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Estimation of Neutral Mutation Rates and Quantification
of Somatic Variant Selection Using cancereffectsizeR
Jeffrey D. Mandell1, Vincent L. Cannataro2, and Jeffrey P. Townsend1,3,4,5

ABSTRACT
◥

Somatic nucleotide mutations can contribute to cancer cell
survival, proliferation, and pathogenesis. Although research has
focused on identifying which mutations are “drivers” versus “pas-
sengers," quantifying the proliferative effects of specific variants
within clinically relevant contexts could reveal novel aspects of
cancer biology. To enable researchers to estimate these cancer
effects, we developed cancereffectsizeR, an R package that organizes
somatic variant data, facilitates mutational signature analysis, cal-
culates site-specific mutation rates, and tests models of selection.
Built-in models support effect estimation from single nucleotides to
genes. Users can also estimate epistatic effects between paired sets of
variants, or design and test custom models. The utility of cancer
effect was validated by showing in a pan-cancer dataset that somatic
variants classified as likely pathogenic or pathogenic in ClinVar
exhibit substantially higher effects thanmost other variants. Indeed,
cancer effect was a better predictor of pathogenic status than variant

prevalence or functional impact scores. In addition, the application
of this approach toward pairwise epistasis in lung adenocarcinoma
showed that driver mutations in BRAF, EGFR, or KRAS typically
reduce selection for alterations in the other two genes. Companion
reference data packages support analyses using the hg19 or hg38
human genome builds, and a reference data builder enables use with
any species or custom genome build with available genomic and
transcriptomic data. A referencemanual, tutorial, and public source
code repository are available at https://townsend-lab-yale.github.io/
cancereffectsizeR. Comprehensive estimation of cancer effects of
somatic mutations can provide insights into oncogenic trajectories,
with implications for cancer prognosis and treatment.

Significance: An R package provides streamlined, customizable
estimation of underlying nucleotide mutation rates and of the
oncogenic and epistatic effects of mutations in cancer cohorts.

Introduction
Over one million distinct somatic mutations have been associated

with plausible oncogenic mechanisms (1). A few hundred of these are
currently clinically actionable (2), but tumor evolution frequently
introduces resistance variants that overcome present therapies. The
quantification of the relative effects of somatic variants has the
potential to help navigate the tumor evolutionary trajectory, by
informing prognosis, treatment planning, and research prioritization.
However, the vast majority of somatic mutations in the genome are
likely neutral (3); so much effort has been devoted to discretely
identifying which of manymutations observed in tumors are “drivers”
versus “passengers.” Consequently, the relative strengths of intratu-
mor-positive selection on cancer driver variants—which we term their
cancer effects—have not typically been estimated.

Inferring the strength of selection from the prevalence of a tumor
variant in a cancer cohort requires rigorous deconvolution of selection

from baseline mutation rate across genomic sites and among patients.
Baseline mutation rates can vary from tumor to tumor, depending on
the impacts of previously acquired mutations, the epigenetic back-
ground, and numerous environmental factors (4–6). Analysis of gene-
specific synonymous site divergence and context-specific base-pair
changes from tumor-sequencing data along with tissue-specific cor-
relates of gene mutation rates has enabled their estimation (7). Appro-
priate models of selection connect these baseline mutation rates with
observed variant prevalence in tumor cohorts, distinguishing highly
oncogenic variants from variants that occur frequently within cancer
cells due to high underlying rates of mutation (3). Accurate estimation
of the strength of selection on driver mutations based on explicit
selective models is essential to the advancement of tumor sequence
data analysis (8).

To facilitate this deconvolution of prevalence into baseline mutation
rate and scaled selection coefficient, we have developed cancereffectsizeR,
an R package that organizes somatic variant data, calculates sample-
and site-specific mutation rates, and quantifies cancer effects under
customizable models of selection. The cancereffectsizeR package
provides an extensible framework to refine our understanding of
somatic mutations beyond the traditional dichotomy of selected
drivers and neutral passengers. Recent authors have proposed
additional discrete categories such as “superdrivers,” weak drivers,
and impactful passengers (9, 10); cancereffectsizeR takes the next
step, enabling inference of a continuous range of effects that may vary
depending on epistatic interactions, tumor grade and subtype, or other
clinically relevant factors. In this report, we describe core package
features and their methodology, and we emphasize the broad support
supplied by the package for user-provided data and highly customized
analyses of variant selection. We also demonstrate that inferences of
cancer effect are robust to method of mutation rate calculation and that
known cancer-associated variants tend to be of higher effect than other
variants—even when they appear in cancer cohorts at lower prevalence.
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Materials and Methods
Loading mutation data

By integrating somatic variant data from whole-genome, whole-
exome, and targeted sequencing experiments, cancereffectsizeR
obtains especially high power to estimate cancer effects. In cancer-
effectsizeR, the estimation of mutation rates and cancer effects
begins with loading high-confidence somatic variant data in
Mutation Annotation Format (MAF; Fig. 1). A “preloading”
feature checks MAF files for common problems, flags possible
false-positive records, and converts variant coordinates between
genome builds via the rtracklayer (RRID:SCR_021325) package’s
liftOver (RRID:SCR_018160) functionality. Another function
identifies pairs of samples with suspiciously high variant overlap,
which can help to detect inadvertent sample duplicates in analyses
that use multiple sources of sequencing data.

Users can define which genomic regions are covered by each data
source so that effect-size inferences correctly account for which
variants can possibly be found in each sample group. Once data are
loaded, variants can be viewed with gene and transcript annotations,
filtered, or combined into “compound variants” that are treated as
single entities for mutation rate calculation and selection inference.
Clinical or epidemiological data can be loaded into the analysis to allow
further steps in the workflow to be run on arbitrary groups of samples
with tailored parameters.

Mutation rates and selection
Mutation rates are computed by convolving gene-by-gene estimates

of mutation rates from synonymous site rates and covariates with
trinucleotide site-by-site rates based on mutational signature extrac-
tion. Gene-by-gene mutation rates make use of the dNdScv regression
model (11) with customizable mutation rate covariates. We have
assembled sets of covariates for each of 20 tumor types that include
gene expression, chromatin marks, and replication timing data. We
also provide a simple workflow to generate custom covariates. Non-
coding regions are included by combining trinucleotide rates associ-
ated with noncoding sites with the locus-specific mutation rate of the
nearest gene. Alternatively, users may input their own precalculated
gene mutation rates.

Mutational signature extraction is used to attribute observed tumor
variants to a linear combination of mutational signatures, such as the
subset of COSMIC signatures (1) that are relevant to the tissue type.

Extraction is conducted with MutationalPatterns (the default; ref. 12)
or deconstructSigs (13), or users may input precalculated signature
weights from other sources. Some signatures have been attributed
artifactual status as consequences of sample preparation rather than
biological processes (14); as previously described (15), cancereffectsi-
zeR corrects for these artifactual signatures, re-normalizing non-
artifactual signature weights to yield relative rates of substitution in
all trinucleotide contexts. In a given tumor and gene, the genemutation
rate is partitioned across all sites in the gene in accordance with these
context-informed relative rates, yielding tumor-specific rates for all
possible substitutions (7). Targeted-sequencing data are assigned gene
mutation rates from specified exome and/or genome-sequenced data,
and trinucleotide mutation rates are determined from a group aver-
aging of signatures found in the companion data.

Variant-specific scaled selection can be estimated under several
models of selection. The default model assumes constant selective
pressure on all mutations over oncogenesis, and no epistatic
effects. In addition, a pairwise epistatic model enables inference
of selection with epistatic effects between pairs of variants (bioRxiv
2022.01.20.4771322022). Models of greater complexity, such as
those incorporating selective epistasis, require larger sample sizes
of tumor sequence than the default model. Models can be applied to
single-nucleotide variants (SNV) such as noncoding substitutions
and amino-acid–changing substitutions, or they can be applied to
ensembles of nucleotide variants that are all assumed to cause the
same cancer effect—such as within functional domains or genes.
The effect-size calculation step also permits input of custom models
of selection, including models that feature alternate kinds of user-
supplied data.

Reference data
cancereffectsizeR includes functions to generate custom reference

data for almost any genome build or species for which genome and
transcript definitions can be supplied in common file formats. We
include straightforward instructions for specifying custommutational
signature definitions and generating mutation rate covariates from
user-supplied molecular data. We have also provided companion
data packages, ces.refset.hg38 and ces.refset.hg19, that include gene
and coding sequence definitions compatible with the hg38/hg19
human genome builds, as well as COSMIC mutational signature
definitions and precomputed mutation rate covariates for twenty
tissue types. Additional package functions, detailed in the online

Figure 1.

The cancereffectsizeR workflow, spanning assembly of diverse variant datasets to quantification of effect sizes.
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reference manual, support the use of cancereffectsizeR with tissue
types for which mutational signature definitions or mutation rate
covariates are unavailable.

Data availability
The data analyzed in this study were obtained from The Cancer

GenomeAtlas (TCGA; https://portal.gdc.cancer.gov; data release 34.0)
and cBioPortal (ID: luad_mskcc_2020).

Results
To illustrate a cancereffectsizeR workflow, we loaded somatic

mutation calls from the TCGA LUAD (lung adenocarcinoma)
project and calculated gene mutation rates using lung tissue covari-
ates from the companion reference data package. For the mutational
signature extraction step, we used COSMIC 3.2 mutational signature
definitions, with signatures presumed absent in lung tissue excluded.
We excluded these signatures to reduce “bleeding” between signa-
tures with similar profiles and to help ensure biological plausibility of
fitted signatures as recommended byAlexandrov and colleagues (14).
We applied the default model of selection to all recurrent variants,

and we found that 19 of the 20 highest-effect variants were amino-
acid–changing substitutions in the three oncogenes BRAF, KRAS,
and EGFR and the tumor-suppressor TP53 (Fig. 2A). Out of these
top variants, prevalence of the 7 variants in BRAF, KRAS, and EGFR
ranged from 3 to 54 (median 17), and from 2 to 6 (median 3) in the
12 TP53 variants. That variants in these well-known cancer drivers
received the highest effect estimates, yet span a broad range of
prevalences, is an indication of the successful deconvolution of
mutation rate and selection.

Next, we tested for pairwise epistasis between KRAS, EGFR, BRAF,
and TP53. Because analyses of epistasis require larger datasets for
sufficient power to estimate more parameters, we augmented the
TCGA LUAD data with targeted sequencing of 604 lung adenocar-
cinoma tumors available from cBioPortal (ID: luad_mskcc_2020). We
applied a pairwise epistatic model (bioRxiv 2022.01.20.477132) enfor-
cing shared scaled selection coefficients across all observed nonsynon-
ymous and splice-site mutations within each gene. Analyzed under a
model of selective epistasis, selection for mutations in each gene
depended on the mutation status of driver sites in the other gene. To
isolate pairwise epistasis—that is, to avoid higher-order selective
interactions between KRAS, EGFR, BRAF, and TP53—each pairwise

Figure 2.

Selection inferences from a standard cancereffectsizeR workflow (version 2.6.5) with somatic variant data from exome and panel sequencing of lung
adenocarcinoma. A, Highest effect recurrent somatic variants (and 95% confidence intervals) under the default model of selection at individual genomic sites.
B,Ratios of selection coefficients for the observed nonsynonymous and splice-sitemutations in gene one aftermutation of gene two relative to selection coefficients
of gene one when other genes analyzed are unmutated (tan bars), and ratios of selection coefficients for the observed nonsynonymous and splice-site mutations in
gene two after mutation of gene one relative to selection coefficients of gene two when other genes analyzed are unmutated (green bars). For some gene pairs, the
epistatic model is not significantly better than a model that assumes no epistatic effects (P > 0.05, likelihood ratio test; transparent bars). Asterisks denote genes
within pairs that not only are inferred to be subject to selective pairwise epistasis, but that also exhibit specific statistically significant directional changes in selection
after mutation in the other gene. �� , P < 0.01; ��� , P <0.001; likelihood ratio test.
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inference in this analysis only included samples that lacked mutations
in whichever of the four genes were not the subject of the inference.
Driver mutations in pairs of RAS pathway genes (KRAS, EGFR, or
BRAF) exhibited substantial antagonistic epistasis (P < 0.01 for each
pair, likelihood ratio test; Fig. 2B). In BRAF/KRAS and EGFR/KRAS,
selection for alterations in each gene was substantially reduced after
mutation in the other (P < 0.01 for all four, likelihood ratio test). The
best estimate for the EGFR/BRAF is similar, and antagonistic epistasis
between the pair is statistically significant. The significant epistatic
effects suggest reduced selection in one or both genes, but without
statistical significance to the specific reduction of selection in either
gene individually. This antagonistic epistasis found among these
three oncogenes is consistent with their common roles activating
the MAPK/ERK pathway. Epistatic effects did not achieve significance
for gene pairs involving TP53 except for TP53/KRAS (P < 0.001,
likelihood ratio test). Best estimates of selective epistatic effects between
these genes and the tumor-suppressor TP53 exhibit a different pattern
that suggests sensitivity of the evolutionary trajectory tomutation order.

To validate that cancer effect estimates provide novel and useful
information about cancer relevance, we compared effect sizes for
variants with ClinVar annotations of somatic pathogenic or likely
pathogenic to other variants in eight TCGA cancer cohorts (endo-
metrial carcinoma, UCEC; colon adenocarcinoma, COAD; lung
squamous-cell carcinoma, LUSC; LUAD; breast carcinoma, BRCA;
skin cutaneous melanoma, SKCM; bladder urothelial carcinoma,
BLCA; head-and-neck squamous-cell carcinoma, HNSC). We esti-
mated cancer type–specific effects for all SNVs that appeared in at
least two patients in the pan-cancer dataset. Cancer effects tended
to be substantially higher in likely pathogenic or pathogenic SNVs
(P < 2.2 � 10�16; Mann–Whitney U test): The median likely patho-
genic or pathogenic SNV effect ranked at the 97.9th percentile of
all effect estimates. Strikingly, likely pathogenic or pathogenic SNVs

that were single hits within their cancer cohorts were generally much
higher ranked by cancer effect than were other SNVs that were
recurrent, with median effects at the 96.5th and 52.0th percentiles,
respectively (Fig. 3).

The ClinVar designation of somatic pathogenic variants reflects
current knowledge. Therefore, ClinVar-designated variants are an as-
yet incomplete set of cancer-related variants. One would expect that
more prevalent variants are more likely to have been discovered and
included. To verify that cancer effects are powerful predictors of
known cancer association, we multiply regressed likely pathogenic or
pathogenic ClinVar status against mean prevalence (across the 8
TCGA projects), highest prevalence (within a cancer cohort), mean
cancer effect (across cancer types, assigning an effect of 0 for cancer
types without the variant), highest cancer effect, and also protein
function impact scores from SIFT and PolyPhen-2 (Fig. 4). A boot-
strapped dominance analysis (16) found, consistently across all
100 bootstraps, that the cancer effect predictors had general domi-
nance over all other predictors; that is, they had the highest average
contributions to prediction across all sizes of submodels.

Cancer effect estimates are robust to reasonable changes in muta-
tion rate calculation methods. We compared TCGA LUAD effects as
previously estimated with estimates produced using two other work-
flows: First, using gene mutation rates calculated with MutSigCV
instead of dNdScv, and second, with deconstructSigs instead of
MutationalPatterns for signature analysis. Effect estimates were highly
correlated with the original estimates (Pearson’s r ¼ 0.87 and 0.99,
respectively; Supplementary Fig. S1).

Discussion
As more tumor-sequence data are collected, increasingly precise

quantification of variant effects is possible, estimated with ever-more

Figure 3.

Boxplots of the cancer effects of variants appearing in two or more patients across eight TCGA cohorts. A set of merged somatic variants that are annotated within
ClinVar as likely pathogenic or pathogenic is compared with other variants, and sites mutated recurrently within a cancer type are compared with sites hit only
once within a cancer type. Each cancer effect estimate is a cancer type–specific inference; variants appearing in multiple cohorts are reported by multiple
estimates. Two statistically significant pairwise comparisons are shown, but all possible pairwise comparisons of groups yielded statistically significant
differences (Mann–Whitney U test, P < 10–16 for all). ��� , P < 0.001.
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informativemodels of oncogenesis. Cancer effects can be estimated for
specific cohorts of tumors; the effect estimate averages over known or
unknown heterogeneities within the designated cohort, such as dif-
fering tumor microenvironments. Epistatic models can evaluate how
selection in each of a pair of variants or genes depends on the status of
the other, explaining observations of mutual exclusivity, co-mutation,
and variation in disease trajectories. Support for arbitrary sample
grouping—for example, by chromosomal variant or copy-number
status—enables hypothesis-driven analysis of differential substitution
effects. In contrast with the dichotomous classification of drivers and
passengers, the continuous scale of cancer effect provides a clear,
principled prioritization of drivers: Within a cancer cohort, the
variants with the highest effects have the greatest per-patient contri-
bution to aberrant cellular proliferation.

As an analytic framework, cancereffectsizeR is constructed to
facilitate continued development to broaden the precision and scope
of inference of cancer effect sizes, and to meet evolving user needs. For
example, stage/grade-specific or pre/post-treatment models could
demonstrate which variants play key roles in serial phases of dis-
ease—including in the evolution of therapeutic resistance. In addition,
indicators of alteredmutability—such as genome-wide hypermutation
signatures (17) or regional chromatin structure (18)—can be included
to increase the precision of the sample-specific mutation rate calcu-
lation. Incorporation of these effects could be especially helpful in
cancer types with highly variable mutational burden. Application of
phylogenetic approaches would provide orthogonal information
regardingmutation order, which could constrain and therefore further
improve the precision of inference regarding epistatic selection. The
search space of possible epistatic relationships can be examined by
large-scale data analysis; alternatively, a two-phase analysis can use
principled approaches to identify likely sets of cooperating var-
iants (19) and then quantify their selective epistasis.

Single-base substitutions are the most prevalent small variants.
Future work is intended to extend the package, enabling estimation
of the cancer effects of doublet-base substitutions and small insertions/

deletions. Other variant types that might be crucial to oncogenesis in
many types of cancer, such as copy-number alterations, loss of
heterozygosity, and epigenetic phenomena present greater challenges
to determination of the rate at which they occur in cancer-competent
cells. Future extensions of cancer effect estimation to a comprehensive
range of somatic genetic alterations will enable thorough accounting of
oncogenic trajectories, with implications for prognosis, prioritization
of research, drug targeting, and treatment planning.
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Figure 4.

Contingency table (confusion matrix) and model summary of a multiple logistic regression predicting merged pathogenic or likely pathogenic ClinVar status of
variants based on mean cancer effect across eight cancer types, top cancer effect across eight cancer types, SIFT score, PolyPhen-2 score, mean prevalence across
eight cancer types, and top prevalence across eight cancer types. Noncoding variants—which lacked SIFT and PolyPhen-2 scores—were excluded from the
regression. Cancer effect measures were log transformed, and all predictive parameters were standardized. Predictor importance was determined from
bootstrapped dominance analysis (100 bootstrap runs); each predictor exhibited pairwise general dominance over all less important predictors.
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