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Abstract

We investigated commonly used methods (Autocorrelation, Enright, and Discrete Fourier Transform) to estimate the
periodicity of oscillatory data and determine which method most accurately estimated periods while being least vulnerable
to the presence of noise. Both simulated and experimental data were used in the analysis performed. We determined the
significance of calculated periods by applying these methods to several random permutations of the data and then
calculating the probability of obtaining the period’s peak in the corresponding periodograms. Our analysis suggests that
the Enright method is the most accurate for estimating the period of oscillatory data. We further show that to accurately
estimate the period of oscillatory data, it is necessary that at least five cycles of data are sampled, using at least four data
points per cycle. These results suggest that the Enright method should be more widely applied in order to improve the
analysis of oscillatory data.
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Introduction

Physiological rhythms are essential to life. However, they can be

difficult to observe experimentally due to the natural stochastic

fluctuations exhibited by most physiological systems, and the

random or irregular noise present in the experimental measure-

ments themselves. Methods for detecting pulsatility and estimating

the period of oscillations are very important in modern biology

and require the integration of statistical, mathematical and

experimental approaches.

The analysis of pulsatility in the biomedical sciences is generally

done using widely accepted methodologies such as ULTRA,

Cluster and PulseFit [1–3]. However, the estimation of oscillatory

periods requires a different set of methods than those used to

detect pulsatility. Methods to estimate the period of oscillations

have been extensively discussed over the past two decades; they

include the Whittaker-Robinson periodogram [4–7] that was

popularized to study biological time course data by Enright [8–

10], Fourier spectral analysis [4,6,7,9], Lomb-Scargle period-

ogram [10], MESA [4,5,7], Autocorrelation [11] and cosinor

[9,10,12]. All these methods are valid under different assumptions

and may provide different results when applied to the same time

course.

In a seminal paper, Refinetti [13] investigated the accuracy and

noise tolerance of six different methods for estimating circadian

periods (24 hours): Enright’s periodogram, Fourier spectral

analysis, Autocorrelation, acrophase counting, inter-onset averag-

ing, and linear regression of onsets. Using in silico generated

circadian rhythm datasets consisting of cosine and square

waveforms, he found that Enright’s periodogram and Fourier

analysis outperformed the other methods in estimating circadian

rhythms. Refinetti also found that Enright’s periodogram and

periodic Autocorrelation exhibited a higher noise tolerance.

Period estimation is insufficient without determination of its

statistical significance. This is especially true if the data contains

high levels of noise as there can be high probability of error. The

estimation of statistically significant oscillatory periods is the

subject of some controversy, in part due to the association of these

methods with theoretical false alarm functions [14,15]. False alarm

functions state the probability of obtaining a power in the

periodogram that is greater than some power of reference and are

used to evaluate the significance of periodogram peaks. However,

as these functions are only applicable under limited conditions,

they often fail to provide an adequate measure of the probability of

obtaining a particular period [16]. For example, the x2 theoretical

cumulative distribution is commonly used to attach significance to

a period in the Enright periodogram. Nevertheless, it is shown to

be only applicable with a minimum number of 10 blocks of data

collected with 2400 data points (a sample frequency equal to one

point every 6 minutes) in determining the period of circadian

rhythms [13,17]. In spite of these limitations, a sampling frequency

of 1 hour [18] or 24 hours [19] has been presented as sufficient to

correctly estimate the rhythms using the Enright periodogram.

The design of experiments to estimate oscillation periods has

been discussed previously [6,7,13]. The effects of sampling

frequency, the number of cycles and noise in the time course
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data have been considered. For example, Refinetti [13] found

inaccurate estimates are obtained from a time series having a low

density sample of points. The general recommendation is that the

time course data should be collected with high sampling frequency

and number of cycles in order to obtain good estimates of

oscillation periods. However, to date, the minimum number of

data points and cycles in the time course needed to obtain

statistically significant oscillation periods remains to be deter-

mined. This requires a systematic investigation of the ideal

characteristics of the experimental time course data, and it would

be of great importance for experimentalists for this to be

established.

The aim of the present paper is to compare how well the

Autocorrelation [20–23], the Enright periodogram [8], and the

Discrete Fourier Transform (DFT) method [20,24,25] estimate the

significance of periods in oscillatory time course data. The

Autocorrelation method, also called the periodic Autocorrelation,

is used to quantify randomness by computing autocorrelations for

data values at varying lags in a course data. Autocorrelations are

near zero for randomness [26]. The Enright periodogram method

compares the variance of data within blocks of different sizes with

the total variance of the data [8]. The DFT analyzes how well

sinusoidal waves of different frequencies fit a particular course

data.

We focus our analysis on these particular methods because they

are the most commonly used approaches in the life science

literature over the last 30 years. A Scopus search shows that

citations of the DFT and Autocorrelation method are on the rise,

while the Enright periodogram has only recently started to decline

after the Lomb-Scargle periodogram appeared in the literature

(see, FIG. 1). In our analysis, we use simulated as well as real data to

help design experiments that can yield useful estimates of

significant periods. We evaluate the accuracy of the oscillatory

periods we obtained by simulating data having different numbers

of cycles, sampling frequencies and noise. In addition, instead of

relying on theoretical false alarm probability functions, we

compute the significance of oscillatory periods by computing

random permutations of the time course data. By combining our

analysis of experimental design and analytical methods to estimate

the significant periods of rhythms, we determined both the ideal

method to investigate rhythms and the minimal number of cycles

and data points required to properly estimate oscillation periods

that have adequate statistical significance.

Methods

One of the first steps in designing an experiment to estimate the

period of an oscillation is to choose an appropriate number of

cycles and points per cycle to be measured. Simulation of time

course data can help the experimental biological rhythm scientist

to design experiments.

Simulations of time course data
For rhythms with one period, we generated oscillatory data

using the sine expression:

y(t)~A sin
2p

T1

tzw

� �
zD ð1Þ

For a single simulated experiment, y(1), y(2), …, y(n) are the N

data points at times t1, t2, …, tn. All simulations have a nominal

amplitude A = 1, phase w = 0 and center amplitude D = 0. The

period T of oscillations is equally spaced between 1 and 20 (1, 2, 3,

…, 20). To investigate how the experimental design affects the

estimation of the period T, we simulated a set of time courses by

varying the number of cycles (NC) or number of times a period T is

repeated, and the number of points per cycle (NPC) in the time

course data. Note that the total number of points N in a time

course data is N = NC?NPC. A typical mono-oscillatory time course

is shown in SUPPLEMENTAL FIG. 1A. We generate a set of simulated

mono-oscillatory data using 2#NC#20 and 3#NPC#20. This

produces a total number of 6840 time courses for evaluation.

For oscillations containing two periods (a fast and a slow period),

we generated oscillatory data using the following expression:

y(t)~A1 sin
2p

T1
tzw1

� �
zD1zA2 sin

2p

T2
tzw2

� �
zD2 ð2Þ

For a simulated experiment, y(1), y(2), …, y(n) are the N data

points at times t1, t2, …, tn. In the above equation, the period of

the oscillations T1 and T2 is spaced between 1 and 20 (1, 2, 3,…,

20). As with the mono-oscillatory data, all simulations have

nominal amplitude A = A1 = A2 = 1, phase w = w1 = w2 = 0 and

center amplitude D = D1 = D2 = 0. Also, the time course data is

bound between 2#NC#20. However, for the bi-oscillatory data,

NC corresponds to the number of repetitions of the slowest period

in the time course, while NPC is the number of points of the fast

period in the time course. We simulated a total of 64,980 time

courses for evaluation. A typical bi-oscillatory time course is shown

in SUPPLEMENTAL FIG. 1B.

For each time course, we introduced noise to account for the

experimentally observed error in the time course measurements.

For example, for the mono-oscillatory time course, data with

Gaussian distributed random error can be modeled by

Y (t)~y(t)zeg(t) ð3Þ

In this expression, Y(t) is the course data with random error, e
represents the strength of the noise, and g(t) is the Gaussian

distributed error with mean zero and standard deviation one.

Autocorrelation method
The Autocorrelation method is used to quantify randomness of

a time course by computing autocorrelations for data values at

varying lags in the data. It has been widely used to recover

biological oscillatory periods [20–23]. The lag k autocorrelation

function is defined as:

rk~

PN{k

i~1

Yi{Y
� �

Yizk{Y
� �

PN
i~1

Yi{Y
� �2

ð4Þ

If there is an oscillatory period with lag k in the time course

data, rk is approximately equal 1. Autocorrelations will be around

zero for a random time course [26]. To analyze a time course

data, we construct the Autocorrelation plot by calculating rk values

for all possible k lags, where 1ƒkƒN=2. The minimum period

corresponds to the distance between two data points. We calculate

the local maxima of the Autocorrelation plot and sort by ascending

all periods with rk values higher than 10% the maximum rk value

estimated from the Autocorrelation plot. Because we can only
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assess the significance of a limited number of peaks, we use 10% as

an arbitrary threshold to prevent small peaks in the periodogram

from being included in the period estimation analysis. Since the

Autocorrelation formula does not identify harmonics in the time

course data, we remove every multiple of the periods found in the

previous step.

Enright Periodogram
We implement the method first described by Enright [8] using

the statistic s2
P formula:

QP~
Ps2

P

K{1s2
Y

~

K
PP
h~1

Yh{Y
� �2

N{1
PN
i~1

Yi{Y ‘
� �2

ð5Þ

In the above expression P is the number of points in one block

of data, s2
P is the variance of the data comprised of P points, K is

the number of blocks of size P, s2
Y is the variance of the full course

data, and N is the total number of points in the data. If the time

course data of N number of points exhibits oscillations with period

P, the ratio s2
P

�
s2

Y is approximately equal to 1.

For a particular time course data, we construct the Enright

periodogram by calculating Qp values for all possible blocks of P

points, where 1ƒPƒN=2. The minimum period corresponds to

the distance between two data points. We calculate the local

maxima of the periodogram and sort by ascending period all

periods with Qp values higher than 10% the maximum Qp value

found on the periodogram. Note that we can only assess the

significance of a limited number of peaks. We use 10% as an

arbitrary threshold to prevent small peaks in the periodogram

from being considered in the period estimation analysis. As the

Autocorrelation method, the Enright method does not identify

Figure 1. Citations to Discrete Fourier Transform, Autocorrelation method, Enright periodogram, Lomb-Scargle periodogram and
Sokolove-Bushell periodogram for the last 30 years. The figure was drawn from data in Scopus, checked in October 1st 2013. The search was
limited to the subject areas of ‘‘Life Sciences’’ and ‘‘Health Sciences’’. The search shows that the DFT and Autocorrelation methods are the most
widely cited approaches and are on the rise. The Enright periodogram usage seemed to start declining once papers using the Lomb-Scargle
periodogram started to increase. The search was performed using the keywords: ‘‘Oscillations’’, ‘‘Rhythm’’ OR ‘‘Rhythms’’ in the article title, abstract or
keywords; ‘‘method’’ in ‘‘All fields’’; ‘‘Discrete Fourier Transform’’ OR ‘‘Fast Fourier Transform’’, for the FFT or DFT methods; ‘‘Autocorrelation method’’,
for the Autocorrelation method; ‘‘Enright periodogram’’ OR ‘‘chi-square periodogram’’, for the Enright method; ‘‘Lomb periodogram’’ OR ‘‘Lomb-
Scargle periodogram’’ OR ‘‘Lomb’’ AND ‘‘Scargle’’, for the Lomb periodogram; ‘‘Sokolove-Bushell periodogram’’ OR ‘‘Sokolove-Bushell’’ OR ‘‘Sokolove’’
AND ‘‘Bushell’’, for the Sokolove-Bushell method.
doi:10.1371/journal.pone.0093826.g001
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harmonics in the course data. Hence, we remove every multiple of

the periods found in the previous step.

Discrete Fourier Transform
The Fourier method analyzes how well sinusoidal waves of

different frequencies fit a particular course data [27]. The Discrete

Fourier Transform at a frequency v can be obtained using the

following equation:

DFTY (v)~
XN

r~1

Y (tr)e
{ivtr ð6Þ

We estimate the power spectral density of the signal by the

function DFTY (v)j j2. This function is the classical periodogram

[14] and follows the definition originally given by Shuster [28].

Let us consider the above expression. We assume that the time

course data oscillates with a frequency equal to v. If the estimate

frequency v is significantly different from v, the components Y(tr)

and e{ivtr are out of phase and the product oscillates rapidly. In

this situation, the sum will have a value close to zero. On the other

hand, if the frequency v is very close to v, the components Y(tr)

and e{ivtr are in phase and their product oscillates rapidly. The

sum of the products will produce a maximum peak or power when

v is equal to v.

For a particular course data, we calculate the frequency spectra

by evaluating Eq. (6) on a range of sampled frequencies. Here, the

minimum frequency is given by 2Ny

�
NFFT , where Ny is the

Nyquist frequency (half of the sampling frequency) and NFFT is

the next highest power of 2 greater than the length of the course

data. The maximum frequency is half the NFFT multiplied by y.

We calculate the local maxima of the frequency spectra and sort

first by the highest power all frequencies with power values higher

Figure 2. All three methods, Autocorrelation, Enright and DFT predict approximately 1.17 minute periods in islet Ca2+ oscillations.
(A) 30 minutes of oscillatory data representing Ca2+ oscillations; (B) Autocorrelation periodogram generated with the Autocorrelation method. The
plot shows 5 significant local maxima obtained at the significance level of 0.01; (C) Enright periodogram generated by the Enright method. The plot
shows 1 significant and 4 non significant local maxima obtained at the significance level of 0.01; (D) Frequency spectrum generated with the DFT
method. The plot shows 3 significant and 2 non significant oscillatory periods obtained at the significance level of 0.01. Closed circles represent
significant periods. Open circles represent non significant periods. We selected a maximum of five oscillatory candidate periods in each method. The
candidates were ordered by the value of its period in the Autocorrelation and Enright methods, and by power in the DFT method.
doi:10.1371/journal.pone.0093826.g002
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than 10% the maximum power value found. As we mentioned

before, we can only assess the significance of a limited number of

peaks. We decided to use 10% as an arbitrary threshold to prevent

small peaks in the frequency spectra from being considered in the

period estimation analysis. The DFT method identifies harmonics

in the time course data, so we did not need to remove multiples of

the periods found as we did for the Autocorrelation and Enright

methods.

Calculation of the relative difference
The relative difference (RD) is used to calculate the accuracy of

a particular method in the estimation of a simulated period in the

oscillatory data. It is obtained using the following mathematical

expression:

RD~
Tm{Trj j

Tr

ð7Þ

where RD is the relative difference, Tm is the period returned by

the method and Tr is the period used to generate the data.

Computer implementation of algorithms and data
analysis

In this work, the algorithms were developed using MATrix

LABoratory (MATLAB) (Ver. R2012b). Simulations were primar-

ily conducted on a high performance computing Flux (AMD

Opteron/Intel Nehalem 64-bit) cluster at the University of

Michigan Center for Advanced Computing, which has over

5,000 cores with an average of 2GB RAM/core to analyze the

performance of three main methods in the estimation of oscillatory

periods.

In all methods, the maximum period to analyze is set to half the

maximum range. As a consequence, we only evaluate periods that

repeat at least twice in the data. The minimum period and the

distance between evaluated periods depend on the method

applied. For each time course evaluated, we restrict the evaluation

of significance to five candidate periods. The inclusion of more

candidates does not lead to results with higher accuracy. These are

the first five periods with a maximum in the Enright and

Autocorrelation periodogram and the five periods with the highest

maximum in the DFT frequency spectrum. The significance of a

candidate period is determined by calculating the probability of

obtaining the power values exhibited in the periodogram and

frequency spectrum. For this purpose, we analyze 10,000 random

permutations of the course data. A period is considered significant

if the number of power values (rk, QP or DTFy(v) obtained by the

random permutations greater than the power value associated

with the period (p-value) occurs less than 1%(level of significance)

of the times.

Matlab codes and sample data is available in the Supplemen-
tary Information.

Results

We used oscillatory data collected in experiments for which

periods have been established (and published) to check if our

algorithm performs as expected and recovers with significance the

correct period. For this purpose, we applied the Enright period-

ogram, DFT and Autocorrelation methods to recordings of

pancreatic islet free calcium oscillations, a physiologically impor-

tant variable that helps regulate the secretion of insulin [29]. The

candidates used in the Autocorrelation and Enright methods were

selected by obtaining the local extrema of resulting periodograms

and then ordering them by period. The analysis of significance was

restricted to the first five non-multiple periods, where the values of

the function corresponded to local extrema in the periodogram. In

the DFT method, after obtaining the extremum, we searched for

the first five highest peak candidates (see Methods for more

details).

FIG. 2A shows the Ca2+ oscillations of a pancreatic islet

monitored for 30 minutes. Both the Autocorrelation (Fig. 2B) and

Enright (Fig. 2C) methods identified a significant period in the

data of 1.17 minutes, while the DFT method identified a period of

1.18 minutes (see FIG. 2D). This value is in agreement with the

reported periods of fast pancreatic islet calcium oscillations, and

from simple visual inspection of the data shown [29]. While both

the Autocorrelation and Enright methods predicted the period

correctly as the lowest significant period found in the data, DTF

Figure 3. Average relative difference (RD) obtained choosing
the candidate period as either the maximum peak (blue bars)
or the minimum significant p-value (red bars) in in silico mono-
oscillatory data for all three methods. (A) Results obtained with
30% noise; (B) Results obtained with 45% noise; (C) Results obtained
with 60% noise. In all plots, candidate periods with the minimum
significant p-value (level of significance is set to 0.01) provide higher
accuracy results than candidates with the maximum peak. We
performed t-tests to check whether the maximum peak and the
minimum significant p-value approach provide significantly different
outcomes: (A) From left to right, p-values are 0.0245, 1.327261026 and
2.3793610210, (B) From left to right, p-values are 0.0013, 5.1381610226

and 3.6033610225, (C) From left to right, p-values are 6.3398610209,
1.0977610249 and 8.93610235. We denote *, ** and *** as p-values
lower than 0.05, 161025 and 1610210, respectively. In each plot, from
left to right, pairs of bars represent the Autocorrelation, Enright and
DFT method.
doi:10.1371/journal.pone.0093826.g003
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(Fig. 2D) identified the correct period as the highest significant

peaks in the frequency spectrum (see FIG. 2B,C,D). The methods

also identify the periods of the remaining islets with high accuracy

(results not shown) [29].

The optimal candidate period is the period whose peak is
associated with the minimum p-value

There are two different criteria that can be used to choose the

optimal candidate period. On one hand, one can simply choose

the highest maximum of the periodogram or frequency spectrum.

On the other hand, one can choose the local maximum which

occurs least often in randomizations of the data. These two criteria

are not necessarily the same, especially when significant levels of

noise are present. To identify which criterion (maximum peak or

minimum p-value) is most likely to yield the correct period, we

compared the simulated period used to generate each set of time

course data with five candidate periods obtained using all three

methods (see Methods). We chose the best candidate period as

that having the maximum peak or the minimum p-value. We then

calculated the RD of the best candidate period to the simulated

period (see Methods).

As shown in FIG. 3, on average, the candidate period having the

minimal p-value (red bars) provided higher accuracy (lower RD

values) than the candidate period having the maximum peak (blue

bars). This was true for all methods applied to mono-oscillatory

data where different levels of noise were present, but was especially

noticeable when we used the Enright method (middle bars). With

30% noise, all of the methods tested displayed high accuracy (i.e.

corresponding to relative differences lower than 5%) (see FIG. 3A).

However, as expected, accuracy decreased with higher noise

values. Using the minimum p-value (red bars), values close to

0.25% in data sets with 30% noise increased to values near 1%

with 45% noise and near 2% with 60% noise for both the

Autocorrelation and the Enright methods. The DFT was largely

insensitive to noise and displayed values close to 3% for data that

had different noise levels. Overall, all of the methods were found to

be highly accurate, but the minimum significant p-value approach

provided more accurate and significantly different estimates of the

true periodicity of the data.

We performed a similar analysis using bi-oscillatory data and

then compared the results obtained using either the maximum

peak or the minimum significant p-value to select the optimal

candidate period (FIG. 4). The minimum p-value (red bars) was

clearly more accurate (lower RD values) in estimating the fast

oscillatory period (FIG. 4A). In fact, all of the methods were poor in

predicting the fast simulated period using candidate periods with

the maximum peak (FIG. 4A, blue bars). This suggests that the

candidate periods identified using the maximum peak are not a

good choice for predicting the periods of fast oscillatory data (see

Discussion). The accuracy using the minimum p-value decreases

for the slow simulated period of the bi-oscillatory data (see FIG. 4B).

This approach provides higher accuracy using the Autocorrelation

and Enright methods, but not the DFT method. Overall, while

predicting the slow simulated period, all of the methods we tested

produced inaccurate results. In the best case, selecting the period

using the maximum peak produced relative differences close to

30% (FIG. 4B).

Figure 4. Average relative difference (RD) obtained choosing the candidate period as either the maximum peak (blue bars) or the
minimum significant p-value (red bars) in in silico bi-oscillatory data for all three methods. (A) Results obtained with 0% noise for the fast
period. Candidate periods with the minimum significant p-value (level of significance is set to 0.01) provide higher accuracy results than candidates
with the maximum peak. (B) Results obtained with 0% noise for the slow period. Similarly to the fast period, candidate periods with the minimum
significant p-value (level of significance is set to 0.01) provide higher accuracy results than candidates with the maximum peak, with exception of the
DFT method. We performed t-tests to check whether the maximum peak and the minimum significant p-value approach provide significantly
different outcomes. p-values are all equal to 0. We denote *** p-values lower than 1610210. For each plot, from left to right, pairs of bars represent
the Autocorrelation, Enright and DFT method.
doi:10.1371/journal.pone.0093826.g004
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Increasing the number of cycles collected improved the
accuracy of the analysis of mono-oscillatory data

To evaluate the effects of changes in the number of cycles (NC)

and the number of data points sampled per cycle (NPC) in the

estimation of periods, we compared the period used to generate

the data (simulated period) with the optimal candidate period.

Here, we used the minimum significant p-value as the optimal

candidate period since this criterion guaranteed higher accuracy

(see previous section). As previously, we calculated the difference

between the simulated and estimated period to obtain an average

RD (see Methods) as a function of NC and NPC (FIG. 5).

With 30% noise present in the data, both the Autocorrelation

and Enright methods accurately predicted the simulated period;

note the small error obtained in FIG. 5A. However, as the levels of

noise increased (60%) the accuracy of these two methods

decreased. This contrasts with DFT performance which remained

relatively unchanged despite increasing levels of noise (FIG. 5). The

average RD of the simulated period of all three methods thus

diminished as NC increased, with at least 5 cycles being necessary

to reduce RD to less than 5%. Overall, the Enright method

performed the best, exhibiting differences in the simulated period

of less than 1%, with at least 7 NC were analyzed in data sets

having 60% noise (FIG. 5C).

While the RD decreased with increasing NC, it was relatively

unchanged with NPC, suggesting that simply increasing the

number of data points does not help reduce the error. The only

exception occurred using the Autocorrelation method, where the

RD increased with increasing NPC, while overall the average

difference was less than 5% for all of the methods (see Fig. 5E, F

and Discussion). Among the five candidate periods analyzed in

every set of time course data, at least 4 NPC were necessary to

obtain significant results. To make sure these results were

Figure 5. Autocorrelation, Enright and DFT method’s average and standard error relative difference as a function of the number of
cycles (NC) (left) and the number of points per cycle (NPC) (right) in in silico mono-oscillatory data. (A, D) Results obtained with 30%
noise. (B, E) Results obtained with 45% noise. (C, F) Results obtained with 60% noise. The Enright method outperforms both Autocorrelation and DFT
methods, where at least 5 repetitions of an expected period are necessary in order to reduce the relative difference to values less than 5%; The
Enright and the DFT method’s performance remain invariant with NPC. The Autocorrelation method’s performance worsens with increasing NPC. The
red diamond, the green square and the blue circle represent the Autocorrelation, Enright and DFT methods, respectively.
doi:10.1371/journal.pone.0093826.g005
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independent of the simulated period, we calculated the variation

across periods of the relative differences for all possible combina-

tions of NC and NPC. The mean value for all combinations with

60% noise was 0.0047, 0.0065 and approximately 2.4161024 for

the Autocorrelation, Enright and DFT methods, respectively.

The Enright method produced the most accurate results
in the estimation of fast periods of bi-oscillatory data

We investigated the ability of the Autocorrelation, Enright and

DFT methods to recover periods in more complex data sets,

namely bi-oscillatory data (see SUPPLEMENTARY FIG. 1B). When

comparing both simulated periods with the periods returned by

methods using the minimum significant p-value, we found very

different outcomes when examining our ability to recover fast

versus slow simulated periods in the data (see FIG. 6 and FIG. 7).

Both the Enright and DFT method’s RD slightly decreased with

increasing NC in the estimation of the fast simulated period.

Nevertheless, the Enright method returned, on average, better

results than the DFT method (FIG. 6A). With 3 NC, the DFT and

Enright methods recovered periods having relative differences of

20% and 5%, respectively and both methods decayed at a similar

rate with increasing NC. With 10 NC, the Enright method

recovered the fast simulated periods with a precision close to

optimal. The Autocorrelation method performed far worse, as we

observed relative differences close to 40%; this value remained

approximately constant with increasing NC (FIG. 6A). While the

Autocorrelation method performed similarly in recovering the

slow period of bi-oscillatory data, the Enright method relative

differences jumped to close to 50% and were relatively constant

Figure 6. Autocorrelation, Enright and DFT method’s average
difference (RD) and standard error in recovering the fast and
the slow period of in silico bi-oscillatory data as a function of
the number of cycles (NC), with 0% noise. (A) Both Enright and
DFT method’s relative differences (RD) slightly decrease with increasing
NC while recovering the fast simulated period. The Enright method
returns on average, better results than the DFT method, where at least
3 NC produce average differences less than 5%. The Autocorrelation
method is the least accurate, producing average differences of around
40%. It also remains fairly constant with increasing NC. (B) The
Autocorrelation method produces the most accurate results, but
overall, average differences surpass the 35%. The red diamond, the
green square and the blue circles represent the Autocorrelation, Enright
and DFT methods, respectively.
doi:10.1371/journal.pone.0093826.g006

Figure 7. Autocorrelation, Enright and DFT method’s perfor-
mance in recovering the fast and the slow period of in silico bi-
oscillatory data as a function of the number of points per cycle
(NPC), with 0% noise. (A) Both Enright and DFT method’s relative
differences (RD) remain fairly constant on average with increasing NPC
while recovering the fast simulated period. The Enright method returns
on average, better results than the Autocorrelation or DFT methods.
The Autocorrelation method is the least accurate, producing average
differences starting around 60% and decreasing to 35% with 20 NPC. (B)
The DFT method produces the most accurate results, but overall,
average differences are approximately 30%. The red diamond, the
green square and the blue circle represent the Autocorrelation, Enright
and DFT methods, respectively.
doi:10.1371/journal.pone.0093826.g007
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across NC (see FIG. 6B). The slow period was best recovered by the

DFT method, although the average RD is close to 30%.

While recovering the fast simulated period, the Enright and

DFT method’s performance remained on average relatively

unchanged as the number of points per cycle (NPC) was increased

(FIG. 7A). The Enright method was the most accurate, never

surpassing 2.5%, followed by the DFT method that had accuracies

values of 15% The Autocorrelation method provided low

accuracy, greater than 30% RD, although this decreased as NPC

was increased (FIG. 7A). A different picture emerged from the

average relative differences obtained as a function of NPC while

recovering the slow simulated period. As with the number of

cycles, the slow period is best recovered by the DFT method, but

overall, the simulated period was poorly estimated (the RD were

approximately 30%) (FIG. 7B).

Discussion

The Autocorrelation, Enright and DFT methods are widely

used in the life sciences and other scientific fields. To investigate

how well these methods recovered oscillatory periods, we applied

all three methods to mono and bi-oscillatory simulated course data

having different number of cycles (NC) as well as different number

of points per cycle (NPC). On the periodograms and frequency

spectra obtained for each data set, we only considered extrema

values higher than 10% of the maximum value. This eliminated

candidates that had very low peaks, which were unlikely to be

significant. Both Autocorrelation and Enright methods cannot

distinguish the fundamental frequency from its associated

harmonics. For this reason, we also removed all multiples of a

candidate period in their respective periodograms. There was no

need to remove multiples of a period using the DFT method. For

example, a peak frequency of 0.1667 (period 6) would not show up

if a real period of 3 was present in the data. To evaluate the

significance of a computationally feasible number of candidate

periods, we evaluated the significance of less than 5 candidate

periods. While this was an arbitrary threshold, it guaranteed high

accuracy when analyzing mono-oscillatory data or the fast period

of bi-oscillatory data. We assumed that the noise had a Gaussian

distribution and followed Eq. (3). However, this noise distribution

only accounts for amplitude fluctuations and does not describe

period fluctuations. The results of our analysis could vary under

different noise functions. This is an issue that requires further

investigation, but it is outside of the scope of the current study.

Besides simply identifying a period, one would like to know if a

period is significant or was obtained by chance. This is especially

important for complex data sets, containing high levels of noise -

or more than one oscillatory period. The significance of oscillatory

periods is often associated with theoretical false alarm probability

functions that have been the subject of debate [14,15]. This is the

case because these functions are only applicable under limited

conditions and often fail to provide an adequate quantitative

measure of the probability of obtaining a particular period [16]. In

this paper, instead of relying in false alarm probability functions,

we computed the significance of the oscillatory periods by

computing random permutations of the time course data. Since

the period is obtained by identifying local maxima in the

periodogram and frequency spectra, we ascertained the signifi-

cance of a period measurement by calculating the probability of

obtaining a local maximum after several random data permuta-

tions. Since our goal was to determine the minimum number of

cycles and number of points required to accurately estimate

significant periods, it is important that our method can determine

the significance of an extracted period without being limited by the

size of the data set being sampled.

In the present study, simulations of oscillatory sine waves

provided useful quantitative information as to how to best design

an experiment to estimate the periods of oscillations using the

Autocorrelation, Enright, and DFT methods. Our analysis

suggests that the optimal candidate period of an oscillation is the

one associated with a minimum p-value, rather than the highest

peak of a periodogram or frequency spectrum. This is especially

true for more complex data when more than one period may be

present in the data. We also found that the Enright method was

the most accurate in estimating the period of mono-oscillatory

data or the fast period of bi-oscillatory data. The method was

effective when experimental noise ranged up to 60% (FIG. 3 and

FIG. 4). Importantly, the accurate estimation of these periods

required the collection of time course data having at least five

oscillatory cycles (NC$5) and four data points per cycle (NPC$4)

(FIG. 5, FIG. 6 and FIG. 7). These optimal characteristics are all

present in the recordings of pancreatic islet free calcium

oscillations presented in FIG. 2. This explains why we were able

to identify these calcium oscillations periods successfully.

Supporting Information

Figure S1 Representation of mono and bi-oscillatory
data. (A) Oscillatory data containing three cycles of one single

period. The first cycle is represented as ‘Period - Cycle 1’ and the

second cycle is represented as ‘Period - Cycle 2’. Each cycle is

made of 15 points. (B) Oscillatory data containing five cycles of a

fast period and three cycles of a slow period to form a bi-oscillatory

data. The first two cycles of the fast period are indicated as ‘Fast

Period Cycle 1’ and ‘Fast Period Cycle 2’. The first two cycles of

the slow period are indicated as ‘Slow Period Cycle 1’ and ‘Slow

Period Cycle 2’.

(TIF)

File S1 MATLAB codes for Autocorrelation, Enright and
DFT methods implemented in this paper.

(PDF)

File S2 Sample data of islet Ca2+ oscillations. Source of

data: PLoS ONE 7: e34036.

(CSV)
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