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Background: Lung adenocarcinoma (LUAD) stands as the most prevalent histological subtype of 
lung cancer, exhibiting heterogeneity in outcomes and diverse responses to therapy. CD8 T cells are 
consistently present throughout all stages of tumor development and play a pivotal role within the tumor 
microenvironment (TME). Our objective was to investigate the expression profiles of CD8 T cell marker 
genes, establish a prognostic risk model based on these genes in LUAD, and explore its relationship with 
immunotherapy response.
Methods: By leveraging the expression data and clinical records from The Cancer Genome Atlas (TCGA) 
and Gene Expression Omnibus (GEO) cohorts, we identified 23 consensus prognostic genes. Employing ten 
machine-learning algorithms, we generated 101 combinations, ultimately selecting the optimal algorithm to 
construct an artificial intelligence-derived prognostic signature named riskScore. This selection was based on 
the average concordance index (C-index) across three testing cohorts.
Results: RiskScore emerged as an independent risk factor for overall survival (OS), progression-free 
interval (PFI), disease-free interval (DFI), and disease-specific survival (DSS) in LUAD. Notably, riskScore 
exhibited notably superior predictive accuracy compared to traditional clinical variables. Furthermore, we 
observed a positive correlation between the high-risk riskScore group and tumor-promoting biological 
functions, lower tumor mutational burden (TMB), lower neoantigen (NEO) load, and lower microsatellite 
instability (MSI) scores, as well as reduced immune cell infiltration and an increased probability of immune 
evasion within the TME. Of significance, the immunophenoscore (IPS) score displayed significant 
differences among risk subgroups, and riskScore effectively stratified patients in the IMvigor210 and 
GSE135222 immunotherapy cohort based on their survival outcomes. Additionally, we identified potential 
drugs that could target specific risk subgroups.
Conclusions: In summary, riskScore demonstrates its potential as a robust and promising tool for guiding 
clinical management and tailoring individualized treatments for LUAD patients.
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Introduction

Lung cancer continues to pose a significant health 
challenge, with increasing global incidence and mortality 
rates. A defining characteristic of this disease is the 
prevalence of non-small cell lung cancer (NSCLC), with 
lung adenocarcinoma (LUAD) standing out as the most 
common subtype (1,2). Despite significant advances in 
cancer research and the development of various treatments, 
the prognosis for LUAD patients remains compromised 
due to late-stage diagnosis, metastasis, and recurrence. 
Early-stage LUAD is particularly prone to metastasis, 
resulting in a generally unfavorable prognosis, with a less 
than 20% average 5-year survival rate (3,4). In clinical 
practice, decision-making, therapeutic strategies, and 
follow-up procedures still heavily rely on the conventional 
anatomy-based tumor-node-metastasis (TNM) staging 
system for NSCLC. This system serves as both a prognostic 
tool and a guide for treatment decisions. However, the 
current system, primarily based on tumor histology and 
morphology, falls short in comprehensively elucidating the 
complexity of this disease. Notably, tumors with similar 
histological characteristics or pathological stages do not 
consistently exhibit similar clinical behaviors or respond 
equally to identical treatments. In fact, a significant 
proportion, ranging from 30% to 55%, of early-stage 
NSCLC patients experience disease relapse and succumb 
to the illness despite undergoing complete resection with 
clear resection margins (5). The pursuit of novel prognostic 

biomarkers is of paramount importance to improve patient 
stratification and treatment efficacy. One of the most 
prominent features of tumors is the imbalance within the 
tumor microenvironment (TME). Beyond cancer cells and 
T cells, the TME encompasses a multitude of immune and 
non-immune components, including stromal cells, blood 
vessels, neurons, and the extracellular matrix. In the last 
decade, our understanding of CD8 T cell differentiation 
within tumors has become increasingly comprehensive 
and detailed. CD8 T cells serve as the ultimate effectors 
of cancer immunity, and the effectiveness of most cancer 
immunotherapies hinges on the effector functions of CD8 
T cells (6). Traditional bulk RNA-sequencing methods 
involve the analysis of a mixture of all cells, which tends to 
obscure the distinct transcriptomes unique to individual cell 
types. In contrast, single-cell RNA-sequencing (scRNA-
seq) captures and characterizes the gene expression patterns 
of each individual cell, allowing for the deciphering of 
their intercellular signaling networks (7). It is now evident 
that CD8 T cells infiltrating tumor tissue can exhibit a 
range of states, including a naive-like, effector, resident 
memory, or exhausted state (8). In recent years, with the 
advancement of high-throughput sequencing and evidence-
based medicine, studies from The Cancer Genome Atlas 
(TCGA) have provided comprehensive characterizations 
of the major subtypes in the transcriptome and genome of 
LUAD (9,10). Many multigene panels have been developed 
to address the extensive heterogeneity of the disease, showing 
promising performance in specific cohorts. For example, 
Jones introduced a genomic-pathologic annotated risk 
model for predicting recurrence in early-stage LUAD (11).  
Zhang et al. devised a novel basement membrane-related 
gene signature to predict prognosis (12). Shi et al. developed 
a prognostic immune-related gene signature for LUAD 
with resistance to tyrosine kinase inhibitors (TKIs) (13). 
However, there were a handful of known studies with CD8 
T cells-related signatures (14,15). Therefore, it became 
imperative to incorporate CD8 T cell-related genes into 
preclinical models to construct prognostic biomarkers. 
However, the limitations of current modeling methods and 
the lack of rigorous validation in large multicenter cohorts 
have rendered expression-based multigene signatures less 
applicable in clinical settings.

In this study, which aimed to establish an optimal 
biomarker centered on CD8 T cell-related genes, we 
meticulously constructed and subjected the 23 artificial 
intelligence-derived CD8 T prognostic signatures 
(riskScore) to multicenter validation. This validation process 
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encompassed a comprehensive analysis using 101 machine-
learning algorithm combinations, based on data from four 
independent public datasets. The riskScore demonstrated 
remarkable and consistent performance in predicting overall 
survival (OS), progression-free interval (PFI), disease-
free interval (DFI), response to immunotherapy, and drug 
efficacy. The findings of this research hold the potential to 
significantly enhance the precision of treatment strategies 
and subsequently improve the clinical outcomes of patients 
with LUAD. We present this article in accordance with 
the TRIPOD reporting checklist (available at https://tcr.
amegroups.com/article/view/10.21037/tcr-23-2332/rc).

Methods

Data acquisition and preprocessing

We collected the TCGA-LUAD dataset from TCGA 
(http://portal.gdc.cancer.gov/), which comprised RNA 
expression data in transcripts per kilobase million (TPM) 
format along with corresponding clinical features. 
Additionally, we obtained datasets GSE31210 (16), 
GSE3141 (17), GSE135222 (18), and GSE72094 (19) from 
the Gene Expression Omnibus (GEO) (https://www.ncbi.
nlm.nih.gov/geo/), all of which included RNA expression 
data and associated clinical information for LUAD. For 
the IMvigor210 cohort, we retrieved both expression data 
and clinical data from http://research-pub.gene.com/
IMvigor210CoreBiologies/ (20). Comprehensive details 
regarding scRNA-seq data (GSE176021) were sourced from 
the Tumor Immune Single Cell Hub 2 (TISCH2) (21). This 
study was conducted in accordance with the Declaration of 
Helsinki (as revised in 2013).

Signature generated from machine-learning-based 
integrative approaches

To develop a consensus risk model with high accuracy and 
stability, we employed a multistep methodology. First, 
by applying the Wilcoxon rank-sum test to the TCGA-
LUAD dataset, we pinpointed genes that showed significant 
expression differences between tumor and adjacent normal 
tissues. Following this, we identified genes with significant 
prognostic value using univariate Cox regression analysis 
on the same dataset. Additionally, we isolated genes 
associated with CD8 T cells by comparing them against 
other cell types in the TISCH2 database. The intersection 
of these three gene sets yielded a final list genes related to 
CD8 T cell-related prognosis genes (CD8TRPGs). We 

then integrated 10 machine-learning algorithms and 101 
algorithm combinations. These algorithms included random 
survival forest (RSF), elastic network (Enet), least absolute 
shrinkage and selection operator (Lasso), ridge regression 
(Ridge), stepwise Cox (StepCox), CoxBoost, partial least 
squares regression for Cox (plsRcox), supervised principal 
components (SuperPC), generalized boosted regression 
modeling (GBM), and survival support vector machine 
(survivalSVM). Among them, RSF, Lasso, CoxBoost, and 
stepwise Cox possessed dimensionality reduction and 
variable screening capabilities, and we combined them with 
other algorithms to create 101 machine-learning algorithm 
combinations. The detailed process of signature generation 
unfolded as follows:

(I)	 Initially, we conducted differential expression 
analysis between tumor and normal samples in 
the TCGA-LUAD dataset using the Wilcoxon 
rank-sum test. Genes were selected based on the 
following criteria: P<0.05 and |log2fold change 
(FC)| >1. Additionally, in the TCGA-LUAD 
cohort, we carried out univariate Cox regression 
analysis and selected genes using the following 
criterion: P<0.05, and TISCH2 served as a valuable 
resource for scRNA-seq data from both human 
and mouse tumors, enabling a comprehensive 
characterization of gene expression within the 
TME. In this study, we retrieved CD8 T-related 
genes from TISCH2 using specific criteria: log2FC 
> log2(1.5) and adjusted P<0.05. Subsequently, an 
intersection of these three gene sets was performed, 
yielding a consolidated list of 33 CD8TRPGs.

(II)	 Following this, the 101 combinations of algorithms 
were utilized to independently construct prognostic 
signatures based on the expression profiles of the 
33 CD8TRPGs within the TCGA-LUAD training 
cohort.

(III)	 Based on the above results, we selected the 
combination of RSF and StepCox[forward], which 
achieved the highest average C-index (0.707). 
This combination identified a final model named 
riskScore consisting of 23 CD8TRPGs.

(IV)	 We calculated a riskScore for each patient using 
the expression of 23 CD8TRPGs weighted by their 
regression coefficients in a Cox model. RiskScores 
were computed for each validation dataset, namely 
GSE31210, GSE3141, and GSE72094, were 
calculated using the signature derived from the 
training cohort.

https://tcr.amegroups.com/article/view/10.21037/tcr-23-2332/rc
https://tcr.amegroups.com/article/view/10.21037/tcr-23-2332/rc
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
http://research-pub.gene.com/IMvigor210CoreBiologies/
http://research-pub.gene.com/IMvigor210CoreBiologies/
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(V)	 Harrell’s concordance index (C-index) was then 
computed for each model across all validation 
datasets, and the model with the highest average 
C-index was selected as the optimal one.

Comprehensive analysis of single-cell datasets and cell 
cluster annotation

We conducted an extensive analysis of single-cell datasets 
and performed cell cluster annotation. The analysis of the 
scRNA-seq dataset was carried out using the R package 
Seurat (v4.1.1) (22). Uniform Manifold Approximation 
and Projection (UMAP) analysis was performed using 
Seurat’s built-in function RunUMAP and the umap-
learn algorithm, in addition to the Leiden algorithm. To 
visualize the results, we utilized dimplot, featureplot, violin, 
and dotplot. To further characterize different clusters of 
cell subtypes, we calculated metabolic scores using the R 
package scMetabolism with the AUCell method within the 
reactome pathway (23). The outcomes of the scMetabolism 
calculations were integrated and visualized using dotplot 
pheatmap, allowing us to display the metabolism of various 
cell subtype clusters.

Validating the prognostic value of risk model

To validate the prognostic value of the risk model, patients 
in the training cohort, three testing cohorts, and the meta-
cohort were stratified into high and low-risk score groups 
based on the optimal cutpoint value. The prognostic 
significance of the riskScore was assessed using Kaplan-
Meier curves and multivariate Cox regression analysis. 
Additionally, calibration curves and receiver operating 
characteristic (ROC) curves were generated to evaluate the 
predictive accuracy of the risk model.

Nomogram and calibration

Multivariate Cox regression analysis incorporating clinical 
features (age, stage, gender) and the riskScore was conducted 
to construct the nomogram using the R package “regplot”. 
Subsequently, calibration curves at 1, 3, and 5 years were 
generated to validate the accuracy of the nomogram.

Genomic alteration landscape

To explore the genomic alteration landscape in the high- 
and low-risk subgroups, we conducted a comparative analysis 

of tumor mutational burden (TMB), neoantigen (NEO), and 
microsatellite instability (MSI) score between the high- and 
low-risk subgroups within the TCGA-LUAD dataset.

Cells infiltration estimation

Single-sample gene set enrichment analysis (ssGSEA) was 
employed using the R package gene set variation analysis 
(GSVA) to quantify the relative infiltration of immune cells 
and immune cell functions within the TCGA-LUAD cohort. 
To validate the stability and robustness of the ssGSEA results, 
we utilized seven other algorithms, including TIMER (24), 
CIBERSORT (25), CIBERSORT_ABS, QUANTISEQ (26),  
MCPCOUNTER (27 ) ,  XCELL (28 ) ,  and  EPIC  
algorithms (29). Additionally, the R package “estimate” 
was utilized to determine immune and estimate scores. 
Information regarding immune subtypes, derived from a 
previous study, was compared between the high-risk and 
low-risk subgroups. To predict the response to checkpoint 
blockade, the immunophenoscore (IPS) obtained from The 
Cancer Immunome Atlas (TCIA; https://tcia.at/home) was 
employed (30,31).

Gene set enrichment analysis (GSEA)

GSEA was utilized to identify specific functional pathways 
from Gene Ontology (GO), Kyoto Encyclopedia of Genes 
and Genomes (KEGG), and Hallmark collections in both 
the high-risk and low-risk subgroups. GSEA v4.3.2 from 
the MSigDB database (http://software.broadinstitute.org/
gsea/msigdb/) was employed for this analysis. The criteria 
for selection were set at false discovery rate (FDR) <0.25 and 
nominal P<0.05 to determine significant pathways (32,33).

Prediction of drug sensitivity

The original data regarding chemotherapy response were 
sourced from the Genomics of Drug Sensitivity in Cancer 
(GDSC version 2) (https://www.cancerrxgene.org/) (34-36).  
Curated data were downloaded from https://osf.io/temyk for 
further analysis. To predict the difference in chemotherapy 
response between the high-risk and low-risk subgroups, we 
utilized the R package oncoPredict (37).

Consensus clustering

To discover clusters within the TCGA-LUAD cohort 
based on the expression of risk model genes, we employed 

http://software.broadinstitute.org/gsea/msigdb/
http://software.broadinstitute.org/gsea/msigdb/
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a  resampl ing-based method known as  consensus 
clustering. This procedure was executed using the 
ConsensusClusterPlus package (38). Following cluster 
generation, the consensus score matrix was utilized to 
identify the optimal number of clusters.

Cancer Cell Line Encyclopedia (CCLE) gene expression

We obtained RNA-seq data for all LUAD cell lines from 
the CCLE (39), which provides gene expression profiles in 
cancer cells. Subsequently, we generated plots depicting the 
expression of the risk model genes.

Statistical analysis

All statistical analyses were conducted in R (v4.2.2, https://
www.r-project.org/). Comparison between the two groups 
was conducted utilizing the Wilcoxon rank-sum test, and 
the Kruskal-Wallis test was carried out for normal multiple 
groups. The level of statistical significance used in this 
research was determined to be P<0.05.

Results

Workflow

Our study’s workflow, outlining the sequential steps utilized 
in our research, is illustrated in Figure 1.

Analysis of LUAD single-cell sequencing data

Using the TISCH2 database, we obtained the scRNA-seq 
dataset GSE176021. As demonstrated in Figure 2A,2B, we 
observed that CD8 T cells had the highest proportion in 
the dataset. Additionally, GSEA analysis of KEGG pathways 
revealed that CD8 T cells were significantly enriched in 
pathways related to antigen processing and presentation, 
MAPK signaling pathway, oxidative phosphorylation, 
natural killer (NK) cell-mediated cytotoxicity, Regulation 
of actin cytoskeleton, T cell receptor signaling pathway  
(Figure 2C,2D). These findings indicat that CD8 T cells 
played a crucial role in LUAD immunity-related pathways 
and were worthy of further investigation.

Construction of a prognosis signature based on integrative 
machine-learning

Our approach involved multiple steps in constructing a 
prognosis signature. We initially identified significantly 

differentially expressed genes between tumor and normal 
samples in the TCGA-LUAD dataset using the Wilcoxon 
rank-sum test. Next, we determined significant prognosis-
related genes through univariate Cox regression analysis 
within the TCGA-LUAD dataset. We further obtained 
CD8 T-related genes by comparing CD8 T cells with 
other cells. These three sets of genes were then intersected, 
resulting in 33 CD8TRPGs (Figure 3A). In the TCGA-
LUAD training cohort, we employed 101 algorithm 
combinations through ten-fold cross-validation to construct 
prediction models. We calculated the average C-index for 
each algorithm across the remaining three testing cohorts. 
Based on the results, we selected the combination of RSF 
and StepCox[forward], which achieved the highest average 
C-index (0.707). This combination identified a final model 
named riskScore consisting of 23 CD8TRPGs (Figure 3B). 
Subsequently, we calculated a riskScore for each patient 
using the expression of 23 CD8TRPGs weighted by their 
regression coefficients in a Cox model. Patients were 
divided into high-risk and low-risk subgroups based on the 
optimal cut-off value determined by the survminer package. 
As illustrated in Figure 3C-3F, high-risk group patients 
exhibited significantly poorer OS, DFI, disease-specific 
survival (DSS), PFI relative to the low-risk group in the 
TCGA-LUAD training dataset. Different gene expression 
clusters often exhibit varying immune microenvironments, 
which could result in diverse immunotherapeutic strategies 
and responses. To investigate this phenomenon, we 
conducted consensus clustering based on the expression of 
23 CD8TRPGs which formed the riskScore. Two distinct 
clusters were displayed, and survival analysis displayed a 
significant difference between the two clusters (Figure 3G). 
Similarly, OS was significantly better in the low-risk group 
than in the high-risk group in three validation datasets  
(Figure 4A-4C). The GEO meta cohort combining three 
GEO validation cohorts (GSE31210, GSE3141, GSE72094) 
and TCGA-GEO meta cohort (TCGA-LUAD, GSE31210, 
GSE3141, GSE72094) also exhibited the same trend  
(Figure 4D,4E). To measure the discrimination of the 
riskScore, we plotted ROC curves. The area under the 
ROC curve (AUC) of 1-, 3-, and 5-year OS were 0.866, 
0.732, 0.757 in the dataset GSE31210; 0.800, 0.799, 0.700 
in the dataset GSE3141; 0.687, 0.620, 0.613 in the dataset 
GSE72094; 0.712, 0.654, 0.661 in the GEO meta cohort; 
0.723, 0.687, 0.668 in the dataset TCGA-LUAD; 0.715, 
0.671, 0.660 in the TCGA-GEO meta cohort (Figure 4F-4K). 
These results confirmed the good predictive performance of 
riskScore.

https://www.r-project.org/
https://www.r-project.org/
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Step 1

Single-cell data (GSE176021)
log2FC > log2(1.5), P adjust <0.05 

(FindAllMarkers) 

TCGA-LUAD
|log2FC| >1, P<0.05 (Wilcoxon)

TCGA-LUAD
P<0.05 (univariant cox)

33 CD8 T cells-related prognosis genes 
(CD8TRPGs)

TCGA-LUAD, GSE31210, GSE3141, GSE72094
10 survival related machine learning methods (Lasso, StepCox, survivalSVM, CoxBoost, Ridge, SuperPC, Enet, plsRcox, RSF, GBM)

101 combinations of machine learnig algorithms

Step 2

Best C-index

RSF + StepCox[forward]

Development a 23 CD8TRPGs risk model

Downstream analysis

Potential drug agents

Immunotherapy

Mutation analysis

Tumor microenvironment

CCLE gene expression

Pathway analysis

Single-cell gene expression

Step 3

Figure 1 Diagrammatic representation of the research workflow. FC, fold change; TCGA, The Cancer Genome Atlas; LUAD, lung 
adenocarcinoma; CD8TRPGs, CD8 T cell-related prognosis genes; Lasso, least absolute shrinkage and selection operator; StepCox, 
stepwise Cox; survivalSVM, survival support vector machine; Ridge, ridge regression; SuperPC, supervised principal components; Enet, 
elastic network; plsRcox, partial least squares regression for Cox; RSF, random survival forest; GBM, generalized boosted regression 
modeling; C-index, concordance index; CCLE, Cancer Cell Line Encyclopedia.

Establishment and validation of a nomogram combined 
with clinical characteristics

To evaluate the independent prognostic significance of 
the riskScore in LUAD, we conducted univariate and 
multivariate Cox regression analyses on OS, DSS, and 
PFI in the TCGA-LUAD dataset. Our findings showed 
that riskScore was a significant risk factor for OS, DSS, 
and PFI in the univariate analysis [hazard ratio (HR) >1; 
P<0.001]. Importantly, in the multivariate analysis, the 
riskScore remained an independent prognostic factor for 
OS [HR =1.800; 95% confidence interval (CI): 1.377–
2.354; P<0.001], DSS (HR =2.052; 95% CI: 1.472–2.860; 

P<0.001), and PFI (HR =1.519; 95% CI: 1.204–1.918; 
P<0.001), indicating its robust prognostic ability in LUAD 
patients (Figure 5A). Further reinforcing our findings, 
we performed univariate and multivariate Cox regression 
analyses on OS in the validation datasets. The results 
consistently affirmed the riskScore was an independent 
prognostic factor for LUAD patients (HR =1.612; CI: 
1.239–2.097; P<0.001) in the GSE72094 dataset (Figure 5B)  
and (HR =1.949; CI: 1.299–2.923; P=0.001) in the 
GSE31210 dataset (Figure 5C). These results underscored 
the reliability and consistency of our findings across 
diverse datasets. To enhance the clinical applicability of the 
riskScore, we constructed a nomogram that incorporated 
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Figure 2 Analysis of single-cell LUAD data utilizing the GSE176021 dataset. (A) UMAP plots displaying cells colored according to cell type 
were presented. (B) The pie plot illustrated the distribution of cell numbers across each cell type. (C) The heatmap depicted functionally 
enriched, up-regulated KEGG pathways, identified through differential genes in each cell type within the GSE176021 dataset. (D) The 
heatmap depicted functionally enriched, down-regulated KEGG pathways, identified through differential genes in each cell type within the 
GSE176021 dataset. NSCLC, non-small cell lung cancer; CD4Tconv, conventional CD4+ T cells; CD8T, CD8+ T cell; CD8Tex, exhausted 
CD8+ T cell; DC, dendritic cell; NK, natural killer; Tprolif, proliferating T cell; Treg, regulatory T cell; KEGG, Kyoto Encyclopedia of 
Genes and Genomes; FDR, false discovery rate; LUAD, lung adenocarcinoma; UMAP, Uniform Manifold Approximation and Projection.
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Figure 3 A consensus riskScore was developed and validated via the machine learning-based integrative procedure. (A) Venn plot showed 
the intersection of genes from differential and prognosis analysis. (B) A total of 101 predictive models were developed using the LOOCV 
framework, with the C-index of each model calculated across all validation datasets. (C) Kaplan-Meier curves of OS according to the 
riskScore in TCGA-LUAD. (D) Kaplan-Meier curves of DFI according to the riskScore in TCGA-LUAD. (E) Kaplan-Meier curves 
of DSS according to the riskScore in TCGA-LUAD. (F) Kaplan-Meier curves of PFI according to the riskScore in TCGA-LUAD. (G) 

GSE176021_CD8T_diffTCGA_LUAD_diff

TCGA_LUAD_unicox

7,977
160

1,248

592

33
0

0

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0            2000          4000         6000
Time, days

Log-rank
P<0.001

TCGA-LUAD
High-risk
Low-risk

1.00

0.75

0.50

0.25

0.00

D
is

ea
se

-f
re

e 
in

te
rv

al

0        2000     4000     6000     8000
Time, days

Log-rank
P<0.001

TCGA-LUAD
High-risk
Low-risk

1.00

0.75

0.50

0.25

0.00

D
is

ea
se

-s
pe

ci
fic

 s
ur

vi
va

l

0        2000     4000     6000     8000
Time, days

Log-rank
P<0.001

TCGA-LUAD
High-risk
Low-risk

1.00

0.75

0.50

0.25

0.00

P
ro

gr
es

si
on

-f
re

e 
in

te
rv

al

0        2000     4000     6000     8000
Time, days

Log-rank
P<0.001

TCGA-LUAD
High-risk
Low-risk

1.00

0.75

0.50

0.25

0.00

S
ur

vi
va

l p
ro

ba
bi

lit
y

0           2000        4000        6000
Time, days

Log-rank
P<0.001

Cluster
C1
C2

RSF + StepCox [forward] 
RSF + Enet [alpha =0.5] 

RSF + Ridge 
RSF + Enet [alpha =0.1] 

RSF + Lasso 
RSF + Enet [alpha=0.8] 
RSF + StepCox [both] 

RSF + StepCox [backward] 
RSF + Enet [alpha =0.3] 
RSF + Enet [alpha =0.2] 
RSF + Enet [alpha =0.9] 

RSF + CoxBoost 
Enet [alpha =0.8] 

RSF + Enet [alpha =0.4] 
RSF + Enet [alpha =0.7] 
RSF + Enet [alpha =0.6] 

StepCox[both] + survivalSVM 
StepCox[backward] + survivalSVM 

RSF + survivalSVM 
RSF + plsRcox 

RSF + SuperPC
SurvivalSVM 

CoxBoost + survivalSVM 
CoxBoost + plsRcox 

CoxBoost + Ridge 
StepCox [both] + SuperPC 

StepCox [backward] + SuperPC 
Enet [alpha =0.6] 

CoxBoost + Enet [alpha =0.4] 
CoxBoost + SuperPC 

CoxBoost + Enet [alpha =0.1] 
CoxBoost + Enet [alpha =0.3] 
CoxBoost + Enet [alpha =0.8] 
CoxBoost + Enet [alpha =0.2] 
CoxBoost + Enet [alpha =0.5] 
CoxBoost + Enet [alpha =0.7] 

CoxBoost + Lasso 
CoxBoost + Enet [alpha =0.6] 

Enet [alpha =0.7] 
CoxBoost + Enet [alpha =0.9] 

CoxBoost + StepCox [forward] 
Lasso + plsRcox 

Lasso + CoxBoost 
CoxBoost + StepCox [both]

CoxBoost + StepCox [backward] 
Enet [alpha =0.5] 

superPC 
Enet [alpha =0.4] 

Lasso 
Lasso + StepCox [both] 

Lasso + StepCox [forward] 
Lasso + StepCox [backward] 

Lasso + SuperPC 
Ridge 

plsRcox 
Enet [alpha =0.3] 
Enet [alpha =0.2] 

CoxBoost 
Enet [alpha =0.1] 
Enet [alpha =0.9] 

StepCox [both] + plsRcox 
StepCox [backward] + plsRcox 

StepCox [backward] + Enet [alpha =0.2] 
StepCox [backward] + Enet [alpha =0.7] 

StepCox [both] + Enet [alpha =0.3] 
StepCox [backward] + Enet [alpha =0.1] 
StepCox [backward] + Enet [alpha =0.8]

StepCox [both] + Ridge 
StepCox [backward] + Enet [alpha =0.4] 

StepCox [both] + Enet [alpha =0.1] 
StepCox [both] + Enet [alpha =0.5] 

StepCox [backward] + Ridge 
StepCox [both] + Enet [alpha =0.2] 

StepCox [backward] + Enet [alpha =0.5] 
StepCox [both] + Enet [alpha =0.4] 

StepCox [both] + CoxBoost 
StepCox [backward] + CoxBoost 

StepCox [backward] + Enet [alpha =0.3] 
StepCox [backward] + Enet [alpha =0.9] 

StepCox [both] + Enet [alpha =0.8]
StepCox [both] + Enet [alpha =0.9] 

StepCox [both] + Lasso 
StepCox [backward] + Lasso 

StepCox [backward] + Enet [alpha=0.6] 
StepCox [both] + Enet [alpha=0.7] 
StepCox [both] + Enet [alpha=0.6] 

StepCox [both] 
StepCox [backward] 

StepCox [forward] 
Lasso + survivalSVM

Lasso + GBM 
CoxBoost + GBM 
CoxBoost + RSF 

RSF + GBM 
StepCox [both] + GBM 

Lasso + RSF 
StepCox [both] + RSF 

GBM 
StepCox [backward] + RSF 

StepCox [backward] + GBM 
RSF

0   0.2 0.4 0.6
Mean C-index

Consensus matrix k=2
1
2

Cohort
GSE31210 
GSE3141 
GSE72094

C-index
0.8
0.7
0.6
0.5
0.4

A

B

C

D

E

F

G



Translational Cancer Research, Vol 13, No 7 July 2024 3225

© Translational Cancer Research. All rights reserved.   Transl Cancer Res 2024;13(7):3217-3241 | https://dx.doi.org/10.21037/tcr-23-2332

Patients are divided into two clusters by ConsensusClusterPlus and Kaplan-Meier survival curves of OS in two clusters. TCGA, The 
Cancer Genome Atlas; LUAD, lung adenocarcinoma; RSF, random survival forest; StepCox, stepwise Cox; Enet, elastic network; Ridge, 
ridge regression; Lasso, least absolute shrinkage and selection operator; survivalSVM, survival support vector machine; plsRcox, partial 
least squares regression for Cox; SuperPC, supervised principal components; GBM, generalized boosted regression modeling; C-index, 
concordance index; LOOCV, leave-one-out cross-validation; OS, overall survival; DFI, disease-free interval; DSS, disease-specific survival; 
PFI, progression-free interval.

Figure 4 Validation and evaluation of the riskScore model. (A) Kaplan-Meier curves of OS according to the riskScore in GSE31210. 
(B) Kaplan-Meier curves of OS according to the riskScore in GSE3141. (C) Kaplan-Meier curves of OS according to the riskScore in 
GSE72094. (D) Kaplan-Meier curves of OS according to the riskScore in GEO meta cohort. (E) Kaplan-Meier curves of OS according 
to the riskScore in TCGA-GEO meta cohort. (F) Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years in GSE31210. (G) 
Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years in GSE3141. (H) Time-dependent ROC analysis for predicting OS 
at 1, 3, and 5 years in GSE72094. (I) Time-dependent ROC analysis for predicting OS at 1, 3, and 5 years in GEO meta cohort. (J) Time-
dependent ROC analysis for predicting OS at 1, 3, and 5 years in TCGA-LUAD. (K) Time-dependent ROC analysis for predicting OS at 
1, 3, and 5 years in TCGA-GEO meta cohort. GEO, Gene Expression Omnibus; TCGA, The Cancer Genome Atlas; AUC, area under the 
ROC curve; ROC, receiver operating characteristic; LUAD, lung adenocarcinoma; OS, overall survival.
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Figure 5 Establishment and verification of the nomogram. (A) Univariate and multivariate analyses of the clinical characteristics and 
riskScore for the OS, DSS, PFI in TCGA-LUAD. (B) Univariate and multivariate analyses of the clinical characteristics and riskScore for 
the OS in GSE72094. (C) Univariate and multivariate analyses of the clinical characteristics and riskScore for the OS in GSE31210. (D) 
Construction of the nomogram based on the riskScore and clinical characteristics, including age, gender, stage. (E) Calibration curve of the 
nomogram for 1-, 3-, and 5-year OS. (F) ROC curves of the riskScore and clinical characteristics in TCGA-LUAD (left) and GSE72094 (right). 
(G) Kaplan-Meier survival curves of the OS prognostic value stratified by the age, M, stage, and T between high- and low-risk subgroups in 
TCGA-LUAD. ***, P≤0.001. CI, confidence interval; TCGA, The Cancer Genome Atlas; LUAD, lung adenocarcinoma; OS, overall survival; 
DSS, disease-specific survival; PFI, progression-free interval; AUC, area under the ROC curve; ROC, receiver operating characteristic.
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both the riskScore and clinical characteristics (Figure 5D). 
The calibration curves demonstrated excellent agreement 
between the predictions of the nomogram and actual 
observations (Figure 5E). Moreover, when comparing the 
AUC values for different clinical characteristics, including 
age (AUC =0.497), gender (AUC =0.561), stage (AUC 
=0.711), T (AUC =0.645), M (AUC =0.500), and N (AUC 
=0.670), there was a higher AUC value 0.713 at a 1-year OS 
time for the riskScore. In the dataset GSE72094, compared 
with other clinical characteristics including age (AUC 
=0.539), gender (AUC =0.561), and stage (AUC =0.638), 
there was a higher AUC value of 0.683 at a 1-year OS time 
for the riskScore (Figure 5F). These data suggested that the 
riskScore might possess higher sensitivity and accuracy in 
predicting the prognosis of patients with LUAD. Kaplan-
Meier analysis was performed after riskScore stratification 
using age, M, stage, and T. Patients in the low-risk group 
showed improved OS compared with patients with high-
risk for age >65 years (P<0.001), M0 (P<0.001), stage II–III–
IV (P=0.02), T2 (P=0.004), and T3 (P=0.02) (Figure 5G).

Analysis of LUAD single-cell sequencing data

Based on the TISCH2 database,  we obtained the 
GSE176021 scRNA-seq dataset (10× genomics) and re-
analyzed using R package Seurat. It was easy to find the 
classical marker, CD8A, CD8B, GZMK mainly expressed 
on the CD8 T subset (Figure 6A). Figure 6B illustrates the 
presentation of classical markers associated with various cell 
subset. In addition, we delved into the metabolic profiles 
of distinct cell types. Our findings revealed an enrichment 
of CD8TRPGs in chondroitin sulfate dermatan sulfate 
metabolism, glycosaminoglycan metabolism (Figure 6C). To 
provide further insights, we visualized the expression of 23 
CD8TRPGs in different cell subsets by dotplot and violin 
plot (Figure 6D,6E).

The relationship between riskScore and TME

To gain insights into the role of the TME in the progression 
and metastasis of LUAD, which is crucial for developing 
novel therapeutics, we explored the distribution of immune 
cell infiltration and the enrichment of immune-related 
functional pathways in the high- and low-risk subgroups. 
Notably, we observed that immune cell infiltration levels 
were significantly higher in the low-risk group, and immune-

related functional pathways were notably enriched in this 
group (Figure 7A). We also evaluated estimate scores and 
immune scores in LUAD using the estimate algorithm, 
revealing a tendency for higher scores in the low-risk groups 
(Figure 7B). In Figure 7C, we presented the correlation 
between immune infiltration levels and riskScore, as 
determined by various algorithms, including TIMER, 
CIBERSORT, CIBERSORT_ABS, QUANTISEQ, 
MCPCOUNTER, XCELL, and EPIC. These analyses 
consistently showed that most immune cell infiltration 
levels were negatively correlated with riskScore, such as 
T cell CD4+ and B cell as determined by the TIMER 
algorithm, and T cell CD8+ and T cell NK as determined 
by the XCELL algorithm (Figure 7D). Furthermore, 
riskScore demonstrated a significant association with 
genomic instability, TMB, NEO load, and MSI score, with 
marked differences observed between the high-risk and 
low-risk subgroups (Figure 7E). Using the Tumor Immune 
Dysfunction and Exclusion (TIDE) web tool, we found that 
the low-risk group had significantly lower TIDE scores 
and Exclusion scores (Figure 7F). We also investigated the 
expression of immune checkpoint genes. The differential 
expression of immune checkpoint genes, such as CD274 (PD-
L1) and PDCD1LG2 (PD-L2), indicated that the high-risk 
group was more susceptible to immune invasion (Figure 7G).  
To validate the predictive ability of riskScore regarding 
patients’ response to immunotherapy, we incorporated the 
IMvigor210 cohort, which received atezolizumab treatment. 
Using the risk model, we calculated the cohor’s riskScore 
and divided patients into high- and low-risk subgroups. 
Strikingly, the high-risk group exhibited significantly lower 
OS (Figure 7H). We also incorporated the GSE135222 
cohort, a cohort of advanced NSCLC who were treated 
with anti-PD-1/PD-L1, the high-risk group exhibited 
significantly lower OS (Figure 7I). We further explored 
the role of riskScore in immunotherapy using the TCIA 
database, revealing that patients in the low-risk group were 
more likely to benefit from immunotherapy (Figure 7J). 
Thorsson et al. identified six immune subtypes across 33 
diverse cancer types, providing a resource for exploring 
immunogenicity in cancer (40). Importantly, we observed 
a significant difference in immune subtype composition 
between the high- and low-risk subgroups (Figure 7K). 
In summary, these results strongly supported the notion 
that the low-risk group is more likely to derive substantial 
benefits from immunotherapy.
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Figure 6 The expression of classical markers and risk model genes across different subsets in scRNA-seq GSE176021 dataset. (A) The 
expression of some classical markers on dotplot across different cell subsets. (B) The expression of some classical markers on violin plots 
across different cell subsets. (C) The metabolic status of different clusters of cell types. (D) The expression levels of the genes selected for 
risk model on dotplot. (E) The expression levels of the genes selected for risk model on violin plot. DC, dendritic cell; Tprolif, proliferating 
T cell; NK, natural killer; CD8Tex, exhausted CD8+ T cell; CD8T, CD8+ T cell; Treg, regulatory T cell; CD4Tconv, conventional CD4+ T 
cells; scRNA-seq, single-cell RNA-sequencing.
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Figure 7 Immune response, and immunotherapy analysis of high- and low-risk subgroups. (A) Enrichment analysis of immune cell 
infiltration and immune-related pathways. (B) Comparison of immune and estimate scores between the low- and high-risk subgroups. (C) 
Immune cell bubble of the low- and high-risk subgroups by different algorithms. (D) Association between immune infiltration and riskScore. 
(E) TMB, NEO, MSI score differed between high- and low-risk subgroups. (F) TIDE and Exclusion scores differed between high- and 
low-risk subgroups. (G) Checkpoint genes PD-L1 and PD-L2 differed between high- and low-risk subgroups. (H) OS differed between 
high- and low-risk subgroups in IMvigor210 cohort. (I) OS differed between high- and low-risk subgroups in GSE135222 cohort. (J) IPS 
differed between high- and low-risk subgroups. (K) Immune subtype differed between high- and low-risk subgroups. *, P≤0.05; **, P≤0.01; 
***, P≤0.001. aDCs, activated dendritic cells; DCs, dendritic cells; iDCs, immature dendritic cells; NK, natural killer; pDCs, plasmacytoid 
dendritic cells; Tfh, T follicular helper; Th, T helper; TIL, tumor-infiltrating lymphocyte; Treg, regulatory T cell; TCGA, The Cancer 
Genome Atlas; LUAD, lung adenocarcinoma; TMB, tumor mutational burden; NEO, neoantigen; MSI, microsatellite instability; TIDE, 
Tumor Immune Dysfunction and Exclusion; OS, overall survival; IPS, immunophenoscore.
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Analysis of drug sensitivity potential in high- and low-risk 
group

Chemotherapy and targeted therapies were prevalent in 
treating LUAD. It was crucial to understand how patient 

subgroups respond to these drugs. To this end, we assessed 

the response of high- and low-risk subgroups to commonly 

used agents in LUAD treatment. Figure 8A shows that the 

group with low-risk scores was more sensitive to afuresertib, 
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and axitinib, whereas that with high-risk scores was more 
sensitive to BI-2536, and 5-fluorouracil (Figure 8B).

The underlying biological mechanisms of risk model

GSEA was employed to clarify the potential functional 
pa thways  under ly ing  the  s ign i f i cant  prognos t i c 
differences observed between risk subgroups in the 
TCGA-LUAD dataset. Figure 9A demonstrates that 
the high-risk group exhibited significant enrichment in 
GOBP CELL CYCLE G2 M PHASE TRANSITION, 
GOBP CELLULAR RESPONSE TO OXIDATIVE 
STRESS, GOBP DNA BIOSYNTHETIC PROCESS, 

GOBP MITOTIC SPINDLE ASSEMBLY, GOBP 
POSITIVE REGULATION OF CELL CYCLE PHASE 
TRANSITION, GOBP POSITIVE REGULATION 
OF MITOTIC CELL CYCLE in the GO genesets. 
As illustrated in Figure 9B, the high-risk group was 
remarkably enriched for KEGG AMINO SUGAR AND 
NUCLEOTIDE SUGAR METABOLISM, KEGG CELL 
CYCLE, KEGG ERBB SIGNALING PATHWAY, KEGG 
PATHWAYS IN CANCER, KEGG PYRIMIDINE 
METABOLISM, KEGG WNT SIGNALING PATHWAY 
in the KEGG genesets. As illustrated in Figure 9C, the 
high-risk group was remarkably enriched for HALLMARK 
EPITHELIAL MESENCHYMAL TRANSITION, 
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HALLMARK GLYCOLYSIS, HALLMARK HYPOXIA, 
HALLMARK KRAS SIGNALING UP, HALLMARK 
NOTCH SIGNALING, HALLMARK PI3K AKT MTOR 
SIGNALING, HALLMARK WNT BETA CATENIN 
SIGNALING in the hallmark genesets. The high-risk 
group showed a positive correlation with tumor-promoting 
pathways, partially explaining its association with poorer 
prognosis.

Risk gene expression in CCLE

To assess the RNA expression levels of genes in our risk 

model, we analyzed gene data from all LUAD cell lines in 
the CCLE database. Figure 10 reveals that none of these 
genes exhibited very low expression, which potentially 
enhanced the accuracy and operability of the risk model 
detection.

Analysis of mutations in high- and low-risk group

Genetic variations have been reported to affect the immune 
microenvironment. To address this point, we have carefully 
analyzed the TCGA-LUAD mutations and find that mutations 
in TP53, PTEN, and SMARCA4 are indeed associated with 
significantly higher riskScores (Figure S1A-S1C), which is 
consistent with our earlier conclusion that higher riskScores 
indicate poorer prognosis. However, In our study, the 
results show no statistically significant difference between 
the two groups (Figure S1D). This finding suggests that 
although EGFR mutations are of great clinical and basic 
research significance in the occurrence, progression, and 
treatment of LUAD, the EGFR mutation status may not 
be the main factor causing prognostic differences in our 
riskScore model.

Discussion

Lung cancer, one of the most common and severe 
cancers, is the leading cause of cancer-related incidence 
and mortality globally in both genders (41). Despite its 
prevalence, the survival rate for lung cancer has not seen 
significant improvement. This high mortality rate poses a 
major challenge in developing individualized treatments and 
predicting outcomes for LUAD patients (42). Ghiringhelli 
et al. highlighted the significance of a spatial quantitative 
analysis of CD8 and PD-L1 markers, which is predictive 
of the efficacy of anti-PD1/PD-L1 immunotherapy in 
NSCLC (43). Tostes et al. reviewed biomarkers for immune 
checkpoint inhibitor response, emphasizing the need for 
efficient tools in clinical decision-making (44). Rizvi et al. 
found that higher TMB was associated with improved 
survival in LUAD patients treated with immune checkpoint 
inhibitors (45). Wang et al. found that predictive power of 
TMB in lung cancer immunotherapy response is influenced 
by patients’ sex (46). Given LUAD’s heterogeneous 
outcomes and varied therapeutic responses, identifying 
robust markers for guiding clinical treatment is crucial. 
The absence of effective biomarkers for screening, stratified 
management, and prognostic follow-up remains a pressing 
issue for clinicians and researchers, potentially leading to 
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Figure 9 GSEA analysis of the risk model. (A) Highly related 
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Figure 10 Risk model genes expression in CCLE database. RNA expression of 23 genes from risk model in CCLE database. NSCLC, non-
small cell lung cancer; CCLE, Cancer Cell Line Encyclopedia.
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over- or undertreatment. Notably, CD8 T cells infiltrating 
the infiltrating the TME of LUAD play a pivotal role in 
antitumor immunity (42,47). To address these challenges, 
our research focused on exploring the relationship between 
CD8 T-related gene profiles, prognosis, TME, and drug 
benefits.

In this study, we initially analyzed the differentially 
expressed genes between tumor and normal samples in the 
TCGA-LUAD dataset. Subsequently, univariate Cox 
analysis helped identify prognostic genes within this dataset. 
We further isolated CD8 T-related genes by comparing 
expression levels between the CD8 T subset and other 
subsets. By intersecting these three gene sets, we identified 
33 CD8TRPGs. Addressing the challenge of overfitting, 
common in artificial intelligence and machine-learning for 
biomedical models, we noted that many models fit well in 
training cohorts but underperform in external validation 
(48,49). Leveraging the expression profiles of CD8TRPGs, 
we devised a novel computational framework. This 
framework integrates 10 machine-learning algorithms, along 
with their 101 combinations, to develop a unified riskScore. 
A total of 101 model variants were evaluated on the TCGA-
LUAD training dataset using the LOOCV framework. 
Subsequent validations on three independent datasets 
pinpointed the RSF + StepCox[forward] combination as the 
most effective model. The primary advantage of this 
integrative approach was its capacity to establish a model 
with consistent performance in LUAD prognosis. By 
employing a diverse range of algorithmic combinations, it 
effectively reduced variable dimensionality, thereby 
s impli fying the model  for  pract ical  translat ional 
applications. We demonstrated that riskScore served as an 
independent risk factor for OS, PFI, and DSS of LUAD in 
the training TCGA-LUAD dataset. It also independently 
predicts OS in two validation datasets, with the third dataset 
lacking additional clinical features. Further, riskScore 
effectively stratified both the GEO meta dataset and the 
TCGA-GEO meta dataset into distinct OS subgroups. 
Notably, it showed impressive ROC performance across the 
training, validation, and meta datasets. Compared to 
traditional clinical variables like cancer stage, riskScore offers 
markedly enhanced accuracy. We also examined riskScore 
across various clinical characteristics to broaden its 
application scope. Significant prognostic differences were 
observed between high- and low-risk subgroups in the 
TCGA-LUAD dataset, particularly in patients age over  
65 years, those with M0 status, and those in stages II–III–IV, 
and T2 and T3 status. Regarding molecular mechanisms, 

our results revealed a significant enrichment of CD8TRPGs 
in chondroitin sulfate dermatan sulfate metabolism, 
glycosaminoglycan metabolism in the scRNA-seq dataset 
GSE176021. Additionally, a strong positive correlation was 
observed between the high-risk group and tumor-
promoting biological functions. These functions included 
the GOBP DNA BIOSYNTHETIC PROCESS, KEGG 
AMINO SUGAR AND NUCLEOTIDE SUGAR 
M E TA B O L I S M ,  a n d  H A L L M A R K  N O T C H 
SIGNALING. The activation of these pathways suggested 
elevated metabolic activity in cells of the high-risk group, a 
phenomenon typically associated with the heightened 
energy requirements of cancer cells (48-51). Remarkably, 
the low-risk group also showed a higher TMB, NEO, and 
MSI scores, with TMB being a known predictor of 
immunotherapy response (52,53). Clinical trials have 
confirmed the safety and effectiveness of tumor vaccines 
targeting NEOs (54). Additionally, MSI has gained approval 
for clinical use across tumor types (55,56). To delve deeper 
into specific immune cell infiltration differences, we applied 
the ssGSEA algorithm to each sample. We observed 
significantly lower immune cell and function infiltration in 
the low-risk group. Cancer-associated fibroblasts (CAFs) 
were known to facilitate tumor growth, angiogenesis, 
invasion, and metastasis through various pathways (57). Our 
analysis also showed a significant negative correlation 
between multiple immune cells and riskScore, while tumor-
promoting CAFs positively correlated with riskScore, as 
identified through platforms like TIMER, XCELL, and 
EPIC. Cancers frequently develop the ability to evade 
destruction by the immune system (58). The high-risk 
group exhibited high TIDE and exclusion scores, 
indicating a higher likelihood of immune evasion in the. A 
higher IPS score typically suggested a better response to 
immunotherapy (59), and our findings showed a marked 
difference in IPS scores between risk subgroups, hinting at 
a better immunotherapy response in the low-risk group. To 
evaluate the efficacy of our prognostic signature in 
predicting immunotherapy responses, we included the 
IMvigor210 cohort, comprising metastatic urothelial cancer 
(mUC) patients treated with atezolizumab. We also 
incorporated the GSE135222 cohort, a cohort of advanced 
NSCLC who were treated with anti-PD-1/PD-L1. The 
riskScore effectively stratified patients by survival in these 
two cohorts. PD-L1 and PD-L2 have been detected in the 
nucleus in multiple malignancies, playing an oncogenic role 
independent of immune checkpoint regulation (60-63). We 
also found that immune checkpoint genes PD-L1 and PD-
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L2 were highly expressed in the high-risk group. 
Chemotherapy and immunotherapy were crucial adjuvant 
therapies for LUAD, significantly enhancing patient 
prognosis and quality of life. We screened a batch of small 
molecule chemotherapeutics using the GDSC drug 
susceptibility database, with the aim of improving 
personalized medication guidance for LUAD patients. 
Based on the half-maximal inhibitory concentration (IC50) 
prediction, the low-risk group of patients was more sensitive 
to AZD6738, 5-fluorouracil, and BI-2536, the low-risk 
group of patients was more sensitive to afuresertib, axitinib, 
AZD1208, AZD6482, GSK269962A, and BIBR-1532. In 
summary, riskScore emerged as a robust and promising tool 
for guiding clinical management and tailoring individualized 
t rea tment  in  LUAD pat ients .  Regard ing  the  23 
CD8TRPGs included in the risk model, research into their 
specific roles in tumor development is still in its early stages. 
Lactate dehydrogenase A (LDHA) was a key enzyme 
involved in glucose metabolism, whilst its aberrant 
expressions were often associated with tumorigenesis (64). 
TIMP1 was identified as related to energy metabolism and 
ribosome synthesis that was upregulated in the early stages 
of LUAD and may promote progression (65). DDIT4 was a 
gene of a three TKI resistant-related gene signature in 
LUAD (13). KRT8 could serve as a novel biomarker for 
LUAD and promotes metastasis and EMT via NF-κB 
signaling (66). Using LUAD tissues and clinical samples, 
SERPINH1 was shown to be a prognostic biomarker for 
LUAD (67). LINC01614 led to the upregulation of the 
glutamine transporters SLC38A2 and SLC7A5 and 
eventually enhanced the glutamine influx of cancer cells in 
LUAD (68). FKBP4 integrated FKBP4/Hsp90/IKK with 
FKBP4/Hsp70/RelA complex to  promote LUAD 
progression via IKK/NF-κB signaling (69). DARS2 
expression could inhibit the proliferation and migration of 
LUAD cells, promote cell apoptosis, and inhibit the 
glycolytic activity of tumor cells by inhibiting the expression 
of glycolytic-related gene ALDOA (70). FBP1 blockade 
upregulated HIF1α, triggered the switch to anaerobic 
glycolysis, and enhanced glucose uptake in LUAD (71). 
HSPD1 may play a role in the regulation of ribosome 
biogenesis and B cell-mediated immunity in LUAD (72). 
BTG2 and SerpinB5 might serve as potential prognostic 
biomarkers and novel therapeutic targets for LUAD (73). 
Integrated scRNA-seq analysis revealed that KPNA2 was 
associated with survival in LUAD (74). SRGN played a 
p i v o t a l  r o l e  i n  t u m o r- s t r o m a l  i n t e r a c t i o n  a n d 
reprogramming into an aggressive and immunosuppressive 

TME in TTF-1-negative LUAD (75). The other genes in 
our risk model, such as KRT18, DNAJB4, JPT1, KRT86, 
NUPR1, MT1X, PMAIP1, and PLBD1 had no or fewer 
studies reported. While we have endeavored to maintain 
rigor and comprehensiveness in our research, it was 
important to acknowledge certain limitations. Firstly, 
despite incorporating several independent multicenter 
cohorts, the necessity for further validation in a prospective 
study was evident. Secondly, some of the 23 CD8TRPGs 
that constitute the riskScore have been frequently featured 
in various LUAD prognostic signatures, underscoring their 
consistent prognostic value. For instance, LDHA was also 
identified as one of the genes within a disulfidoptosis 
signature in LUAD (76). KRT18 was also identified as one 
of the genes within a programmed cell death signature in 
LUAD (77). DDIT4 was also identified as one of the genes 
within a TKI resistant-based prognostic immune-related 
gene signature in LUAD (13). BTG2 was also identified as 
one of the genes within a novel mTOR-associated gene 
signature for predicting prognosis and evaluating tumor 
immune microenv i ronment  in  LUAD (78) .  The 
identification of common genes, such as LDHA, KRT18, 
DDIT4, and BTG2, across multiple prognostic models 
highlights their consistent prognostic value in LUAD. 
Despite the different methodologies and focus of these 
studies, the recurrent inclusion of these genes underscores 
their reliability as prognostic markers and supports the 
validity of our findings. This also highlighted the potential 
complementarity of these prognostic models, suggesting 
that integrating our riskScore with other models could 
provide a more comprehensive and accurate assessment of 
LUAD prognosis. Furthermore, our study extended the 
current understanding of the prognostic landscape in 
LUAD by introducing a novel CD8 T cell-related gene 
signature. While building upon the existing knowledge, our 
riskScore offered a new angle by specifically investigating 
the impact of the tumor immune microenvironment on 
LUAD prognosis. We believe that integrating our findings 
with those from other studies would facilitate a more 
comprehensive and precise prognostic assessment in 
LUAD. However, their specific roles in LUAD were yet to 
be fully understood, necessitating additional functional 
experimental validation. Despite these limitations, our study 
served as a valuable resource and a foundational proof-of-
concept for future research. It paved the way for the 
identification of biomarkers and treatment targets, 
facilitating personalized therapeutic decisions for LUAD 
patients.
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Conclusions

In conclusion, our study, utilizing 23 CD8TRPGs from 
the training cohort and three testing cohorts, successfully 
constructed and validated a consensus prognostic signature, 
which we termed “riskScore”. This signature was developed 
through 101 machine-learning algorithm combinations, 
proving to be a stable and effective tool for prognostic 
assessment. Notably, riskScore held significant clinical 
implications for managing and personalizing treatment for 
LUAD patients. It was particularly observed that patients 
with a lower riskScore demonstrated greater sensitivity 
to immunotherapy. Overall, this study presented an 
innovative and practical tool for prognostic evaluation, risk 
stratification, and tailoring individual treatments for LUAD 
patients in clinical settings.
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