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Fusobacterium species are distinctly
associated with patients with Lynch
syndrome colorectal cancer

Felix Salim,1 Sayaka Mizutani,1,2 Satoshi Shiba,3 Hiroyuki Takamaru,4 Masayoshi Yamada,4 Takeshi Nakajima,4

Tatsuo Yachida,6 Tomoyoshi Soga,7 Yutaka Saito,4 Shinji Fukuda,7,8,9,10,11,12 Shinichi Yachida,5,13,15,*

and Takuji Yamada1,11,12,14,15,16,*

SUMMARY

Accumulating evidence demonstrates clear correlation between the gut microbiota and sporadic colo-
rectal cancer (CRC). Despite this, there is limited understanding of the association between the gut micro-
biota and CRC in Lynch Syndrome (LS), a hereditary type of CRC. Here, we analyzed fecal shotgun meta-
genomic and targetedmetabolomic of 71 Japanese LS subjects. A previously published Japanese sporadic
CRC cohort, which includes non-LS controls, was utilized as a non-LS cohort (n = 437). LS subjects exhibited
reduced microbial diversity and low-Faecalibacterium enterotypes compared to non-LS. Patients with LS-
CRC had higher levels of Fusobacterium nucleatum and fap2. Differential fecal metabolites and functional
genes suggest heightened degradation of lysine and arginine in LS-CRC. A comparison between LS and
non-LS subjects prior to adenoma formation revealed distinct fecal metabolites of LS subjects. These find-
ings suggest that the gutmicrobiota plays amore responsive role in CRC tumorigenesis in patientswith LS
than those without LS.

INTRODUCTION

Lynch Syndrome (LS) is an autosomal-dominant familial condition caused by a pathogenic germline mutation in DNA mismatch repair

(MMR) genes (MLH1, MSH2, PMS2, and MSH6) or EPCAM2. Loss of function in MMR genes leads to the accumulation of gene muta-

tions, thus increasing cancer risk in patients with LS, especially colorectal cancer (CRC) and endometrial cancer (EC).1,2 The cancer risk in

patients with LS varies depending on the MMR mutation variants, with a higher risk rate in LS carriers with MLH1 and MSH2 variants than

in those with MSH6 and PMS2 variants.3,4 A previous study reported that the epithelial cells have mutation rate similar to that of wild-

type individuals prior to MMR deficiency, suggesting that the inactivation of the wild-type MMR allele is the key driver event in LS-asso-

ciated CRC.5

The hallmarks of LS-associated CRC include MMR deficiency, rapid progression from colorectal adenoma to carcinoma, and improved

prognosis.1,2 MMR deficiency in LS-associated CRC is further associated with microsatellite instability (MSI), which has been reported as a

potential marker of patient response to chemotherapy and immune checkpoint inhibitor treatment.6 As LS-associated CRC progresses faster

through the adenoma–carcinoma sequence,1 LS carriers may serve as model cases to elucidate the role of the gut microbiota in MMR-defi-

cient (dMMR) CRC tumorigenesis. However, this rapid progression may also diminish the effect of the gut microbiota on LS-associated CRC

tumorigenesis.
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Several reports have associated the human gut microbiota with CRC. Early studies have shown that specific microbes, such as Fusobac-

terium nucleatum, are enriched in the tumor tissues of patients with CRC compared to the neighboring non-tumorous tissues, with later

studies reporting other microbial CRC markers, such as Peptostreptococcus stomatis and Parvimonas micra.7–10 Mouse model experiments

have elucidated the potential role of human gut microbes in CRC tumorigenesis. For example, Streptococcus thermophilus shows a tumor-

suppressive effect via b-galactosidase secretion.11 Peptostreptococcus anaerobius promotes tumorigenesis by interacting with colon cells

and triggering increased cell proliferation and a proinflammatory immunemicroenvironment.12 Furthermore, some bacterial strains may pro-

duce genotoxins, such as pks+ Escherichia coli colibactin, which are linked to an increased CRC risk.13 Colibactin has also been reported to

worsen MMR deficiency-associated mutations.14

Recent studies have shed light on the association between gutmicrobiota and dMMRCRC and LS-CRC.Mousemodel studies have shown

that microbial metabolites such as butyrate and the gut microbiota contribute to CRC tumorigenesis in MSH2-deficient mice.15,16 Studies of

patients with dMMR CRC and MSI-H CRC have reported distinct Fusobacterium enrichment in dMMR CRC gut microbiota and MSI-H CRC

tissue samples.17–19 A study on patients with LS and colorectal adenoma reported similar gut microbiota dysbiosis in LS adenoma and spo-

radic CRC but no Fusobacterium enrichment.20 Several other studies have also reported distinct gut microbiota compositions between pa-

tients with and without LS, as well as between patients with LS and a CRC history and those without any CRC history.21–24 However, as most

previous studies have been based on 16S rRNA amplicon sequencing, there is limited information on how the composition and function of the

gut microbiota differ between patients with LS-CRC compared to those with LS and no prior adenoma or carcinoma.

In this study, we performed shotgun metagenomics and targeted metabolomics on 71 stool samples collected from 71 patients with LS

(patients with pathogenic variants of germlinemutations in one or moreMMR genes). Patients with LS were divided into four groups: Patients

with no prior history of colorectal adenoma or carcinoma formation (LS control), those with colorectal adenoma formation (LS-adenoma),

those with colorectal carcinoma formation (LS-CRC), and those with no current colorectal adenoma or carcinoma but who underwent a co-

lectomy procedure (LS-surgery). Controls’ microbiota and metabolome profiles were compared with those of LS-adenoma and LS-CRC

groups to identify potential associations between the gut microbiota and tumorigenesis within the LS cohort. Furthermore, to identify poten-

tial LS-specific microbiota–carcinogenesis associations, associations identified within the LS cohort were compared with associations identi-

fied within a sporadic CRC cohort.

RESULTS

Overview of study subjects

Patients undergoing colonoscopy at the National Cancer Center Hospital, Tokyo, Japan, were enrolled in the study, totaling 71 patients with

Lynch Syndrome. The inclusion criterion was a positive diagnosis of a pathogenic mutation in germline MMR genes (MLH1, MSH2, MSH6,

PMS2, or EPCAM + MSH2). Patients with a history of gastrectomy were excluded. Patients’ stool samples were collected after bowel prep-

aration on the day of colonoscopy and stored at �80�C before further processing.

Patients with LS were grouped into adenoma (LS-adenoma), CRC (LS-CRC), and post-colectomy (LS-surgery) groups based on the colo-

noscopy results and clinical records. Those without any adenoma, carcinoma, or history of colectomy were defined as controls (LS control).

The lifestyle and dietary data of somepatients were acquired using questionnaires based on a previous study.25 Potential confounding factors

such as age, sex, mutatedMMR genes, smoking habits, meat consumption, and dietary fiber consumption were determined from clinical and

questionnaire data and compared across the groups (Table 1). The age distribution between the groups was significantly different (ANOVA,

p = 0.045; Table 1). LS-CRC had a higher male-to-female ratio, smoker-to-non-smoker ratio, and Brinkman index than LS control, but the dif-

ference was not significant. No significant differences were observed between patients with LS in mutated MMR genes and dietary fiber or

meat intake.

Data on patients with sporadic CRC were obtained from previously published studies with some modifications.26 Based on colonoscopy

results, patients with sporadic CRC were grouped into five groups: (1) controls (no remarkable colonoscopic findings or records of adenoma);

(2) multiple polypoid adenomas with low-grade dysplasia (more than three adenomas, mostly more than five adenomas); (3) intramucosal

carcinoma (polypoid adenoma(s) with high-grade dysplasia), stage 0/pTis CRC (S0); (4) early CRC (Stages I or II); (5) advanced CRC (Stages

III or IV). As previously mentioned, potential confounding factors such as age, sex, smoking habit, meat consumption, and dietary fiber con-

sumption were determined from clinical and questionnaire data and compared across subject groups (Table S1). Similar to the LS cohort, the

controls in the sporadic cohort were significantly younger than thosewith progressive CRC. Furthermore, the Brinkman Index was significantly

higher in patients with CRC progression (Table S1).

Lynch syndrome gut microbiome has low alpha diversity and Faecalibacterium depleted enterotypes

Species alpha diversity, estimated using the Shannon–Wiener index, was significantly lower in patients with LS than those with sporadic CRC

(Mann–Whitney U p = 0.00014, Figure 1A). Next, pairwise comparisons were made within the LS cohort to explore the potential association

between alpha diversity and patient group,MMRmutations, or age. Based on the comparison results, no significant association was observed

between alpha diversity and subject group, age, or genotype (Figure S1A).

Principal coordinate analysis (PCoA) was performed on Bray–Curtis dissimilarities of the patient’s genus-level profile to visualize the gut

microbiota composition (Figure 1B). In the PCoAplot, no clear separation was observed between the patients with LS and those with sporadic

CRC. Focusing on the gut microbiota profile of the groups, the PCoA plot showed no clear separation between the LS control, LS-adenoma,

LS-CRC, and LS-surgery groups (Figure 1C).
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Permutational analysis of variance (PERMANOVA) was performed to verify whether LS affected the gut microbiota composition. Patient

grouping (four LS groups and five sporadic CRC groups) was found to be the best explanatory variable (R2 = 1.885%, p = 0.161), followed

by LS diagnosis (R2 = 0.328%, p = 0.110) (Figure S1B, left panel). PERMANOVAwithin the LS cohort showed that the best explanatory variables

were patient groups (R2 = 5.586%, p= 0.153) andMMRgenemutations (R2 = 5.403%,p= 0.514) (Figure S1B, right panel). Similar to the previous

study, while colectomy history was less explanatory compared to other variables (R2 = 1.103%, p = 0.613), focusing on samples with colectomy

history showed that colon parts removed by colectomy were the best explanatory variables (R2 = 6.673%, p = 0.470) (Figure S1B, right panel).20

To check whether LS-associated enterotypes existed, the gut microbiota profile of each patient was fitted into a Dirichlet Multinomial

Mixture (DMM) model. From the best-fit model, four enterotypes were determined, consisting of three Bacteroides-dominant enterotypes

(Enterotypes 1, 2, and 3) and one Prevotella-dominant enterotype (Enterotype 4) (Figures 1D and S1C). Notably, Enterotypes 1 and 4 were

characterized by a higher proportion of Faecalibacterium than the other two enterotypes (Figure 1E). Comparison of enterotype ratios be-

tween the LS and sporadic cohorts showed that the LS cohort had a significantly higher ratio of Enterotype 2 (Fisher’s exact test

p = 8.503 10�4) and a significantly lower ratio of Enterotypes 1 (p = 0.0102) and 4 (p = 0.0139) compared to the sporadic cohort (Figure 1F).

However, Faecalibacterium abundance in the LS and sporadic cohorts was not significantly different (Figure S1D).

Overall, although PCoA visualization and PERMANOVA results showed no clear separation between the gut microbiota of patients with

sporadic CRC and those with LS, we observed lower alpha diversity and a higher prevalence of Faecalibacterium poor enterotype in patients

with LS. Both low alpha diversity and Faecalibacterium poor enterotypes have been associated with inflammatory bowel disease (IBD).27,28

Fusobacterium species enriched in the gut microbiota of patients with Lynch syndrome

To identify the gut microbial species that were differentially abundant between dysbiosis occurring in patients with and without LS after ad-

enoma and CRC formation in more detail, we performed a differential abundance analysis within non-LS and LS cohorts.

A pairwise comparison of species abundances between the LS controls and other groups detected 105 species with differential abun-

dances (Mann–Whitney U, p < 0.05) in at least one comparison (Table S2). Focusing on the differentially abundant species between the LS

control and LS-CRC groups, 19 were enriched, and 29 were depleted in the LS-CRC group (Figure 2A). Of the 19 species enriched in LS-

CRC, 12 belonged to the Fusobacterium genus, such as F. nucleatum subsp. nucleatum (p = 6. 84 3 10�4) and F. nucleatum subsp. animalis

Table 1. Lynch Syndrome subject’s clinical information

LS-CTRa LS-ADEb LS-CRCc LS-SURd Pg

Subject Number 18 23 11 19

Age (mean (SD)) 39.56 (11.13) 50.74 (13.70) 46.82 (19.11) 52.95 (13.33) 0.025

Sex = Male (%) 5 (27.8) 11 (47.8) 7 (63.6) 7 (36.8) 0.248

BMIe (mean (SD)) 21.16 (2.47) 24.12 (4.89) 21.88 (3.94) 24.06 (4.57) 0.089

Brinkman Index (mean (SD)) 97.65 (163.08) 161.33 (227.30) 344.00 (372.71) 235.79 (389.48) 0.178

Total dietary fiber intake (mean (SD)) 11.68 (6.11) 10.39 (7.38) 14.66 (6.78) 11.28 (4.68) 0.406

Meat intake (mean (SD)) 90.44 (48.59) 90.23 (87.41) 102.45 (74.44) 72.28 (44.34) 0.68

Mutated MMRf variants (%) 0.319

MLH1 6 (33.3) 10 (43.5) 2 (18.2) 7 (36.8)

MSH2 11 (61.1) 10 (43.5) 5 (45.5) 7 (36.8)

MSH2+EPCAM 0 (0.0) 1 (4.3) 1 (9.1) 1 (5.3)

MSH6 0 (0.0) 2 (8.7) 0 (0.0) 2 (10.5)

PMS2 1 (5.6) 0 (0.0) 3 (27.3) 2 (10.5)

Colectomy history = yes (%) 0 (0.0) 8 (34.8) 3 (27.3) 19 (100.0) <0.001

Colectomy part (%) <0.001

none 18 (100.0) 15 (65.2) 8 (72.7) 0 (0.0)

right 0 (0.0) 3 (13.0) 2 (18.2) 11 (57.9)

left 0 (0.0) 2 (8.7) 1 (9.1) 4 (21.1)

both 0 (0.0) 3 (13.0) 0 (0.0) 4 (21.1)

aLS-CTR = Lynch Syndrome (LS) subjects without adenoma, carcinoma, or history of colectomy.
bLS-ADE = LS subjects with colorectal adenoma.
cLS-CRC = LS subjects with CRC.
dLS-SUR = LS subjects with colectomy history, but no current colorectal adenoma or CRC.
eBMI = body mass index.
fMMR = mismatch repair.
gOne-way analysis of variance (one-way ANOVA) test was used for numerical variables and chi-square test was used for categorical variables.
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(p = 8.84 3 10�4). Other CRC-related species, such as Peptostreptococcus stomatis (p = 0.738), P. anaerobius (p = 0.723), Parvimonas micra

(p = 0.383), and Gemella morbillorum (p = 0.126), were not significantly enriched in LS-CRC (Figure S2A).

Although not significant, we identified similar dysbiosis trends, e.g., Fusobacterium nucleatum enrichment, in LS subjects with cancer his-

tory compared to LS subjects with no cancer history in an independent Israelian LS cohort24 (Table S2).

Machine learning-based feature selection validated Fusobacterium species enrichment as an Lynch syndrome-colorectal

cancer marker

Our results suggest Fusobacterium spp. enrichment is a shared CRC-related dysbiosis across LS and sporadic CRC. However, our small sam-

ple size had limited detection power. Furthermore, no previous studies using whole-genome shotgun sequences of LS-CRC have validated

our results. In addition, the results are not necessarily reproducible in other taxonomic annotation pipelines. However, accumulated knowl-

edge has been obtained from a considerable amount ofmicrobial data on sporadic cancer.29–31 To examinewhether themicrobiome features

of sporadic CRC characterize LS-CRC, we used a sporadic CRC classifier to screen for potential dysbiosis markers in LS-CRC. Based on the

screening results, we hoped to find the resemblancebetween thegutmicrobiota profiles of sporadic and LS-CRCor lack of such resemblance,

especially whether Fusobacterium species were enriched in LS -CRC.

We trained a gradient-boosted decision tree (GBDT) classifier to differentiate between non-LS controls and patients with sporadic CRC

based on their species profiles. The trained classifier performed comparable to previous CRC studies,26,29,30 as evaluated by its mean area

under the receiver operating curve (AU-ROC) across 5-fold cross-validation (mean AU-ROC = 0.805; Figure S2B). Feature importance analysis

showed that the top contributors were mostly CRC-related species, such as F. nucleatum subsp. nucleatum, Gemella morbillorum,

P. stomatis, and P. micra (Figure S2D).

The constructed sporadic CRC classifier was tested for its ability to discriminate LS CRC from LS controls using the species profiles of pa-

tients with LS as the input. The model distinguished LS-adenoma, LS-CRC, and LS-surgery from LS control with AU-ROC of 0.575, 0.869, and

0.684, respectively (Figure 2B). The normalized CRC probability predicted by the classifier was higher for LS-CRC and lower for LS controls,

whereas LS-adenoma and LS-surgery showed a more uniform distribution (Figure S2C). These results indicate the potential of sporadic CRC

microbiota-based characterization of LS CRC microbiota.

Local feature importance analysis identified Fusobacterium nucleatum subsp. nucleatum as the top microbial marker for

Lynch syndrome-colorectal cancer

The classifier performance and feature importance analysis results indicated that CRC-related species abundance was the main predictor for

differentiating between LS-CRC and LS controls. However, it was not sufficient to screen for LS CRCmarkers because feature importance was

estimated for the entire classifier (global importance), which was trained on sporadic species profiles.

A previous study proposed a framework utilizing the Shapley Additive Explanations (SHAP) value to estimate feature importance for spe-

cific subjects (local importance) and showed distinct clusters within patients with sporadic CRC based on the estimated local importance.31

Here, we used the SHAP value-based local feature importance analysis framework to validate whether Fusobacterium spp. were the main

predictors of LS-CRC.

The PCA of the estimated SHAP values showed a distinct separation between control subjects and patients with CRC (Figure 2C). Next, the

SHAP value principal components of correctly predicted patients with CRC were clustered via k-means clustering (optimal k = 4, determined

by an elbow plot [Figure S2E]). Of the four clusters, only Clusters 2 and 4 contained subjects with LS-CRC (Figure 2D). In contrast, patients with

sporadic CRC spread over the four clusters.

From each cluster’s LS-CRC patient SHAP value, we found that the top-ranking species in Cluster 2 were CRC-related microbiota, such as

G. morbillorum, F. nucleatum subsp. nucleatum, P. micra, and P. stomatis (Figure 2E, left panel). The top-ranking species in Cluster 4 were

similar to those in Cluster 2, with a highly abundant F. nucleatum subsp. nucleatum as the top contributor (Figure 2E, right panel). Overall,

the local feature importance analysis suggests that the sporadic CRC classifier distinguished LS-CRC from LS control, mainly based on Fuso-

bacterium spp. presence, especially F. nucleatum subsp. nucleatum.

Enriched fap2 in patients with Lynch syndrome-colorectal cancer

F. nucleatum genes have been reported as virulence factors (Fn VF) associated with CRC progression, such as fadA, fap2, cbpF, radD, and

FnDps.32–37 Here, we explored the LS metagenome data to identify the potential enrichment of these virulence factors.

Four out of seven Fn VFs were detected in our LS cohort, which were fap2 (average prevalence 5.0%), radD (average prevalence 35.7%),

fadA (average prevalence 7.1%), and cbpF (average prevalence 10.4%), while fadA2, fadA3, and FnDps were not detected in our LS cohort

Figure 1. Gut microbiota composition overview

(A) Alpha-diversity (Shannon–Weiner Index) comparison between the LS and non-LS cohorts. p< 0.05 (Mann-Whitney U test) is considered statistically significant.

(B) Principal coordinate analysis (PCoA) based on the genus profiles of all patients.

(C) Principal coordinate analysis (PCoA) based on the genus profiles of patients with LS.

(D) Enterotype distribution within the LS and non-LS cohorts. The y axis represents the proportion of patient enterotypes in each group.

(E) Distribution of the top five most abundant genera within each enterotype.

(F) Comparison of non-LS and LS patient proportions for each enterotype. p < 0.05 (Fisher’s exact test) is considered statistically significant.
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(Figures 3A and S3A). Of these four detected genes, fap2 (Mann–Whitney U, p = 0.008) was significantly enriched in LS-CRC compared to LS

controls, whereas the other three genes were not significantly different (p > 0.05) in both LS controls and LS-CRC subjects (Figure 3A). In com-

parison, all seven CRC-associated genes were detected in the sporadic CRC cohort, with five genes significantly enriched in CRC subjects,

especially those with late-stage CRC subjects (Figure S3B).

Gene prevalence was similar between the LS and sporadic cohorts (Figure S3A), indicating a low number of patients with LS as a potential

reason for the absence of fadA2, fadA3, and FnDps in the LS cohort. Despite the low sample numbers, fap2was highly prevalent in LSCRCand

was enriched compared to LS controls. As fap2 has been reported to play a role in host–microbe adhesion (GalNAc)33 and immune system

modulation (TIGIT),38 a high abundance of fap2 may be an indicator of intratumoral Fusobacterium species and an immunogenic tumor

microenvironment.

Escherichia coli and colibactin biosynthesis gene cluster showed no significant change in patients with Lynch syndrome

Other than Fusobacterium nucleatum and its adhesins, other microbial genes have also been reported to have a causal relationship with CRC

tumorigenesis. Recently, a study reported that colibactin, a genotoxin produced by pks+ Escherichia coli, exacerbates dMMR-related muta-

tions.14 As dMMR is a hallmark of LS,2 we explored our metagenomic data to identify potential colibactin biosynthesis-related gene enrich-

ment in patients with LS.

Pairwise comparisons of E. coli abundance and colibactin biosynthesis-related genes between LS controls and other groups showed no

significant changes (Table S3). A similar analysis of sporadic CRC cohorts also showed no significant changes (Table S3).

Gut microbe under Lynch syndrome-colorectal cancer had higher amino acid degradation and polyamine-related

metabolism

In addition to direct cell adhesion, gut microbiota-derivedmetabolites and othermetabolic activitiesmay affect the host. To explore the func-

tions of gut microbial genes, we quantified the relative abundance of KEGG Orthologies (KOs). To investigate differences or similarities in

other gut microbiota metabolic activities, pairwise comparisons were performed on fecal metabolite concentrations and KO-level functional

gene profiles.

A pairwise comparison of the fecal metabolite concentrations between the LS controls and other groups showed 65 metabolites with dif-

ferential concentrations in at least one comparison (Table S4). Focusing on LS controls and LS-CRC results, three metabolites (glycerophos-

phorylcholine (p = 0.00531), glycerol (p = 0.00517), and betaine aldehyde (p = 0.01960)) had significantly higher concentrations in LS-CRC. In

contrast, 25 metabolites, such as gamma-aminobutyric acid (GABA) (p = 0.00252), malonate (p = 0.00879), and 2-hydroxyglutarate

(p = 0.00501), had significantly lower concentrations (Figure 3B). A pairwise comparison of KOs between the LS controls and other groups

detected 753 KOs with differential abundance in at least one comparison (Table S5). Focusing on LS control and LS-CRC comparisons,

275 KOs were significantly more abundant and 62 KOs had a significantly lower abundance in LS-CRC (p < 0.05) (Figure 3C).

Overrepresentation analysis (ORA) of the KEGG module was performed with fecal metabolites and KOs, showing statistical significance

(p < 0.05) to determine whether any metabolic function was significantly altered. At KEGG MODULE level, nine modules were significantly

over-represented (q < 0.1), including ‘‘Lysine degradation, L-lysine => succinate’’ (M00956) (q = 0.0295) and ‘‘GABA shunt’’ (M00027)

(q = 0.0573) (Figure 3D). ORA was performed using the EnteroPathway module (EPM) to cover functions undefined in the KEGG MODULE.

Three modules (‘‘Lysine degradation, L-lysine => acetoacetyl-coA, butyril-coA’’ (EPM0634) (q = 0.0251), ‘‘Arginine degradation’’ (EPM0734)

(q = 0.0313), and "Ornithine degradation, ornithin => putrescine’’ (EPM0739) (q = 0.0768)) were significantly overrepresented (Figure 3E).

Overrepresented metabolic modules and components with differential abundance showed that both metabolites and related KOs were

altered in LS-CRC (Figures 3F, S3E, and S3F). For example, lysine decarboxylase ldcC (K01582), which is involved in the first step of the L-lysine

degradation pathway, and two other KOs (gabT (K07250) and gabD (K00135)) that are involved in subsequent reactions in this pathway, were

highly abundant in the LS-CRC group. In addition, the fecal concentrations of 5-aminovalerate and 2-hydroxyglutarate, two intermediate me-

tabolites of the L-lysine degradation pathway, were lower in the LS-CRC group. In addition to l-lysine degradation, gabT (K07250) and gabD

(K00135) are also involved in GABA shunt formation. Furthermore, fecal GABA concentrations were lower in patients with LS-CRC.

The l-lysine degradation module, which leads to butyrate production, was also overrepresented. The beta-lysine 5,6-aminomutase com-

plex (kamD [K01844] and kamE [K18011)), L-erythro-3,5-diaminohexanoate dehydrogenase (kdd [K18012)), and acetate CoA/acetoacetate

CoA-transferase alpha subunit (atoD [K01034)) were enriched in LS-CRC.

Figure 2. Fusobacterium spp. enriched in patients with LS CRC and acts as CRC marker

(A) Comparison of relative species abundance between the LS controls (n = 18) and LS-CRC (n = 11). The x axis represents the generalized fold-change between

LS-CRC and LS controls, and the y axis represents the negative log10 transformed p-values of the two-sided Mann–Whitney U test. The horizontal dotted line

shows a -log10 transformed p-value of 0.05. The sizes of the dots indicate their relative abundances.

(B) ROC-AUC plot of LS classification task between LS controls and LS-adenoma, LS-CRC, or LS-surgery.

(C) Principal component analysis (PCA) of estimated SHAP values, annotated by the LS and CRC status of a patient.

(D) Principal component analysis (PCA) of estimated SHAP values, annotated by k-means cluster of a patient. Bar plot shows prevalence ratio of clusters within

sporadic CRC and LS CRC subjects.

(E)Waterfall plot of species contribution to the CRC probability of patients with LS-CRC stratified for each LSCRCpatient cluster (Clusters 2 and 4, Figure 2D). The

x axis represents the SHAP values and the y axis is ordered by the sumof the absolute SHAP values. Dotted colors indicate the relative abundance of the species in

each subject.
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In addition to L-lysine degradation, ornithine decarboxylase speC/F (K01581) and putrescine: ornithine antiporter potE (K03756), which are

involved in putrescine formation and transport, were also enriched in LS-CRC. In addition, S-adenosylmethionine decarboxylase speD

(K01611) and spermidine export proteins mdtI (K11742) and mdtJ (K11743), which are involved in spermidine biosynthesis and export,

were enriched in the LS-CRC.

We also explored the metagenome profile of an independent Israelian LS cohort24 to validate our findings, and observed significant over-

representation of ‘‘GABA shunt’’ module. Over-representation of lysine degradation, arginine degradation, or polyamine biosynthesis was

not observed (Table S5). This might be due to the lack of subjects with ongoing CRC in the Israel cohort, indicating CRC-specific intestinal

environment as the main driver of gut microbiota function differences.

Overall, differential fecal metabolites and functional genes between LS-CRC and LS controls indicated potential shifts in gut microbiota

metabolism, specifically higher lysine degradation and polyamine biosynthesis.

Patientswith Lynch syndrome have distinct fecal metabolite patterns prior to adenoma formation, butminimal gutmicrobe

changes

Next, we compared LS controls (n = 18) and non-LS controls (n = 16) to examine the gut microbiota and fecal metabolite changes that

occurred prior to adenoma formation in patients with LS. To account for sample number imbalance and confounding factors (Figure S4A),

non-LS control samples were matched to LS control samples based on age and sex distributions (Figure 4A).

A comparison between the LS and non-LS controls showed 24 species with differential abundances (Figure 4B; Table S6). Of the 22 species,

three (Bacteroides helcogenes [p = 0.0041), Bacteroides plebeius [p = 0.022], and Cronobacter turicensis [p = 0.0479)) were enriched in LS

controls. In contrast to the comparison within LS subjects, significant enrichment of Fusobacterium spp. and other CRC-related gut microbes

in LS controls was not observed (Figure S4C).

A comparison of fecal metabolite concentrations showed that 57 metabolites had significantly different concentrations between sporadic

and LS controls, 52 of which were higher in the LS controls (Figure 4C; Table S6). Metabolites with higher concentrations in LS controls

included several known oncometabolites, such as asymmetric dimethylarginine (ADMA) (p = 0.00200) and spermidine (p = 0.00183).39–42 Dif-

ferential abundance analysis of the KO profile showed 100 KOs higher in LS controls and 213 KOs lower in LS controls than in non-LS controls

(Figure 4D; Table S6).

ORAon fecal metabolites andKOs showed 25 KEGGMODULESwere significantly over-represented, including ‘‘Arginine biosynthesis, gluta-

mate=>arginine’’ (M00845) (q= 1.263 10�4), ‘‘Arginine biosynthesis, ornithine=>arginine’’ (M00844) (q= 1.823 10�4), ‘‘Ornithine biosynthesis,

glutamate => ornithine’’ (M00028) (q = 0.0137), and ‘‘Polyamine biosynthesis, arginine => spermidine’’ (M00133) (q = 0.0563) (Figure 4E). Three

modules in EnteroPathway were significantly overrepresented (‘‘Arginine biosynthesis, ornithine => arginine’’ (EPM1197) (q = 0.0312), ‘‘Conju-

gated CA deconjugation’’ (EPM0129) (q = 0.0312), and ‘‘GNB biosynthesis’’ (EPM0819) (q = 0.0534)) (Figure 4F). However, the ORA results

were mostly driven by shifts in fecal metabolite concentrations with minimal changes in functional gene abundance (Figures 4G, S4C, and S4D).

Overall, a comparison between LS and non-LS controls showed minimal changes in gut microbiota composition and function. However,

distinct fecal metabolite profiles and gut microbiota activities were observed, indicating that a distinct LS-specific intestinal environment may

be present prior to adenoma formation.

Integrated multi-omics analysis showed potential links between gut microbiota and amino acid metabolism in Lynch

syndrome-colorectal cancer subjects

To identify potential association between gut microbiota dysbiosis, fecal metabolite and LS-CRC, we performed correlation analysis between

taxonomic profile, functional gene profile and fecal metabolite profiles.

We observed several positive and negative correlations between microbe-metabolite (Table S7). For example, Fusobacterium ulcerans

and lysine showed negative correlation, while Peptostreptococcus anaerobius showed a positive correlation. Positive correlation was also

Figure 3. Enriched fap2 and overrepresentation of metabolites and genes involved in lysine and arginine degradation in LS CRC

(A) Boxplots of Fusobacterium nucleatum virulence factor abundance. Statistically significant results (Mann–Whitney U test p < 0.05) were annotated.

(B) Comparison of fecal metabolite concentrations between LS controls (n = 18) and LS-CRC (n = 11). The x axis represents the generalized fold-change between

LS CRC and LS controls, and the y axis represents the negative log10 transformed p-values of the two-sided Mann–Whitney U test. The horizontal dotted line

shows the -log10 transformed p-value of 0.05. The size of the dots indicates relative abundance.

(C) Comparison of KO relative abundances between LS controls (n= 18) and LS-CRC (n = 11). The x axis represents the generalized fold-change between LS-CRC

and LS controls, and the y axis represents the negative log10 transformed p-values of the two-sided Mann–Whitney U test. The horizontal dotted line shows the

-log10 transformed p-value of 0.05. The size of the dots indicates relative abundance.

(D) Overrepresented KEGGmetabolic modules (KEGGMODULE) in LS CRC (p-value <0.05). Nine KEGGMODULEs showed significant overrepresentation in LS

CRC (FDR p-value <0.1). Modules are arranged in ascending order based on p-value. The right figure shows the number of Kos in each module (red bar) and the

percentage of enriched Kos within the module (black line).

(E) Overrepresented EnteroPathway metabolic modules in LS CRC (p-value <0.05). Three EnteroPathway MODULEs showed significant overrepresentation in LS

CRC (FDR p-value <0.1). Modules are arranged in ascending order based on p-value. The right figure shows the number of KOs in each module (red bar) and the

percentage of enriched KOs within the module (black line).

(F) Diagrams of metabolic modules overrepresented in LS CRC compared to LS controls. Circular nodes represent key metabolites or statistically significant

metabolites. Rectangular nodes represent key KOs or statistically significant KOs. Statistical significance threshold was defined as Mann–Whitney U p < 0.05.
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observed between other CRC-associatedmicrobe and arginine, although no statistical significance was detected. Exploring gene-metabolite

correlation, we observed a negative correlation between gabD and C00431 (5-aminovalerate), as well as C00042 (succinate), while gabD

showed a positive correlation with C00025 (Glu) (Table S7). Several other metabolites were correlated with gabD abundance, indicating

its promiscuous nature, and involved in several metabolism pathways. Although not significant, arcA showed a positive correlation with argi-

nine. In microbe-gene correlation, we observed a positive correlation between CRC-associated microbes and arcA (arginine deiminase,

K01478), indicating a potential link between amino acid metabolism and CRC-associated microbes (Table S7).

DISCUSSION

In this study, we profiled the fecal microbiome and metabolome of 71 patients with LS. Our LS cohort included patients without adenoma or

carcinoma and no prior history of adenoma or carcinoma formation, those with colorectal adenoma, those with CRC, and those with a history

of colectomy due to past carcinoma formation. Furthermore, we obtained data from patients with non-LS CRC using identical sampling pro-

tocol.26 Our study is the first to analyze the changes in gut microbiota and fecal metabolite across all stages of adenoma-carcinoma progres-

sion in LS, along with a comparison with non-LS CRC.

In line with previous studies, LS subjects had lower alpha diversity than sporadic CRC and non-LS controls.21–23 We did not detect signif-

icant associations between alpha diversity and colonoscopy findings, age, or MMR mutations. Despite a significant association between LS

status and alpha diversity, beta-diversity analysis did not detect a significant association between LS status and gut microbiota composition.

Subject’s CRC progression was identified as themost explanatory variable for the LS cohort’s gut microbiota composition. Although previous

studies have reported LS-specific gut microbiota composition, recent studies showed no distinct gut microbiota between non-LS non-tumor

control and non-tumor LS carriers, in consensus with our observation.

Both LS and non-LS subjects were clustered into enterotypes based on their genus profiles to identify potential LS-specific enterotype.43,44

Based on enterotype clustering and dominant genus analysis of each enterotypes, LS subjects tended to cluster into enterotypes with high

Bacteroides abundance and low Faecalibacterium abundance (Faecalibaterium-poor enterotype). Enterotype proportions had a minimal as-

sociation with adenoma/carcinoma formation or colectomy. As low alpha diversity and Faecalibacterium-poor enterotypes have been asso-

ciatedwith IBD, our findings indicate the intestinal inflammation of LS subjects, regardless of CRCprogression.27,28 Activated immune profiles

due to MMR loss-of-function have been reported in LS subjects across all stages of CRC progressions,45–48 which may induce metabolic re-

programming of the intestinal environment, affecting gut microbiota composition.49

One of the most important findings of this study was the discovery of a distinct association between Fusobacterium species and LS-CRC.

Although several species, such as F. nucleatum, P. stomatis, P. micra, and G. morbillorum, have been associated with sporadic CRC,26,29,30

only Fusobacterium species showed significant enrichment in patients with LS-CRC. ML-based marker screening validated that enriched

F. nucleatum acts as CRC marker both in sporadic and LS CRC. In line with a previous study, F. nucleatum enrichment was not observed

in patients with LS and adenoma was not found,20 suggesting carcinoma formation preludes F. nucleatum enrichment in LS-CRC. Although

not significant, we validated Fusobacterium enrichment in LS subjects with cancer history from an independent Israel LS cohort.24 In

consensus with our findings, high intra-tumoral F. nucleatum abundance have been reported in dMMR/MSI-H CRC, including those of hered-

itary nature.18,50–52 To our knowledge, this study is the first to detect enriched Fusobacterium in LS-CRC fecal sample.

F. nucleatum has been associated with immune modulation, cancer metastasis, chemoresistance, and immune checkpoint inhibitor (ICI)

response.53–57 Chemoresistance and ICI response have been associated with dMMR/MSI-H CRC, indicating F. nucleatum may play some

roles in CRC treatment. Furthermore, F. nucleatum has also been associated with aspirin roles in CRC prevention, in which aspirin was shown

to have an antibiotic effect against specific F. nucleatum strains. Unfortunately, we did not have aspirin intake data in our cohort to study this

phenomenon.

Figure 4. Distinct fecal metabolites in LS controls, but minimal changes in related genes and species abundance

(A) Age and sex distribution of LS controls and matched non-LS controls. p < 0.05 (Mann-Whitney U test) is considered statistically significant.

(B) Comparison of species relative abundances between LS controls (n = 18) and matched non-LS controls (n = 18). The x axis represents the generalized fold-

change between LS and non-LS controls, and the y axis represents the negative log10 transformed p-values of the two-sidedMann–WhitneyU test. The horizontal

dotted line shows the -log10 transformed p-value of 0.05. The size of the dots indicates relative abundance.

(C) Comparison of fecal metabolite concentrations between LS controls (n = 18) andmatched non-LS controls (n = 18). The x axis represents the generalized fold-

change between LS and non-LS controls, and the y axis represents the negative log10 transformed p-values of the two-sidedMann–WhitneyU test. The horizontal

dot line shows the -log10 transformed p-value of 0.05. The size of the dots indicates relative abundance.

(D) Comparison of KO relative abundances between LS controls (n = 18) andmatched non-LS controls (n = 18). The x axis represents the generalized fold-change

between LS and non-LS controls, and the y axis represents the negative log10 transformed p-values of the two-sidedMann–WhitneyU test. The horizontal dotted

line shows the -log10 transformed p-value of 0.05. The size of the dots indicates relative abundance.

(E) Top 15 KEGG MODULEs overrepresented in LS controls (p-value <0.05). Modules are arranged in ascending order based on p-value. The right figures

represent the number of KOs and metabolites in each module (red bar) and the percentage of enriched KOs and metabolites within the module (black line).

(F) Top 15 EnteroPathway MODULEs overrepresented in LS controls (p-value <0.05). Three EnteroPathway MODULEs showed significant overrepresentation in

LS controls (FDR p-value <0.1). Modules are arranged in ascending order based on p-value. The right figures represent the number of KOs and metabolites in

each module (red bar) and the percentage of enriched KOs and metabolites within the module (black line).

(G) Diagrams of overrepresented metabolic modules in LS controls compared to non-LS controls. Circular nodes represent key or statistically significant

metabolites. Rectangular nodes represent key or statistically significant KOs. Statistical significance threshold was defined as Mann–Whitney U p < 0.05.
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Consistent with the enrichment of F. nucleatum in LS CRC, we found fap2, a known F. nucleatum virulence factor (Fn VF), was significantly

more abundant in LS CRC. Previous studies have reported the potential role of fap2 in host–microbe interactions and immunomodulatory

properties,33,38 which may offer an advantage for F. nucleatum growth in the CRC tumor microenvironment.

Notably, our LS cohort had a low detection rate for fadA and its homologs, which have been shown to cause DNA damage and CRC cell

growth.32,58 Knockout of fadAminimizes F. nucleatum effect on CRC progression.58 Low fadA levels may be associated with a better disease

prognosis in patients with LS-CRC, in line with reports of a better prognosis in LS-CRC compared to sporadic CRC.2 However, as our LS cohort

has a limited sample size, the low fadA detection rate might be due to a lack of detection power. Thus, validation in a larger LS cohort is

essential to study the exact roles of F. nucleatum in LS CRC and identify key virulence factors.

Differential abundance analysis of fecalmetabolites and geneprofiles revealed putative functional shifts in LSCRCgutmicrobes compared

to LS controls, such as the overrepresentation of the lysine degradation pathway, GABA shunts, and polyamine biosynthesis. GABA shunt and

lysine degradation were linked with glutamine metabolism, where lysine acts as a precursor to glutamine, which is further metabolized into

succinate in the GABA shunt.59,60 Serum concentration of both glutamine and lysine were reported to be elevated in CRC subjects.61 Poly-

amines, such as putrescine and spermidine, playmany roles in host andmicrobial biology, including immune systemmodulation and bacterial

response to environmental changes, such as increased oxidative damage.62,63 Higher amino acid catabolism and increased polyamine meta-

bolism by gut microbes may be adaptive responses to CRC-driven changes in the intestinal environment.64 Notably, Fusobacterium nucle-

atum has been reported to utilize amino acids as an energy source, as well as utilizing polyamine metabolism for its biofilm formation in

the oral microenvironment.65,66 Co-culture of F. nucleatum and human cell line have reported amino acid degradation activity by

F. nucleatum, with succinate and SCFA as the end product, suggesting cross-feeding activity between F. nucleatum and CRC cell.67

Another important finding of this study was the discovery of distinct fecal metabolite compositions in patients with LS without cancerous

lesions, with minimal gut microbiota composition and functional changes. Amino acids, polyamines, and bile acids have been reported to

modulate the immune system, suggesting fecal metabolites disruption association with immune system activation in LS-control.62,68,69 Other

than immune modulation, bile acids have been associated with increased CRC risk, especially DCA-induced DNA oxidative damage.70 As

DNA oxidative damage is one of the repair targets of mismatch repair genes,71 the accumulation of bile acids might significantly impact

CRC tumorigenesis in patients with LS. Distinct immune profiles have been reported in patients with LS with dMMR colonic crypts, even prior

to adenoma and carcinoma formation.45 As activated immune systems have been reported to induce metabolic reprogramming,49 the

observed shifts in fecal metabolitesmight be amarker of the activated host immune system triggered by early dMMRmutations. In consensus

with our findings, a previous study has shown serummetabolites of non-tumor LS subjects were similar to sporadic CRC, with elevated inflam-

matory markers.72

To search for potential links between omics, we exploredmicrobe-gene, microbe-metabolite, and gene-metabolite correlation. From the

correlation analysis results, we identify potential links between CRC-associatedmicrobe and amino acidsmetabolism, such as lysine and argi-

nine degradation. Arginine degradation is linked with polyamine biosynthesis, while lysine degradation is linked to GABA shunts and TCA

cycle, both pathways that were affected by metabolic reprogramming, associated with immune system activation and carcinoma formation.

Thus, frommulti-omics integration, we identified amino acid metabolism as a potential link between gut microbiota and host intestinal envi-

ronment changes.

Overall, based on the findings in this study, we hypothesized that compared with sporadic CRC, host genetics, e.g., MMR mutation and

loss-of-function, likely acts as the main driver of CRC tumorigenesis in LS.1,2 Early MMR loss-of-function may elevate mutation accumulation

rate, such as frameshift peptides, which acts as novel antigen, inducing immune system activation.73 Activated immune systemmight induce

shifts in gut microbiota composition and function, selecting for gut microbes with innate immune evasion and amino acid utilization capabil-

ities, such as Fusobacterium nucleatum.38,65–67 Furthermore, gut microbiota dysbiosis, such as F. nucleatum enrichment, may play a role in

CRC progression, metastasis, disease prognosis, and treatment response.19,32,36,54,55,57,58,67

Limitations of the study

We acknowledge several limitations of our study. Due to the cross-sectional nature of our study, all results were observational, thus requiring

validation experiments and additional cohorts. Recent study has shown the potential effect of non-antibiotic drugs against gut microbiota.

Combinedwith the recent recommendation of daily aspirin intake for CRC prevention in the LS population, future studies should consider the

potential interaction between aspirin and gut microbiota. Thus, future longitudinal or prospective studies with dietary and drug intake, intes-

tinal inflammation marker, dMMR loss-of-function validation, paired serum-fecal metabolite, and immune profiles may provide further evi-

dence to support our hypothesis. Additionally, a co-culture or mouse model experiment is essential to elucidate the causal relations of

microbe-CRC interaction in LS subjects.

STAR+METHODS

Detailed methods are provided in the online version of this paper and include the following:

d KEY RESOURCES TABLE

d RESOURCE AVAILABILITY

B Lead contact

B Materials availability

ll
OPEN ACCESS

12 iScience 27, 110181, July 19, 2024

iScience
Article



B Data and code availability

d EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

B Regulatory compliance

B Subject recruitment

d METHOD DETAILS

B Fecal sample collection and DNA extraction

B Shotgun metagenomic sequencing

B Sequencing reads quality control

B Taxonomy annotation and abundance estimation

B Genome assembly, gene prediction, and gene abundance estimation

B Gene annotation

B Virulent factor annotation

B Metabolome analysis

d QUANTIFICATION AND STATISTICAL ANALYSIS

B Cohort matching

B Microbial community structure analysis

B Statistical tests

B Training CRC classifier

B Global and local feature importance analysis

B Overrepresentation analysis (ORA)

B Correlation analysis

SUPPLEMENTAL INFORMATION

Supplemental information can be found online at https://doi.org/10.1016/j.isci.2024.110181.

ACKNOWLEDGMENTS

We thank all patients and their families who participated in this study, N. Sezawa, R. Ohira, H. Sekiguchi, and R. Itsuki (National Cancer Center

Hospital, Tokyo, Japan), for expert technical assistance. This work was supported by grants from the National Cancer Center Research and

Development Fund (2020-A-4 to Y.S. and S.Y. and 2023-A-6 to Y.S.); Practical Research for Innovative Cancer Control from the Japan Agency

for Medical Research and Development (AMED) (JP22ck0106546 to Y.S., T. Yamada, and S.Y.; JP23ck0106799h to Y.S., T. Yamada, and S.Y.);

Project for Cancer Research and Therapeutic Evolution (P-CREATE) from AMED (JP21cm0106477 to S.S., T. Yamada, and S.Y.); Project for

Promotion of Cancer Research and Therapeutic Evolution (P-PROMOTE) from AMED (JP23ama221404 to Y.S., T. Yamada, and S.Y.;

JP24ama221430 to Y.S., T. Yamada, and S.Y.); United States-Japan Cooperative Medical Science Program from AMED (JP23jk0210009 to

S.Y.); AMED-CREST (JP23gm1010009 to S.F.); AMED Moonshot (JP21zf012700 to S.F. and T. Yamada); JSPS KAKENHI (22H03541 to S.F.;

20H03662 to S.Y.; 23H02892 to S.Y.; 18K15800 to S.S.; 22K16336 to S.S.); JST ERATO (JPMJER1902 to S.F.); JST-AIP Acceleration Research

(JPMKCR19U3 to T. Yamada and S.Y.); Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary

Research Initiatives, Osaka University (to S.Y.); Joint Research Project of the Institute Medical Science, the University of Tokyo (to S.Y.); the

Takeda Science Foundation (to S.Y.); the Yasuda Medical Foundation (to S.Y.); the Mitsubishi Foundation (to S.Y.); the Princess Takamatsu

Cancer Research Fund (to S.Y.); Yakult Bio-Science Foundation (to S.Y.); the Food Science Institute Foundation (to S.F.).

AUTHOR CONTRIBUTIONS

S.Y., T.N., Y.S., S.F., and T. Yamada. contributed to the study concept and design. S.Y., T.N., S.S., H.T., M.Y., T. Yachida, and Y.S. collected the

clinical samples and information. S.Y., T.S., and S.F. performed metagenome and metabolome experiments. F.S. and S.M. performed bio-

informatics analyses. F.S., S.M., S.Y., and T. Yamada wrote the article.

DECLARATION OF INTERESTS

Takuji Yamada (T.Y.) and Shinji Fukuda (S.F.) are founders of Metagen Inc. andMetagen Therapeutics Inc. Metagen Inc. focuses on the design

and control of the gut environment for human health. Metagen Therapeutics Inc. focuses on drug discovery and development, which utilizes

microbiome science. T.Y. is the founder of digzyme Inc. digzyme Inc. focuses on the development of novel enzymes. None of the companies

had control over the interpretation, writing, or publication of this work.

Received: December 7, 2023

Revised: March 11, 2024

Accepted: June 1, 2024

Published: June 4, 2024

ll
OPEN ACCESS

iScience 27, 110181, July 19, 2024 13

iScience
Article

https://doi.org/10.1016/j.isci.2024.110181


REFERENCES
1. Fearon, E.R. (2011). Molecular Genetics of

Colorectal Cancer. Annu. Rev. Pathol. 6,
479–507. https://doi.org/10.1146/annurev-
pathol-011110-130235.

2. Lynch, H.T., Snyder, C.L., Shaw, T.G., Heinen,
C.D., and Hitchins, M.P. (2015). Milestones of
Lynch syndrome: 1895–2015. Nat. Rev.
Cancer 15, 181–194. https://doi.org/10.1038/
nrc3878.

3. Bonadona, V., Bonaı̈ti, B., Olschwang, S.,
Grandjouan, S., Huiart, L., Longy, M.,
Guimbaud, R., Buecher, B., Bignon, Y.J.,
Caron, O., et al. (2011). Cancer Risks
Associated With Germline Mutations in
MLH1, MSH2, and MSH6 Genes in Lynch
Syndrome. JAMA 305, 2304–2310. https://
doi.org/10.1001/jama.2011.743.

4. Ten Broeke, S.W., van der Klift, H.M., Tops,
C.M.J., Aretz, S., Bernstein, I., Buchanan,
D.D., de la Chapelle, A., Capella, G.,
Clendenning, M., Engel, C., et al. (2018).
Cancer Risks for PMS2-Associated Lynch
Syndrome. J. Clin. Oncol. 36, 2961–2968.
https://doi.org/10.1200/JCO.2018.78.4777.

5. Lee, B.C.H., Robinson, P.S., Coorens, T.H.H.,
Yan, H.H.N., Olafsson, S., Lee-Six, H.,
Sanders, M.A., Siu, H.C., Hewinson, J., Yue,
S.S.K., et al. (2022). Mutational landscape of
normal epithelial cells in Lynch Syndrome
patients. Nat. Commun. 13, 2710. https://doi.
org/10.1038/s41467-022-29920-2.

6. Battaglin, F., Naseem, M., Lenz, H.-J., and
Salem,M.E. (2018). Microsatellite Instability in
Colorectal Cancer: Overview of Its Clinical
Significance and Novel Perspectives. Clin.
Adv. Hematol. Oncol. 16, 735–745.

7. Zeller, G., Tap, J., Voigt, A.Y., Sunagawa, S.,
Kultima, J.R., Costea, P.I., Amiot, A., Böhm,
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KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Biological samples

Lynch Syndrome subject’s feces samples National Cancer Center Japan NCC

Deposited data

Whole-metagenome shotgun sequencing

(Japan)

This study DDBJ: DRA017459

Whole-metagenome shotgun sequencing

(Japan)

Yachida et al.26 DDBJ: PRJDB4176

Whole-metagenome shotgun sequencing

(Israel)

Naddaf et al.24 SRA: PRJNA939026

Chemicals, peptides, and recombinant proteins

Methionine sulfone Alfa Aesar Cat# A17027

2-(N-morpholino)ethanesulfonic acid DOJINDO LABORATORIES Cat# 341-01622

D-Camphor-10-sulfonic acid FUJIFILM Wako Cat# 037-01032

Zirconia/silica beads TOMY SEIKO Cat# ZB-30, ZSB- 01

Methanol FUJIFILM Wako Cat# 134-14523

Chloroform FUJIFILM Wako Cat# 033-08631

5-kDa-cutoff filter column Human Metabolome Technologies Cat# UFC3LCCNB- HMT

Capillary column for negative mode Nacalai Tesque Cat# 07584-44

Capillary column for positive mode Molex Incorporated Cat# 1068150017

Critical commercial assays

GNOME DNA Isolation Kit MP Biomedicals Cat# 11343139

Agilent 4200 TapeStation System Agilent Technologies Cat# G2991BA

Nextera XT DNA Library Preparation Kit illumina Cat# FC-131-1096

Nextera XT Index Kit v2 illumina Cat# FC-131-2001

HiSeq PE Rapid Cluster Kit v2-HS illumina Cat# PE-402-4002

HiSeq Rapid Duo cBot v2 Sample Loading Kit illumina Cat# CT-403-2001

HiSeq 2500 illumina Cat# SY-401-2501

cBot Cluster Generation System illumina Cat# SY-301-2002

HiSeq Rapid SBS Kit v2-HS illumina Cat# FC-402-4002

Zirconia Beads Biospec Cat# 11079123ss

Zirconia/Silica Beads Biospec Cat# 11079101z

Micro Smash TOMY Cat# MS-100R

UltrafreeMC-PLHCC 250/pk for Metabolome

Analysis

Human Metabolome Technologies Cat# UFC3LCCNB- HMT

Agilent 7100 Capillary Electrophoresis System Agilent Technologies Cat# 7100CE

Agilent 6224 TOF LC/MS Agilent Technologies Cat#6224 TOF LC/MS

Agilent 6230 TOF LC/MS Agilent Technologies Cat#6230 TOF LC/MS

Software and algorithms

HiSeq Control Software (HCS) v2.2.68 illumina

Real-Time Analysis (RTA) v1.18.66.3 illumina

Bcl2fastq2 v2.17 illumina
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Bowtie 2 (version 2.2.9) Langmead and Salzberg74 https://sourceforge.net/projects/bowtie-bio/

files/bowtie2/2.2.9/bowtie2-2.2.9-linux-x86_

64.zip/download

cutadapt (version 1.9.1) Martin et al.75 https://github.com/marcelm/cutadapt

BLAST+ (version 2.2.30) Altschul et al.76 https://www.ncbi.nlm.nih.gov/books/

NBK279690

IDBA_UD (version 1.1.1) Peng et al.77 http://hku-idba.googlecode.com/files/idba-1.

1.1.tar.gz

MetaGeneMark (v.3.26) Bessemer and Bodorovsky78 http://exon.gatech.edu/GeneMark/license_

download.cgi

DIAMOND (v2.1.2) Buchfink et al.79 https://github.com/bbuchfink/diamond

eggnog-mapper (v2.1.9) Cantalapiedra et al.80 https://github.com/eggnogdb/eggnog-

mapper/tree/2.1.9

R 4.2.0 R Core Team https://www.R-project.org/

R package stats R Core Team https://stat.ethz.ch/R-manual/R-devel/library/

stats/html/stats-package.html

R package MatchIt The Comprehensive R Archive Network https://cran.r-project.org/web/packages/

MatchIt/index.html

R package vegan The Comprehensive R Archive Network https://cran.r-project.org/web/packages/

vegan/index.html

R package rstatix The Comprehensive R Archive Network https://cran.r-project.org/web/packages/

rstatix/index.html

R package ggpubr The Comprehensive R Archive Network https://cran.r-project.org/web/packages/

ggpubr/index.html

R package clusterProfiler The Comprehensive R Archive Network https://bioconductor.org/packages/release/

bioc/html/clusterProfiler.html

R package ape The Comprehensive R Archive Network https://cran.r-project.org/web/packages/ape/

index.html

R package factoextra The Comprehensive R Archive Network https://cran.r-project.org/web/packages/

factoextra/index.html

R package DirichletMultinomial Bioconductor https://bioconductor.org/packages/release/

bioc/html/DirichletMultinomial.html

R package SIAMCAT Bioconductor https://github.com/zellerlab/siamcat

Python Python Software Foundation https://www.python.org/

LightGBM (version 3.3.3) Ke et al.81 https://github.com/microsoft/LightGBM/tree/

master/python-package

scikit-opt (version 0.9.0) Head et al.82 https://scikit-optimize.github.io/stable/index.

html

scikit-learn (version 1.1.3) Pedregosa et al.83 https://scikit-learn.org/stable/index.html

SHAP (version 0.41.0) Lundberg et al.84 https://github.com/shap/shap

Other

phiX DNA sequences RefSeq NC_001422.1 https://www.ncbi.nlm.nih.gov/nuccore/

9626372

Human genome sequences (GRCh38) RefSeq GCF_000001405.26 https://www.ncbi.nlm.nih.gov/nuccore/

CM000663.2/ - https://www.ncbi.nlm.nih.gov/

nuccore/CM000686.2/

VITCOMIC2 Mori et al.85 http://vitcomic.org/vitcomic2
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Takuji Yamada (takuji@bio.

titech.ac.jp).

Materials availability

This study did not generate new unique reagents.

Data and code availability

� The raw sequencing data reported in this study have been deposited in the DDBJ Sequence Read Archive (DRA) and are publicly avail-

able as of the date of publication. Public metagenome data of Japanese sporadic CRC cohort was published in a previous study.26

Public metagenome data of Israel LS cohort24 was obtained from SRA. Accession numbers are listed in the key resources table. De-

identified and processed metagenomics, metabolomics, and lifestyle data are presented in Table S1.
� All software tools used in this paper are publicly available and are listed in the key resources table. This paper does not report original

code as no new code was generated.
� Any additional information required to reanalyze the data reported in this study will be available from the lead contact upon request.

EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Regulatory compliance

Stool samples, questionnaires, and clinical information were obtained under informed consent and with the approval of the institutional re-

view boards of each participating institute (National Cancer Center Hospital, 2013–244; Tokyo Institute of Technology, 2014018; Osaka Uni-

versity Hospital, 20064).

Subject recruitment

Seventy-one patients (30 males and 41 females, aged 12–79 (47.89 on average) years) were diagnosed with Lynch Syndrome by genetic

testing. At the time of fecal sampling and questionnaire collection, all patients underwent a colonoscopy to check for cancerous conditions

at the National Cancer Center Hospital, Tokyo (Table 1). Patients with pathogenic variants of germline mismatch repair (MMR) genes were

included. Patients with record of gastrectomy or whose stool samples were insufficient for data collection were excluded.

Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

LTP SILVA release 123 Yilmaz et al.86 https://www.arb-silva.de/documentation/

release-123/

Kyoto Encyclopedia of Genes and Genomes

(KEGG) (retrieved 2023/03/31)

Kanehisa et al.87 ftp://ftp.bioinformatics.jp/kegg/

Fusobacterium nucleatum virulent factors Umana et al.37 http://fusoportal.org/fasta/protein/23726/

23726_FusoPortal_Genes_AA.faa

Fusobacterium nucleatum subsp. nucleatum

ATCC 23726 v1 cbpF (Gene 4)

radD (Gene 32)

fadA2 (Gene 35)

fadA3 (Gene 357, Gene 368, Gene 864)

fadA (Gene 878)

FnDps (Gene 1296) fap2 (Gene 2068)

eggNOG (v5.0.2) Huerta-Cepas et al.88 http://eggnog5.embl.de/app/home

Colibactin biosynthesis cluster gene sequence Nougayrede et al.89 https://www.uniprot.org/citations/16902142

UniProt (release 202205) The UniProt Consortium90 https://ftp.uniprot.org/pub/databases/

uniprot/previous_major_releases/release-

2022_05/knowledgebase/

EnteroPathway (retrieved 2023/10/05) Shiroma et al.91 https://enteropathway.org
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METHOD DETAILS

Fecal sample collection and DNA extraction

In this study, 71 stool samples were collected from 71 patients with LS. All samples were collected on the same day before total colonoscopy.

Detailed protocols for stool sample collection have been previously described.26,92 Briefly, collected stool samples were immediately stored

on dry ice at the hospitals, then stored at -80�C before further experiments.

Shotgun metagenomic sequencing

This study used 71 LS fecal samples for shotgun metagenomic sequencing. Total DNA was extracted from fecal samples using the bead-

beating method with a GNOME DNA Isolation Kit (MP Biomedicals). The DNA quality was assessed using an Agilent 4200 TapeStation

(Agilent Technologies). After final precipitation, the DNA samples were resuspended in TE buffer and stored at -80�C before analysis.

Sequencing libraries were generated using the Nextera XT DNA Sample Kit (Illumina). The library quality was confirmed using an Agilent

4200 TapeStation instrument. Whole-genome shotgun sequencing of fecal samples was performed using the HiSeq 2500 platform (Illumina).

All samples were paired-end sequenced with a 150-bp read length to a targeted data size of 5.0 Gb. A total of 3,541,042,358 (49,873,836 on

average) paired-end reads covering 531,735,402,166 (7,489,231,016 on average) base pairs were obtained (Table S8).

Sequencing reads quality control

The raw sequence reads underwent a series of quality control steps, as follows: Reads containing the letter ‘N’ (unidentified base pair) were

discarded. Reads containing the bacteriophage phiX DNA sequences were identified by mapping them against the reads using Bowtie2

(version 2.2.9)74 with preset options in ‘fast-local’ and discarded. Reads were trimmed for adapter and primer sequences using cutadapt

(version 1.9.1),75 for which the following options were used (‘‘-a CTGTCTCTTATACACATCTCCGAGCCCACGAGAC -O 33 -q 17’’ for the for-

ward primer sequence; and ‘‘-a CTGTCTCTTATACACATCTGACGCTGCCGACGA -O 32 -q 17’’ for the reverse primer sequence). Reads with

quality values of 17 or less consecutively were tailed-cut at the 30 termini within the cutadapt program. Next, reads shorter than 50-bp long

were discarded. Reads of average quality values of 25 or less were discarded.Next, reads weremapped against the humangenome (GRCh38)

using Bowtie2 (version 2.2.9)74 (no-hd, no-sq, fast-local). Those that were mapped were considered derived from the human genome and

discarded. Finally, the unpaired reads were discarded. Consequently, 3,180,329,758 (44,793,377 on average) quality-controlled reads were

used for the subsequent analyses (Table S8).

Taxonomy annotation and abundance estimation

Taxonomy annotation and abundance estimation were performed on both the LS and sporadic CRC cohorts. The high-quality reads were

aligned with a pre-calculated operational taxonomic unit (OTU) dataset stored in VITCOMIC285 using BLAST+ (version 2.2.30)76 (cut-off:

E-value < 1 3 10�8) to obtain bacterial and archaeal 16S rRNA reads and exclude tRNA, 23S rRNA or the internal transcribed spacer (ITS)

sequences.

The filtered reads were aligned to the 16S rRNA sequence database provided by The All-Species Living Tree (LTP) project of the SILVA

database (version 123)86 using BLASTn76 (cut-offs: E-value < 1 3 10�8, sequence identity > 97%, alignment coverage > 80%, bit score > 70).

Alignment(s) with the highest sequence identity and bit score were used as aligned reads to estimate downstream abundance. In case of

multiple alignments, the aligned reads were divided by the number of aligned taxa so that they could be ‘‘shared.’’ Species-level relative

abundance was computed per sample and was defined as the number of reads assigned to the species divided by the total number of

LTP-aligned reads in the sample. Relative abundances at the genus level and higher taxonomic ranks were calculated as the sumof the relative

abundances of all member species. The generated profiles are referred to as ‘‘species profile’’ and ‘‘genus profile’’ hereafter. The species

profile consisted of 8,071 species aggregated into 1,898 genera (Table S9).

Genome assembly, gene prediction, and gene abundance estimation

Prior to gene prediction, high-quality reads were assembled per sample using IDBA_UD (version 1.1.1)77 with the following parameters:

mink = 20, maxk = 120, and step = 10. Post-assembly, open reading frames (ORFs) were predicted on the obtained scaffolds using

MetaGeneMark (version 3.26)78 with parameter ‘‘–g 11,’’ giving a total of 15,527,604 predicted ORFs. Prior to downstream annotation, the

ORFs were filtered to include only those with lengths of 50 amino acids or longer; 14,345,386 ORFs remained after filtering.

Gene abundance was estimated by mapping quality-controlled reads onto scaffolds using Bowtie2 (version 2.2.9).74 ORF read coverage

was calculated by dividing the number of base pairs mapped onto the corresponding scaffold regions by the predicted ORF length.

Gene annotation

Gene annotation was performed on both the LS and sporadic CRC cohorts. Length-filtered ORFs were aligned against a reference database

of prokaryotic complete genomes recorded in the Kyoto Encyclopedia of Genes (KEGG) and Genomes87 (obtained on 2023/03/31) using

DIAMOND (version 2.1.2)79 (cut-offs: sequence identity > 40, bit score > 70, coverage > 80). Alignment results were concatenated with an

ORF read coverage table per sample to calculate functional gene abundance.

For cases in which oneORF corresponded to a single gene, read coveragewas used as is. If anORF correspond tomultiple genes, the read

coverage was ‘‘shared’’ over all corresponding genes by dividing the read coverage with the number of aligned genes. Finally, gene-level
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relative abundances were calculated per sample by dividing the read coverage of the gene by the sum of all gene read coverages. Relative

gene abundance was further aggregated to the KEGGOrthology (KO) level. The generated profile contained 8,198 KO and referred to as the

‘‘KO gene profiles’’ (Table S9).

Virulent factor annotation

To detect Fusobacterium nucleatum virulent factors, reference amino acid sequences of CRC-associated virulent factors (fap2, fadA, fadA2,

fadA3, FnDps, cbpF, and radD) were obtained from a previous study.37 To expand the search range for these virulence genes, reference ge-

nomes were annotated using eggnog-mapper80 (version 2.1.9) to obtain eggNOG88 IDs. These eggNOG IDs serve as references for putative

Fusobacterium nucleatum CRC-associated virulence factors.

Length-filtered ORFs from the LS and sporadic CRC cohorts were annotated using eggnog-mapper80 (version 2.1.9). Next, the eggNOG-

annotated ORF alignment results were concatenated with an ORF read coverage table to calculate eggNOG read coverage. If an ORF was

annotated with multiple eggNOGs, the read coverage was split evenly for all eggNOGs. Each eggNOG read coverage was then divided by

the total sum of the eggNOG read coverages to obtain the relative abundance of each eggNOG. Finally, reference-matched eggNOG IDs

were extracted and utilized for Fusobacterium nucleatum CRC-associated virulence factor abundance in downstream analysis.

UniProt IDs for the colibactin-producing geneswere obtained fromaprevious study.89 Next, length-filteredORFs from the LS and sporadic

CRC cohorts were aligned against the UniProt TrEMBL database (release 2022_05)90 using DIAMOND (version 2.1.2)79 (cut-offs: sequence

identity > 40, bit score > 70, and coverage > 80). Alignment results were concatenated with an ORF read coverage table per sample to calcu-

late UniProt gene abundance. Finally, reference-matchedUniProt IDs were used for colibactin-producing gene abundance in the downstream

analysis.

Metabolome analysis

The present study used 70 LS samples for the metabolomic analysis. Quantitative analysis of chargedmetabolites was performed using capil-

lary electrophoresis time-of-flight mass spectrometry (CE-TOF-MS) as previously described.93 Fecal metabolites were extracted by vigorous

shaking with methanol containing 20 mMof methionine sulfone and d-camphol-10-sulfonic acid each as internal standards.94 All the CE-TOF-

MS experiments were performed using an Agilent CE system. CE-TOF-MS detected 449 compounds from the LS and sporadic CRC cohort

samples, referred to as the ‘‘metabolite profile’’ (Table S9).

QUANTIFICATION AND STATISTICAL ANALYSIS

Cohort matching

For the comparison between LS and non-LS controls, non-LS controls were selected from our previous study.26 To consider the effects of

possible confounding covariates (e.g., sample numbers, age, and sex) on the gut microbiota and fecal metabolite composition, in silico pro-

pensity score-based cohort matching was performed. The propensity score for each subject was calculated based on age and sex. Then, non-

LS controls with similar propensity score were selected as a match for the LS controls (‘‘matchit’’ function, method = ‘‘optimal,’’ ratio = 1, R

MatchIt). Age and sex distributions were evaluated post-matching to validate cohort demographic similarity. Matched non-LS controls were

used for downstream statistical tests against the LS controls.

Microbial community structure analysis

The Shannon–Wiener index was calculated on the LTP annotated taxonomic profiles at the species level (‘‘diversity’’ function, index = ‘‘shan-

non,’’ R vegan). The calculated index was compared between the LS and sporadic cohorts using the Mann–Whitney U test and within the LS

cohort using the pairwise Mann–Whitney U test.

Bray–Curtis dissimilarity were calculated from genus level relative abundances (‘‘vegdist’’ function, method = ‘‘bray,’’ R vegan). Principal

coordinate analysis (PCoA) was performed on the calculated Bray–Curtis dissimilarity to visualize gut microbiota composition (‘‘pcoa’’ func-

tion, R ape).

Quantification of the variance within the gut microbiota composition was evaluated with permutational multivariate analysis of variance

(PERMANOVA) (‘‘adonis2’’ function, permutations = 10000, by = ‘‘margin,’’ R vegan). Demographics (e.g., age and sex) and medical informa-

tion (e.g., endoscopy findings, mutated MMR genes, and colectomy records) were selected as covariates to explain the taxonomic profile

variances at genus level.

Subjects were clustered based on gutmicrobiota composition by fitting all xx genus-level abundances into a Dirichlet Multinomial Mixture

(DMM) model (‘‘dmn’’ function, R DirichletMultinomial). The optimal number of community types was determined based on the lowest Lap-

lace approximation score (Figure S1C).

Statistical tests

Microbial features (species and KOs) with low read alignment or coverage and low prevalence were discarded (read alignment cutoffs for

species and read coverage cutoffs for KO were 10.0, respectively; the prevalence cutoff was 5%). Similarly, fecal metabolites with low concen-

trations and prevalence were discarded (concentration cutoff: 10 nmol/g; prevalence cutoff: 20%). A higher prevalence threshold for fecal

metabolites was used to remove batch-specific metabolites.
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Pairwise Mann–Whitney U test (‘‘wilcox_test’’ function, R rstatix) was performed within the LS cohort or sporadic cohort to identify taxo-

nomic, metagenomic and metabolite features with differential abundances. The Mann–Whitney U test was also performed between the

LS and non-LS controls. p value of 0.05 was considered at be statistically significant.

The generalized fold-change, a pseudo-fold-change calculated as the geometric mean of the differences between quantiles across both

groups, was calculated for each comparison (adapted from R SIAMCAT). Effect size estimation and magnitude interpretation was done for

each comparison (‘‘wilcox_effsize’’ function, R rstatix). Benjamini–Hochberg correction, a false discovery rate estimation method, was per-

formed on the p values to obtain the FDR corrected q value (‘‘p.adjust’’ function, method = ‘‘BH,’’ R stats).

Training CRC classifier

To validate the findings identified by the statistical tests, CRC classifiers were trained based on species profiles and then screened for micro-

bial markers based on species contribution to model decisions. As previous studies have shown that gut microbiota profiles vary according to

CRC progression stage,26 five classification tasks were identified for the classifier: differentiation between non-LS controls and 1) sporadic

adenoma, 2) stage 0 CRC, 3) stages I/II CRC, 4) stages III/IV CRC, and 5) stages I–IV CRC. Only non-LS subject-species profiles were used

to train the classifiers.

Gradient boosted decision tree (GBDT), as implemented in Light Gradient Boosted Model (LightGBM),81 was used as the classifier archi-

tecture (‘‘LGBMClassifier’’ function, boosting = ‘‘gbdt,’’ objective = ‘‘binary,’’ metric = ‘‘auc,’’ learning_rate = 0.1, bagging_freq = 1, random_

state = 0, Python LightGBM). Abundance filteringwas performed by selecting species with amean abundance higher than a specific threshold

for classifier training. Bayesian optimization was performed in a nested cross-validation (CV) framework for hyperparameter tuning. Five inner

loops (‘‘BayesSearchCV’’ function, n_iter = 30, Python scikit-optimize82) and five outer loops (‘‘cross_validate’’ function, scoring= ‘‘roc_auc,’’

Python scikit-learn83) were used for the nestedCV.Data split was done in a stratified fashion for both inner and outer fold to ensure similar case

and control balance (‘‘StratifiedKFold’’ function, n_splits = 5, shuffle = True, random_state = 0, Python scikit-learn). Details of the filtering

thresholds and hyperparameter search ranges are listed in Table S10.

Classifier performance was evaluated by area under the receiver-operating characteristic curve (AU-ROC) (‘‘roc_curve’’ function, Python

scikit-learn83). Classifier performance during training was evaluated using the mean AU-ROC of the five-fold CV. The classifier performance

for the three LS subject classification tasks (LS control vs. LS-adenoma, LS control vs. LS-CRC, and LS control vs. LS-colectomy) was evaluated

with no CV.

CRC probability of each subject was estimated using scikit-learn ‘‘predict_proba’’ function. For non-LS subjects, CRC probability estima-

tion was performed in a leave-one-out manner (‘‘LeaveOneOut’’ function, Python scikit-learn83), with classifier parameters set to be identical

with the final classifier. For the patients with LS, CRC probability estimation was parallelly performed with classifier performance evaluation.

Because the CRC probability may be affected by the classifier performance and class ratio, we performed probability normalization on the

estimated probability values. The CRC probability was normalized with a min–max normalization within each classification task.

Global and local feature importance analysis

To screen for potential CRC microbial markers, the importance of the species in the classifier was estimated. Species importance was ob-

tained using ‘‘feature_importance’’ function (parameter importance = ‘‘gain’’) from Python LightGBM.81 Species contributions obtained in

this manner were estimated for the entire model (global importance) rather than for specific subject prediction (local importance).

A previous study proposed that while global importance is sufficient to obtain a general overview of microbe-CRC associations, local

importance estimation is essential to elucidate microbe–CRC associations for a specific subset of subjects.31 Here, ‘‘TreeExplainer’’ function

of Python SHAP84 was used to estimate Shapley Additive Explanations (SHAP) values. The estimated SHAP values served as indicators of the

local importance of each species in CRC prediction in individual subjects.

Principal coordinate analysis (PCoA) was performed on the estimated SHAP values for data exploration (‘‘prcomp’’ function, R stats).

Because the PCoA plot showed a clear separation between LS/non-LS controls and LS/non-LS CRC patients, we further explored the data

for potential LS CRC-specific clusters. K-means clustering was performed on the first two principal components (PC1 and PC2) of correctly

predicted LS and non-LS CRC subject’s SHAP value (‘‘kmeans’’ function, R ‘stats’). The optimal number of clusters were decided by an elbow

plot of the total within cluster square sums (‘‘fviz_nbclust’’ function, FUNcluster = ‘kmeans,’ method = ‘wss,’ R factoextra).

To obtain a visual representation of the local feature importance for LS CRC classification and the feature importance trends within a spe-

cific cluster, the correctly predicted SHAP values of the LS CRC subjects SHAP values was summarized into a waterfall plot.

Overrepresentation analysis (ORA)

Overrepresentation analysis was performed to identify metabolic modules with an overrepresentation of KOs and metabolites that were

differentially abundant between the case and control groups. The feature set used for ORA was created by aggregating both KOs and

KEGG Compounds into KEGG MODULE level metabolic modules (KEGG database obtained on 2023/03/31) (Table S11). Furthermore, to

encompass metabolic modules not available in KEGG, another custom gene set was created by aggregating both KOs and KEGG Com-

pounds into EnteroPathway91 MODULE level metabolic modules (EnteroPathway database obtained on 2023/10/05) (Table S11). ORA was
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performed as implemented by the ‘‘enrichr’’ function of R clusterProfiler. Multiple testing corrections were performed using the Benjamini–

Hochberg method, and modules with FDR p < 0.1 were considered as overrepresented modules.

Correlation analysis

Correlation analysis between microbe-gene, microbe-metabolite, and gene-metabolite profiles was performed to explore potential associ-

ation between omics data. Spearman correlation coefficient and p-value was calculated with cor.test function of R stats (method =

‘spearman’).
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