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Abstract

Motivation: Single-cell gene expression profiling technologies can map the cell states in a tissue or

organism. As these technologies become more common, there is a need for computational tools to

explore the data they produce. In particular, visualizing continuous gene expression topologies can

be improved, since current tools tend to fragment gene expression continua or capture only limited

features of complex population topologies.

Results: Force-directed layouts of k-nearest-neighbor graphs can visualize continuous gene expres-

sion topologies in a manner that preserves high-dimensional relationships and captures complex

population topologies. We describe SPRING, a pipeline for data filtering, normalization and visual-

ization using force-directed layouts and show that it reveals more detailed biological relationships

than existing approaches when applied to branching gene expression trajectories from hematopoi-

etic progenitor cells and cells of the upper airway epithelium. Visualizations from SPRING are also

more reproducible than those of stochastic visualization methods such as tSNE, a state-of-the-art

tool. We provide SPRING as an interactive web-tool with an easy to use GUI.

Availability and implementation: https://kleintools.hms.harvard.edu/tools/spring.html, https://git

hub.com/AllonKleinLab/SPRING/.

Contact: calebsw@gmail.com or allon_klein@hms.harvard.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Recent advances in single-cell RNA sequencing (scSeq) have made it

possible to catalog the expression of every gene in every cell from a

given sample with reasonable accuracy. There is now a need for

computational tools to explore and visualize this high-dimensional

data, and in particular to capture the continuous trajectories of cell

in gene expression space.

K-nearest-neighbor (knn) graphs have proven useful for analyz-

ing continuous cell topologies (Bendall et al., 2014; Setty et al.,

2016; Xu and Su, 2015), and one study proposed the use of knn

graphs for visualization and data clustering (Islam et al., 2011). In a

knn graph, each cell is a node that extends edges to the k other nodes

with most similar gene expression. We have found that interactively

exploring graph topology, overlaid with gene expression or other

annotations, provides a powerful approach to uncover biological

processes emerging from data. However, at present there are no

publicly available tools for interactive visualization of scSeq data in

a graph format.

Here, we present a user-friendly web tool called SPRING.

To use the tool, users must supply a table of gene expression meas-

urements for single-cells and can optionally upload additional

annotations. SPRING builds a knn graph from this data and displays

the graph using a force-directed layout algorithm that renders

as a real-time simulation in an interactive viewing window.

We include a set of features for open-ended data exploration, includ-

ing interactive discovery of marker genes; gene expression compari-

sons between different sub-populations and selection tools for

isolating sub-populations of interest. SPRING is compatible with all

major web browsers and does not require technical knowledge to

operate.
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2 Materials and methods

To generate the knn graph, SPRING performs the following trans-

formations to the inputted gene expression matrix. All parameters

labeled ‘X’ in this section can be adjusted using an interactive web

form. (1) Filter all cells with fewer than X reads; (2) cell normaliza-

tion so that every cell has the same total reads; (3) filter genes with ¡

X mean expression or <X coefficient of variation; (4) Z-score nor-

malize expression values for each gene; (5) perform principal

components analysis, keep the top X principal components and (6)

compute a distance matrix and output a knn-graph with k¼X.

One can also conceive of other choices for each step of filtering,

normalization, dimensionality reduction and distance metric used.

SPRING is demonstrated in two examples in Figure 1. The underly-

ing datasets are being published in separate research papers (in sub-

mission), and will be available at https://kleintools.hms.harvard.edu/

tools/spring.html.

The SPRING GUI is currently configured for datasets up to

10 000 cells and becomes very slow for larger datasets because of

poor scalability of the graph rendering method and the computa-

tional burden of computing the force layout. In principle, these can

be improved, for example by using the ForceAtlas2 algorithm

(Jacomy et al., 2014). In the meantime, large datasets can be accom-

modated by coarse-graining cells. A procedure to do so is described

in the Supplementary Material and shown for an example dataset in

Supplementary Figure S5. We provide code for coarse-graining on

the github page.

3 Advantages over existing methods

3.1 Continuous expression topologies
In contrast to the commonly used method tSNE (Amir et al., 2013),

SPRING captures the long-distance relationships between cells and

can, therefore, visualize continuous expression topologies. For ex-

ample, SPRING accurately maps the branching topology of hemato-

poietic progenitor cells as they differentiate along seven lineages

(Fig. 1A). Though a diffusion map (Haghverdi et al., 2015) visual-

ization (Fig. 1C) can usually capture continuous gene expression tra-

jectories, it often requires more than two diffusion components to

distinguish all lineages, preventing a full representation of the data

complexity in a single two dimensional plot.

3.2 Graph invariance
One drawback of tSNE is that it is stochastic and, therefore, not per-

fectly reproducible. In contrast, graph construction in SPRING is

non-stochastic and, therefore, yields consistent topologies between

runs and replicates. In addition, manual interaction with the kinetic

SPRING interface allows users to bring plots from separate repli-

cates into register with one other (Fig. 1D).

4 Conclusion

Single-cell gene expression profiling is becoming a common tool to

dissect cellular heterogeneity and characterize dynamic processes

such as differentiation. Interactive visualization tools can help re-

searchers exploit this data more fully. Our easy-to-use web tool,

SPRING, provides a simple interface for open-ended investigation of

gene expression topology.
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Fig. 1. (A) SPRING depicts the dynamic trajectories of hematopoietic progeni-

tor cells as they differentiate from stem cells (HSCs; black circle) into each of

seven lineages (colored arms; lineage identities are described in a separate

publication, in submission). In contrast, tSNE (B) and diffusion map (C) visual-

izations of the same data show disconnected clusters of cells or do not cap-

ture the full complexity of the data in two dimensions. (D) SPRING and tSNE

plots of upper airway epithelium cells from three human donors highlight the

reproducibility of SPING visualizations. Cells in (A–D) are colored by marker

gene scores. Detailed methodology for producing all plots is available in the

Supplementary Material
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