging from 30% to 55%, of early-stage
NSCLC patients experience disease relapse and succumb
to the illness despite undergoing complete resection with
clear resection margins (5). The pursuit of novel prognostic
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Key findings

* Employing ten machine-learning algorithms, we generated 101
combinations, selecting the optimal algorithm to construct an
artificial intelligence-derived prognostic signature named riskScore.
The signature was a strong predictor of lung adenocarcinoma
(LUAD).

What is known and what is new?

e CDS8 T cells are consistently present throughout all stages of
tumor development and play a pivotal role within the tumor
microenvironment.

e CDS8 T cell-related genes were used to construct a prognostic
model, and the new model was found to be associated with the
prognosis of LUAD.

What is the implication, and what should change now?
® This study highlights the importance of CD8 T cell-related genes
in predicting prognosis in LUAD.
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biomarkers is of paramount importance to improve patient
stratification and treatment efficacy. One of the most
prominent features of tumors is the imbalance within the
tumor microenvironment (TME). Beyond cancer cells and
T cells, the TME encompasses a multitude of immune and
non-immune components, including stromal cells, blood
vessels, neurons, and the extracellular matrix. In the last
decade, our understanding of CD8 T cell differentiation
within tumors has become increasingly comprehensive
and detailed. CD8 T cells serve as the ultimate effectors
of cancer immunity, and the effectiveness of most cancer
immunotherapies hinges on the effector functions of CD8
T cells (6). Traditional bulk RNA-sequencing methods
involve the analysis of a mixture of all cells, which tends to
obscure the distinct transcriptomes unique to individual cell
types. In contrast, single-cell RNA-sequencing (scRNA-
seq) captures and characterizes the gene expression patterns
of each individual cell, allowing for the deciphering of
their intercellular signaling networks (7). It is now evident
that CD8 T cells infiltrating tumor tissue can exhibit a
range of states, including a naive-like, effector, resident
memory, or exhausted state (8). In recent years, with the
advancement of high-throughput sequencing and evidence-
based medicine, studies from The Cancer Genome Atlas
(TCGA) have provided comprehensive characterizations
of the major subtypes in the transcriptome and genome of
LUAD (9,10). Many multigene panels have been developed
to address the extensive heterogeneity of the disease, showing
promising performance in specific cohorts. For example,
Jones introduced a genomic-pathologic annotated risk
model for predicting recurrence in early-stage LUAD (11).
Zhang et al. devised a novel basement membrane-related
gene signature to predict prognosis (12). Shi et a/. developed
a prognostic immune-related gene signature for LUAD
with resistance to tyrosine kinase inhibitors (TKIs) (13).
However, there were a handful of known studies with CD8
T cells-related signatures (14,15). Therefore, it became
imperative to incorporate CD8 T cell-related genes into
preclinical models to construct prognostic biomarkers.
However, the limitations of current modeling methods and
the lack of rigorous validation in large multicenter cohorts
have rendered expression-based multigene signatures less
applicable in clinical settings.

In this study, which aimed to establish an optimal
biomarker centered on CD8 T cell-related genes, we
meticulously constructed and subjected the 23 artificial
intelligence-derived CD8 T prognostic signatures
(riskScore) to multicenter validation. This validation process
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encompassed a comprehensive analysis using 101 machine-
learning algorithm combinations, based on data from four
independent public datasets. The riskScore demonstrated
remarkable and consistent performance in predicting overall
survival (OS), progression-free interval (PFI), disease-
free interval (DFI), response to immunotherapy, and drug
efficacy. The findings of this research hold the potential to
significantly enhance the precision of treatment strategies
and subsequently improve the clinical outcomes of patients
with LUAD. We present this article in accordance with
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-2332/rc).

Methods
Data acquisition and preprocessing

We collected the TCGA-LUAD dataset from TCGA
(http://portal.gdc.cancer.gov/), which comprised RNA
expression data in transcripts per kilobase million (TPM)
format along with corresponding clinical features.
Additionally, we obtained datasets GSE31210 (16),
GSE3141 (17), GSE135222 (18), and GSE72094 (19) from
the Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/), all of which included RNA expression
data and associated clinical information for LUAD. For
the IMvigor210 cohort, we retrieved both expression data
and clinical data from http://research-pub.gene.com/
IMvigor210CoreBiologies/ (20). Comprehensive details
regarding scRNA-seq data (GSE176021) were sourced from
the Tumor Immune Single Cell Hub 2 (TISCH2) (21). This
study was conducted in accordance with the Declaration of

Helsinki (as revised in 2013).

Signature generated from machine-learning-based
integrative approaches

To develop a consensus risk model with high accuracy and
stability, we employed a multistep methodology. First,
by applying the Wilcoxon rank-sum test to the TCGA-
LUAD dataset, we pinpointed genes that showed significant
expression differences between tumor and adjacent normal
tissues. Following this, we identified genes with significant
prognostic value using univariate Cox regression analysis
on the same dataset. Additionally, we isolated genes
associated with CD8 T cells by comparing them against
other cell types in the TISCH2 database. The intersection
of these three gene sets yielded a final list genes related to
CDS8 T cell-related prognosis genes (CD8TRPGs). We
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then integrated 10 machine-learning algorithms and 101
algorithm combinations. These algorithms included random
survival forest (RSF), elastic network (Enet), least absolute
shrinkage and selection operator (Lasso), ridge regression
(Ridge), stepwise Cox (StepCox), CoxBoost, partial least
squares regression for Cox (plsRcox), supervised principal
components (SuperPC), generalized boosted regression
modeling (GBM), and survival support vector machine
(survivalSVM). Among them, RSE, Lasso, CoxBoost, and
stepwise Cox possessed dimensionality reduction and
variable screening capabilities, and we combined them with
other algorithms to create 101 machine-learning algorithm
combinations. The detailed process of signature generation
unfolded as follows:

() Initially, we conducted differential expression
analysis between tumor and normal samples in
the TCGA-LUAD dataset using the Wilcoxon
rank-sum test. Genes were selected based on the
following criteria: P<0.05 and llog,fold change
(FC)I >1. Additionally, in the TCGA-LUAD
cohort, we carried out univariate Cox regression
analysis and selected genes using the following
criterion: P<0.05, and TISCH2 served as a valuable
resource for scRNA-seq data from both human
and mouse tumors, enabling a comprehensive
characterization of gene expression within the
TME. In this study, we retrieved CD8 T-related
genes from TISCH2 using specific criteria: log,FC
> log,(1.5) and adjusted P<0.05. Subsequently, an
intersection of these three gene sets was performed,
yielding a consolidated list of 33 CD8TRPGs.

(II) Following this, the 101 combinations of algorithms
were utilized to independently construct prognostic
signatures based on the expression profiles of the
33 CD8TRPGs within the TCGA-LUAD training
cohort.

(IIT) Based on the above results, we selected the
combination of RSF and StepCox[forward], which
achieved the highest average C-index (0.707).
This combination identified a final model named
riskScore consisting of 23 CD8TRPGs.

(IV) We calculated a riskScore for each patient using
the expression of 23 CD8TRPGs weighted by their
regression coefficients in a Cox model. RiskScores
were computed for each validation dataset, namely
GSE31210, GSE3141, and GSE72094, were
calculated using the signature derived from the
training cohort.
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(V) Harrell’s concordance index (C-index) was then
computed for each model across all validation
datasets, and the model with the highest average
C-index was selected as the optimal one.

Comprebensive analysis of single-cell datasets and cell
cluster annotation

We conducted an extensive analysis of single-cell datasets
and performed cell cluster annotation. The analysis of the
scRNA-seq dataset was carried out using the R package
Seurat (v4.1.1) (22). Uniform Manifold Approximation
and Projection (UMAP) analysis was performed using
Seurat’s built-in function RunUMAP and the umap-
learn algorithm, in addition to the Leiden algorithm. To
visualize the results, we utilized dimplot, featureplot, violin,
and dotplot. To further characterize different clusters of
cell subtypes, we calculated metabolic scores using the R
package scMetabolism with the AUCell method within the
reactome pathway (23). The outcomes of the scMetabolism
calculations were integrated and visualized using dotplot
pheatmap, allowing us to display the metabolism of various
cell subtype clusters.

Validating the prognostic value of risk model

To validate the prognostic value of the risk model, patients
in the training cohort, three testing cohorts, and the meta-
cohort were stratified into high and low-risk score groups
based on the optimal cutpoint value. The prognostic
significance of the riskScore was assessed using Kaplan-
Meier curves and multivariate Cox regression analysis.
Additionally, calibration curves and receiver operating
characteristic (ROC) curves were generated to evaluate the
predictive accuracy of the risk model.

Nomogram and calibration

Multivariate Cox regression analysis incorporating clinical
features (age, stage, gender) and the riskScore was conducted
to construct the nomogram using the R package “regplot”.
Subsequently, calibration curves at 1, 3, and 5 years were
generated to validate the accuracy of the nomogram.

Genomic alteration landscape
To explore the genomic alteration landscape in the high-

and low-risk subgroups, we conducted a comparative analysis
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of tumor mutational burden (TMB), neoantigen (NEO), and
microsatellite instability (MSI) score between the high- and
low-risk subgroups within the TCGA-LUAD dataset.

Cells infiltration estimation

Single-sample gene set enrichment analysis (ssGSEA) was
employed using the R package gene set variation analysis
(GSVA) to quantify the relative infiltration of immune cells
and immune cell functions within the TCGA-LUAD cohort.
"To validate the stability and robustness of the ssGSEA results,
we utilized seven other algorithms, including TIMER (24),
CIBERSORT (25), CIBERSORT_ABS, QUANTISEQ (26),
MCPCOUNTER (27), XCELL (28), and EPIC
algorithms (29). Additionally, the R package “estimate”
was utilized to determine immune and estimate scores.
Information regarding immune subtypes, derived from a
previous study, was compared between the high-risk and
low-risk subgroups. To predict the response to checkpoint
blockade, the immunophenoscore (IPS) obtained from The
Cancer Immunome Atlas (T'CIA; https://tcia.at/home) was
employed (30,31).

Gene set enrichment analysis (GSEA)

GSEA was utilized to identify specific functional pathways
from Gene Ontology (GO), Kyoto Encyclopedia of Genes
and Genomes (KEGG), and Hallmark collections in both
the high-risk and low-risk subgroups. GSEA v4.3.2 from
the MSigDB database (http://software.broadinstitute.org/
gsea/msigdb/) was employed for this analysis. The criteria
for selection were set at false discovery rate (FDR) <0.25 and
nominal P<0.05 to determine significant pathways (32,33).

Prediction of drug sensitivity

The original data regarding chemotherapy response were
sourced from the Genomics of Drug Sensitivity in Cancer
(GDSC version 2) (https://www.cancerrxgene.org/) (34-36).
Curated data were downloaded from https://osf.io/temyk for
further analysis. To predict the difference in chemotherapy
response between the high-risk and low-risk subgroups, we

utilized the R package oncoPredict (37).

Consensus clustering

To discover clusters within the TCGA-LUAD cohort

based on the expression of risk model genes, we employed
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a resampling-based method known as consensus
clustering. This procedure was executed using the
ConsensusClusterPlus package (38). Following cluster
generation, the consensus score matrix was utilized to
identify the optimal number of clusters.

Cancer Cell Line Encyclopedia (CCLE) gene expression

We obtained RNA-seq data for all LUAD cell lines from
the CCLE (39), which provides gene expression profiles in
cancer cells. Subsequently, we generated plots depicting the
expression of the risk model genes.

Statistical analysis

All statistical analyses were conducted in R (v4.2.2, https://
www.r-project.org/). Comparison between the two groups
was conducted utilizing the Wilcoxon rank-sum test, and
the Kruskal-Wallis test was carried out for normal multiple
groups. The level of statistical significance used in this
research was determined to be P<0.05.

Results
Workflow

Our study’s workflow, outlining the sequential steps utilized
in our research, is illustrated in Figure 1.

Analysis of LUAD single-cell sequencing data

Using the TISCH?2 database, we obtained the scRNA-seq
dataset GSE176021. As demonstrated in Figure 24,2B, we
observed that CD8 T cells had the highest proportion in
the dataset. Additionally, GSEA analysis of KEGG pathways
revealed that CD8 T cells were significantly enriched in
pathways related to antigen processing and presentation,
MAPK signaling pathway, oxidative phosphorylation,
natural killer (NK) cell-mediated cytotoxicity, Regulation
of actin cytoskeleton, T cell receptor signaling pathway
(Figure 2C,2D). These findings indicat that CD8 T cells
played a crucial role in LUAD immunity-related pathways
and were worthy of further investigation.

Construction of a prognosis signature based on integrative
machine-learning

Our approach involved multiple steps in constructing a
prognosis signature. We initially identified significantly
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differentially expressed genes between tumor and normal
samples in the TCGA-LUAD dataset using the Wilcoxon
rank-sum test. Next, we determined significant prognosis-
related genes through univariate Cox regression analysis
within the TCGA-LUAD dataset. We further obtained
CD8 T-related genes by comparing CD8 T cells with
other cells. These three sets of genes were then intersected,
resulting in 33 CD8TRPGs (Figure 34). In the TCGA-
LUAD training cohort, we employed 101 algorithm
combinations through ten-fold cross-validation to construct
prediction models. We calculated the average C-index for
each algorithm across the remaining three testing cohorts.
Based on the results, we selected the combination of RSF
and StepCox[forward], which achieved the highest average
C-index (0.707). This combination identified a final model
named riskScore consisting of 23 CD8TRPGs (Figure 3B).
Subsequently, we calculated a riskScore for each patient
using the expression of 23 CD8TRPGs weighted by their
regression coefficients in a Cox model. Patients were
divided into high-risk and low-risk subgroups based on the
optimal cut-off value determined by the survminer package.
As illustrated in Figure 3C-3F high-risk group patients
exhibited significantly poorer OS, DFI, disease-specific
survival (DSS), PFI relative to the low-risk group in the
TCGA-LUAD training dataset. Different gene expression
clusters often exhibit varying immune microenvironments,
which could result in diverse immunotherapeutic strategies
and responses. To investigate this phenomenon, we
conducted consensus clustering based on the expression of
23 CD8TRPGs which formed the riskScore. Two distinct
clusters were displayed, and survival analysis displayed a
significant difference between the two clusters (Figure 3G).
Similarly, OS was significantly better in the low-risk group
than in the high-risk group in three validation datasets
(Figure 44-4C). The GEO meta cohort combining three
GEO validation cohorts (GSE31210, GSE3141, GSE72094)
and TCGA-GEO meta cohort (TCGA-LUAD, GSE31210,
GSE3141, GSE72094) also exhibited the same trend
(Figure 4D,4E). To measure the discrimination of the
riskScore, we plotted ROC curves. The area under the
ROC curve (AUC) of 1-, 3-, and 5-year OS were 0.866,
0.732, 0.757 in the dataset GSE31210; 0.800, 0.799, 0.700
in the dataset GSE3141; 0.687, 0.620, 0.613 in the dataset
GSE72094; 0.712, 0.654, 0.661 in the GEO meta cohort;
0.723, 0.687, 0.668 in the dataset TCGA-LUAD; 0.715,
0.671, 0.660 in the TCGA-GEO meta cohort (Figure 4F-4K).
These results confirmed the good predictive performance of
riskScore.
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Step 1
> 33 CD8T cells-related prognosis genes
(CD8TRPGS)
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Best C-index
RSF + StepCox[forward]
Development a 23 CD8TRPGs risk model
Step 3

_
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Figure 1 Diagrammatic representation of the research workflow. FC, fold change; TCGA, The Cancer Genome Atlas; LUAD, lung

adenocarcinoma; CD8TRPGs, CD8 T cell-related prognosis genes; Lasso, least absolute shrinkage and selection operator; StepCox,

stepwise Cox; survivalSVM, survival support vector machine; Ridge, ridge regression; SuperPC, supervised principal components; Enet,

elastic network; plsRcox, partial least squares regression for Cox; RSF, random survival forest; GBM, generalized boosted regression

modeling; C-index, concordance index; CCLE, Cancer Cell Line Encyclopedia.

Establishment and validation of a nomogram combined
with clinical characteristics

To evaluate the independent prognostic significance of
the riskScore in LUAD, we conducted univariate and
multivariate Cox regression analyses on OS, DSS, and
PFI in the TCGA-LUAD dataset. Our findings showed
that riskScore was a significant risk factor for OS, DSS,
and PFI in the univariate analysis [hazard ratio (HR) >1;
P<0.001]. Importantly, in the multivariate analysis, the
riskScore remained an independent prognostic factor for
OS [HR =1.800; 95% confidence interval (CI): 1.377-
2.354; P<0.001], DSS (HR =2.052; 95% CI: 1.472-2.860;

© Translational Cancer Research. All rights reserved.

P<0.001), and PFT (HR =1.519; 95% CI: 1.204-1.918;
P<0.001), indicating its robust prognostic ability in LUAD
patients (Figure 5A). Further reinforcing our findings,
we performed univariate and multivariate Cox regression
analyses on OS in the validation datasets. The results
consistently affirmed the riskScore was an independent
prognostic factor for LUAD patients (HR =1.612; CI:
1.239-2.097; P<0.001) in the GSE72094 dataset (Figure 5B)
and (HR =1.949; CI: 1.299-2.923; P=0.001) in the
GSE31210 dataset (Figure 5C). These results underscored
the reliability and consistency of our findings across
diverse datasets. To enhance the clinical applicability of the
riskScore, we constructed a nomogram that incorporated
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Figure 3 A consensus riskScore was developed and validated via the machine learning-based integrative procedure. (A) Venn plot showed

the intersection of genes from differential and prognosis analysis. (B) A total of 101 predictive models were developed using the LOOCV

framework, with the C-index of each model calculated across all validation datasets. (C) Kaplan-Meier curves of OS according to the
riskScore in TCGA-LUAD. (D) Kaplan-Meier curves of DFI according to the riskScore in TCGA-LUAD. (E) Kaplan-Meier curves
of DSS according to the riskScore in TCGA-LUAD. (F) Kaplan-Meier curves of PFI according to the riskScore in TCGA-LUAD. (G)
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Patients are divided into two clusters by ConsensusClusterPlus and Kaplan-Meier survival curves of OS in two clusters. TCGA, The
Cancer Genome Atlas; LUAD, lung adenocarcinoma; RSE, random survival forest; StepCox, stepwise Cox; Enet, elastic network; Ridge,
ridge regression; Lasso, least absolute shrinkage and selection operator; survivalSVM, survival support vector machine; plsRcox, partial
least squares regression for Cox; SuperPC, supervised principal components; GBM, generalized boosted regression modeling; C-index,
concordance index; LOOCYV, leave-one-out cross-validation; OS, overall survival; DFI, disease-free interval; DSS, disease-specific survival;

PFI, progression-free interval.
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Figure 5 Establishment and verification of the nomogram. (A) Univariate and multivariate analyses of the clinical characteristics and
riskScore for the OS, DSS, PFI in TCGA-LUAD. (B) Univariate and multivariate analyses of the clinical characteristics and riskScore for
the OS in GSE72094. (C) Univariate and multivariate analyses of the clinical characteristics and riskScore for the OS in GSE31210. (D)
Construction of the nomogram based on the riskScore and clinical characteristics, including age, gender, stage. (E) Calibration curve of the
nomogram for 1-, 3-, and 5-year OS. (F) ROC curves of the riskScore and clinical characteristics in TCGA-LUAD (left) and GSE72094 (right).
(G) Kaplan-Meier survival curves of the OS prognostic value stratified by the age, M, stage, and T between high- and low-risk subgroups in
TCGA-LUAD. ***, P<0.001. CI, confidence interval; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; OS, overall survival;

DSS, disease-specific survival; PFI, progression-free interval; AUC, area under the ROC curve; ROC, receiver operating characteristic.
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both the riskScore and clinical characteristics (Figure 5D).
The calibration curves demonstrated excellent agreement
between the predictions of the nomogram and actual
observations (Figure SE). Moreover, when comparing the
AUC values for different clinical characteristics, including
age (AUC =0.497), gender (AUC =0.561), stage (AUC
=0.711), T (AUC =0.645), M (AUC =0.500), and N (AUC
=0.670), there was a higher AUC value 0.713 at a 1-year OS
time for the riskScore. In the dataset GSE72094, compared
with other clinical characteristics including age (AUC
=0.539), gender (AUC =0.561), and stage (AUC =0.638),
there was a higher AUC value of 0.683 at a 1-year OS time
for the riskScore (Figure 5F). These data suggested that the
riskScore might possess higher sensitivity and accuracy in
predicting the prognosis of patients with LUAD. Kaplan-
Meier analysis was performed after riskScore stratification
using age, M, stage, and T. Patients in the low-risk group
showed improved OS compared with patients with high-
risk for age >65 years (P<0.001), MO (P<0.001), stage II-ITI-
IV (P=0.02), T2 (P=0.004), and T3 (P=0.02) (Figure 5G).

Analysis of LUAD single-cell sequencing data

Based on the TISCH2 database, we obtained the
GSE176021 scRNA-seq dataset (10x genomics) and re-
analyzed using R package Seurat. It was easy to find the
classical marker, CD8A, CD8B, GZMK mainly expressed
on the CD8 T subset (Figure 6A4). Figure 6B illustrates the
presentation of classical markers associated with various cell
subset. In addition, we delved into the metabolic profiles
of distinct cell types. Our findings revealed an enrichment
of CD8TRPGs in chondroitin sulfate dermatan sulfate
metabolism, glycosaminoglycan metabolism (Figure 6C). To
provide further insights, we visualized the expression of 23
CDS8TRPGs in different cell subsets by dotplot and violin
plot (Figure 6D,6E).

The relationship between riskScore and TME

"To gain insights into the role of the TME in the progression
and metastasis of LUAD, which is crucial for developing
novel therapeutics, we explored the distribution of immune
cell infiltration and the enrichment of immune-related
functional pathways in the high- and low-risk subgroups.
Notably, we observed that immune cell infiltration levels
were significantly higher in the low-risk group, and immune-
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related functional pathways were notably enriched in this
group (Figure 74). We also evaluated estimate scores and
immune scores in LUAD using the estimate algorithm,
revealing a tendency for higher scores in the low-risk groups
(Figure 7B). In Figure 7C, we presented the correlation
between immune infiltration levels and riskScore, as
determined by various algorithms, including TIMER,
CIBERSORT, CIBERSORT_ABS, QUANTISEQ,
MCPCOUNTER, XCELL, and EPIC. These analyses
consistently showed that most immune cell infiltration
levels were negatively correlated with riskScore, such as
T cell CD4" and B cell as determined by the TIMER
algorithm, and T cell CD8" and T cell NK as determined
by the XCELL algorithm (Figure 7D). Furthermore,
riskScore demonstrated a significant association with
genomic instability, TMB, NEO load, and MSI score, with
marked differences observed between the high-risk and
low-risk subgroups (Figure 7E). Using the Tumor Immune
Dysfunction and Exclusion (TIDE) web tool, we found that
the low-risk group had significantly lower TIDE scores
and Exclusion scores (Figure 7F). We also investigated the
expression of immune checkpoint genes. The differential
expression of immune checkpoint genes, such as CD274 (PD-
L1) and PDCDILG2 (PD-L2), indicated that the high-risk
group was more susceptible to immune invasion (Figure 7G).
To validate the predictive ability of riskScore regarding
patients’ response to immunotherapy, we incorporated the
IMvigor210 cohort, which received atezolizumab treatment.
Using the risk model, we calculated the cohor’s riskScore
and divided patients into high- and low-risk subgroups.
Strikingly, the high-risk group exhibited significantly lower
OS (Figure 7H). We also incorporated the GSE135222
cohort, a cohort of advanced NSCLC who were treated
with anti-PD-1/PD-L1, the high-risk group exhibited
significantly lower OS (Figure 7I). We further explored
the role of riskScore in immunotherapy using the TCIA
database, revealing that patients in the low-risk group were
more likely to benefit from immunotherapy (Figure 77).
Thorsson ez al. identified six immune subtypes across 33
diverse cancer types, providing a resource for exploring
immunogenicity in cancer (40). Importantly, we observed
a significant difference in immune subtype composition
between the high- and low-risk subgroups (Figure 7K).
In summary, these results strongly supported the notion
that the low-risk group is more likely to derive substantial
benefits from immunotherapy.
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Figure 6 The expression of classical markers and risk model genes across different subsets in scRNA-seq GSE176021 dataset. (A) The

expression of some classical markers on dotplot across different cell subsets. (B) The expression of some classical markers on violin plots

across different cell subsets. (C) The metabolic status of different clusters of cell types. (D) The expression levels of the genes selected for

risk model on dotplot. (E) The expression levels of the genes selected for risk model on violin plot. DC, dendritic cell; Tprolif, proliferating
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Analysis of drug sensitivity potential in bigh- and low-risk subgroups respond to these drugs. To this end, we assessed
group the response of high- and low-risk subgroups to commonly
Chemotherapy and targeted therapies were prevalent in used agents in LUAD treatment. Figure 84 shows that the

treating LUAD. It was crucial to understand how patient group with low-risk scores was more sensitive to afuresertib,
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Figure 8 Chemosensitivity analysis. (A) Chemotherapy drugs sensitive to low-risk groups. (B) Chemotherapy drugs sensitive to high-risk

groups. ICy, half-maximal inhibitory concentration.

and axitinib, whereas that with high-risk scores was more
sensitive to BI-2536, and 5-fluorouracil (Figure §B).

The underlying biological mechanisms of risk model

GSEA was employed to clarify the potential functional
pathways underlying the significant prognostic
differences observed between risk subgroups in the
TCGA-LUAD dataset. Figure 94 demonstrates that
the high-risk group exhibited significant enrichment in
GOBP CELL CYCLE G2 M PHASE TRANSITION,
GOBP CELLULAR RESPONSE TO OXIDATIVE
STRESS, GOBP DNA BIOSYNTHETIC PROCESS,

© Translational Cancer Research. All rights reserved.

GOBP MITOTIC SPINDLE ASSEMBLY, GOBP
POSITIVE REGULATION OF CELL CYCLE PHASE
TRANSITION, GOBP POSITIVE REGULATION
OF MITOTIC CELL CYCLE in the GO genesets.
As illustrated in Figure 9B, the high-risk group was
remarkably enriched for KEGG AMINO SUGAR AND
NUCLEOTIDE SUGAR METABOLISM, KEGG CELL
CYCLE, KEGG ERBB SIGNALING PATHWAY, KEGG
PATHWAYS IN CANCER, KEGG PYRIMIDINE
METABOLISM, KEGG WNT SIGNALING PATHWAY
in the KEGG genesets. As illustrated in Figure 9C, the
high-risk group was remarkably enriched for HALLMARK
EPITHELIAL MESENCHYMAL TRANSITION,
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Figure 9 GSEA analysis of the risk model. (A) Highly related
GO pathways in the high-risk group. (B) Highly related KEGG
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risk group. GO, Gene Ontology; KEGG, Kyoto Encyclopedia of

Genes and Genomes; GSEA, gene set enrichment analysis.

HALLMARK GLYCOLYSIS, HALLMARK HYPOXIA,
HALLMARK KRAS SIGNALING UP, HALLMARK
NOTCH SIGNALING, HALLMARK PI3K AKT MTOR
SIGNALING, HALLMARK WNT BETA CATENIN
SIGNALING in the hallmark genesets. The high-risk
group showed a positive correlation with tumor-promoting
pathways, partially explaining its association with poorer

prognosis.

Risk gene expression in CCLE

To assess the RNA expression levels of genes in our risk

© Translational Cancer Research. All rights reserved.
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model, we analyzed gene data from all LUAD cell lines in
the CCLE database. Figure 10 reveals that none of these
genes exhibited very low expression, which potentially
enhanced the accuracy and operability of the risk model
detection.

Analysis of mutations in high- and low-risk group

Genetic variations have been reported to affect the immune
microenvironment. To address this point, we have carefully
analyzed the TCGA-LUAD mutations and find that mutations
in TP53, PTEN, and SMARCA4 are indeed associated with
significantly higher riskScores (Figure SIA-S1C), which is
consistent with our earlier conclusion that higher riskScores
indicate poorer prognosis. However, In our study, the
results show no statistically significant difference between
the two groups (Figure S1D). This finding suggests that
although EGFR mutations are of great clinical and basic
research significance in the occurrence, progression, and
treatment of LUAD, the EGFR mutation status may not
be the main factor causing prognostic differences in our
riskScore model.

Discussion

Lung cancer, one of the most common and severe
cancers, is the leading cause of cancer-related incidence
and mortality globally in both genders (41). Despite its
prevalence, the survival rate for lung cancer has not seen
significant improvement. This high mortality rate poses a
major challenge in developing individualized treatments and
predicting outcomes for LUAD patients (42). Ghiringhelli
et al. highlighted the significance of a spatial quantitative
analysis of CD8 and PD-L1 markers, which is predictive
of the efficacy of anti-PD1/PD-L1 immunotherapy in
NSCLC (43). Tostes et al. reviewed biomarkers for immune
checkpoint inhibitor response, emphasizing the need for
efficient tools in clinical decision-making (44). Rizvi er al.
found that higher TMB was associated with improved
survival in LUAD patients treated with immune checkpoint
inhibitors (45). Wang ez al. found that predictive power of
TMB in lung cancer immunotherapy response is influenced
by patients’ sex (46). Given LUAD’s heterogeneous
outcomes and varied therapeutic responses, identifying
robust markers for guiding clinical treatment is crucial.
The absence of effective biomarkers for screening, stratified
management, and prognostic follow-up remains a pressing
issue for clinicians and researchers, potentially leading to
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over- or undertreatment. Notably, CD8 T cells infiltrating
the infiltrating the TME of LUAD play a pivotal role in
antitumor immunity (42,47). To address these challenges,
our research focused on exploring the relationship between
CD8 T-related gene profiles, prognosis, TME, and drug
benefits.

In this study, we initially analyzed the differentially
expressed genes between tumor and normal samples in the
TCGA-LUAD dataset. Subsequently, univariate Cox
analysis helped identify prognostic genes within this dataset.
We further isolated CD8 T-related genes by comparing
expression levels between the CD8 T subset and other
subsets. By intersecting these three gene sets, we identified
33 CD8TRPGs. Addressing the challenge of overfitting,
common in artificial intelligence and machine-learning for
biomedical models, we noted that many models fit well in
training cohorts but underperform in external validation
(48,49). Leveraging the expression profiles of CD8TRPGs,
we devised a novel computational framework. This
framework integrates 10 machine-learning algorithms, along
with their 101 combinations, to develop a unified riskScore.
A total of 101 model variants were evaluated on the TCGA-
LUAD training dataset using the LOOCV framework.
Subsequent validations on three independent datasets
pinpointed the RSF + StepCox[forward] combination as the
most effective model. The primary advantage of this
integrative approach was its capacity to establish a model
with consistent performance in LUAD prognosis. By
employing a diverse range of algorithmic combinations, it
effectively reduced variable dimensionality, thereby
simplifying the model for practical translational
applications. We demonstrated that riskScore served as an
independent risk factor for OS, PFI, and DSS of LUAD in
the training TCGA-LUAD dataset. It also independently
predicts OS in two validation datasets, with the third dataset
lacking additional clinical features. Further, riskScore
effectively stratified both the GEO meta dataset and the
TCGA-GEO meta dataset into distinct OS subgroups.
Notably, it showed impressive ROC performance across the
training, validation, and meta datasets. Compared to
traditional clinical variables like cancer stage, riskScore offers
markedly enhanced accuracy. We also examined riskScore
across various clinical characteristics to broaden its
application scope. Significant prognostic differences were
observed between high- and low-risk subgroups in the
TCGA-LUAD dataset, particularly in patients age over
65 years, those with MO status, and those in stages II-IT1I-1V,
and T2 and T3 status. Regarding molecular mechanisms,

© Translational Cancer Research. All rights reserved.
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our results revealed a significant enrichment of CD8TRPGs
in chondroitin sulfate dermatan sulfate metabolism,
glycosaminoglycan metabolism in the scRNA-seq dataset
GSE176021. Additionally, a strong positive correlation was
observed between the high-risk group and tumor-
promoting biological functions. These functions included
the GOBP DNA BIOSYNTHETIC PROCESS, KEGG
AMINO SUGAR AND NUCLEOTIDE SUGAR
METABOLISM, and HALLMARK NOTCH
SIGNALING. The activation of these pathways suggested
elevated metabolic activity in cells of the high-risk group, a
phenomenon typically associated with the heightened
energy requirements of cancer cells (48-51). Remarkably,
the low-risk group also showed a higher TMB, NEO, and
MSI scores, with TMB being a known predictor of
immunotherapy response (52,53). Clinical trials have
confirmed the safety and effectiveness of tumor vaccines
targeting NEOs (54). Additionally, MSI has gained approval
for clinical use across tumor types (55,56). To delve deeper
into specific immune cell infiltration differences, we applied
the ssGSEA algorithm to each sample. We observed
significantly lower immune cell and function infiltration in
the low-risk group. Cancer-associated fibroblasts (CAFs)
were known to facilitate tumor growth, angiogenesis,
invasion, and metastasis through various pathways (57). Our
analysis also showed a significant negative correlation
between multiple immune cells and riskScore, while tumor-
promoting CAFs positively correlated with riskScore, as
identified through platforms like TIMER, XCELL, and
EPIC. Cancers frequently develop the ability to evade
destruction by the immune system (58). The high-risk
group exhibited high TIDE and exclusion scores,
indicating a higher likelihood of immune evasion in the. A
higher IPS score typically suggested a better response to
immunotherapy (59), and our findings showed a marked
difference in IPS scores between risk subgroups, hinting at
a better immunotherapy response in the low-risk group. To
evaluate the efficacy of our prognostic signature in
predicting immunotherapy responses, we included the
IMvigor210 cohort, comprising metastatic urothelial cancer
(mUC) patients treated with atezolizumab. We also
incorporated the GSE135222 cohort, a cohort of advanced
NSCLC who were treated with anti-PD-1/PD-L1. The
riskScore effectively stratified patients by survival in these
two cohorts. PD-L1 and PD-L2 have been detected in the
nucleus in multiple malignancies, playing an oncogenic role
independent of immune checkpoint regulation (60-63). We
also found that immune checkpoint genes PD-L1 and PD-
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L2 were highly expressed in the high-risk group.
Chemotherapy and immunotherapy were crucial adjuvant
therapies for LUAD, significantly enhancing patient
prognosis and quality of life. We screened a batch of small
molecule chemotherapeutics using the GDSC drug
susceptibility database, with the aim of improving
personalized medication guidance for LUAD patients.
Based on the half-maximal inhibitory concentration (ICj)
prediction, the low-risk group of patients was more sensitive
to AZD6738, 5-fluorouracil, and BI-2536, the low-risk
group of patients was more sensitive to afuresertib, axitinib,
AZD1208, AZD6482, GSK269962A, and BIBR-1532. In
summary, riskScore emerged as a robust and promising tool
for guiding clinical management and tailoring individualized
treatment in LUAD patients. Regarding the 23
CDS8TRPGs included in the risk model, research into their
specific roles in tumor development is still in its early stages.
Lactate dehydrogenase A (LDHA) was a key enzyme
involved in glucose metabolism, whilst its aberrant
expressions were often associated with tumorigenesis (64).
TIMP1 was identified as related to energy metabolism and
ribosome synthesis that was upregulated in the early stages
of LUAD and may promote progression (65). DDIT4 was a
gene of a three TKI resistant-related gene signature in
LUAD (13). KRTS8 could serve as a novel biomarker for
LUAD and promotes metastasis and EMT via NF-«xB
signaling (66). Using LUAD tissues and clinical samples,
SERPINHI was shown to be a prognostic biomarker for
LUAD (67). LINCO01614 led to the upregulation of the
glutamine transporters SLC38A2 and SLC7AS and
eventually enhanced the glutamine influx of cancer cells in
LUAD (68). FKBP4 integrated FKBP4/Hsp90/IKK with
FKBP4/Hsp70/RelA complex to promote LUAD
progression via IKK/NF-«B signaling (69). DARS2
expression could inhibit the proliferation and migration of
LUAD cells, promote cell apoptosis, and inhibit the
glycolytic activity of tumor cells by inhibiting the expression
of glycolytic-related gene ALDOA (70). FBP1 blockade
upregulated HIF1a, triggered the switch to anaerobic
glycolysis, and enhanced glucose uptake in LUAD (71).
HSPD1 may play a role in the regulation of ribosome
biogenesis and B cell-mediated immunity in LUAD (72).
BTG?2 and SerpinB5 might serve as potential prognostic
biomarkers and novel therapeutic targets for LUAD (73).
Integrated scRNA-seq analysis revealed that KPINA2 was
associated with survival in LUAD (74). SRGN played a
pivotal role in tumor-stromal interaction and
reprogramming into an aggressive and immunosuppressive
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TME in TTF-1-negative LUAD (75). The other genes in
our risk model, such as KRT18, DNA7B4, JPT1, KRTS6,
NUPRI, MT1X, PMAIP1, and PLBDI had no or fewer
studies reported. While we have endeavored to maintain
rigor and comprehensiveness in our research, it was
important to acknowledge certain limitations. Firstly,
despite incorporating several independent multicenter
cohorts, the necessity for further validation in a prospective
study was evident. Secondly, some of the 23 CD8TRPGs
that constitute the riskScore have been frequently featured
in various LUAD prognostic signatures, underscoring their
consistent prognostic value. For instance, LDHA was also
identified as one of the genes within a disulfidoptosis
signature in LUAD (76). KRT18 was also identified as one
of the genes within a programmed cell death signature in
LUAD (77). DDIT4 was also identified as one of the genes
within a TKI resistant-based prognostic immune-related
gene signature in LUAD (13). BTG2 was also identified as
one of the genes within a novel mTOR-associated gene
signature for predicting prognosis and evaluating tumor
immune microenvironment in LUAD (78). The
identification of common genes, such as LDHA, KRT1S,
DDIT4, and BTG2, across multiple prognostic models
highlights their consistent prognostic value in LUAD.
Despite the different methodologies and focus of these
studies, the recurrent inclusion of these genes underscores
their reliability as prognostic markers and supports the
validity of our findings. This also highlighted the potential
complementarity of these prognostic models, suggesting
that integrating our riskScore with other models could
provide a more comprehensive and accurate assessment of
LUAD prognosis. Furthermore, our study extended the
current understanding of the prognostic landscape in
LUAD by introducing a novel CD8 T cell-related gene
signature. While building upon the existing knowledge, our
riskScore offered a new angle by specifically investigating
the impact of the tumor immune microenvironment on
LUAD prognosis. We believe that integrating our findings
with those from other studies would facilitate a more
comprehensive and precise prognostic assessment in
LUAD. However, their specific roles in LUAD were yet to
be fully understood, necessitating additional functional
experimental validation. Despite these limitations, our study
served as a valuable resource and a foundational proof-of-
concept for future research. It paved the way for the
identification of biomarkers and treatment targets,
facilitating personalized therapeutic decisions for LUAD
patients.
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Conclusions

In conclusion, our study, utilizing 23 CD8TRPGs from
the training cohort and three testing cohorts, successfully
constructed and validated a consensus prognostic signature,
which we termed “riskScore”. This signature was developed
through 101 machine-learning algorithm combinations,
proving to be a stable and effective tool for prognostic
assessment. Notably, riskScore held significant clinical
implications for managing and personalizing treatment for
LUAD patients. It was particularly observed that patients
with a lower riskScore demonstrated greater sensitivity
to immunotherapy. Overall, this study presented an
innovative and practical tool for prognostic evaluation, risk
stratification, and tailoring individual treatments for LUAD
patients in clinical settings.
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