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ABSTRACT Microbial communities are commonly studied using culture-independent
methods, such as 16S rRNA gene sequencing. However, one challenge in accurately
characterizing microbial communities is exogenous bacterial DNA contamination,
particularly in low-microbial-biomass niches. Computational approaches to identify
contaminant sequences have been proposed, but their performance has not been
independently evaluated. To identify the impact of decreasing microbial biomass on
polymicrobial 16S rRNA gene sequencing experiments, we created a mock microbial
community dilution series. We evaluated four computational approaches to identify
and remove contaminants, as follows: (i) filtering sequences present in a negative
control, (ii) filtering sequences based on relative abundance, (iii) identifying se-
quences that have an inverse correlation with DNA concentration implemented in
Decontam, and (iv) predicting the sequence proportion arising from defined con-
taminant sources implemented in SourceTracker. As expected, the proportion of
contaminant bacterial DNA increased with decreasing starting microbial biomass,
with 80.1% of the most diluted sample arising from contaminant sequences. Inclu-
sion of contaminant sequences led to overinflated diversity estimates and dis-
torted microbiome composition. All methods for contaminant identification suc-
cessfully identified some contaminant sequences, which varied depending on the
method parameters used and contaminant prevalence. Notably, removing se-
quences present in a negative control erroneously removed �20% of expected se-
quences. SourceTracker successfully removed over 98% of contaminants when the
experimental environments were well defined. However, SourceTracker misclassified
expected sequences and performed poorly when the experimental environment was
unknown, failing to remove �97% of contaminants. In contrast, the Decontam fre-
quency method did not remove expected sequences and successfully removed 70 to
90% of the contaminants.

IMPORTANCE The relative scarcity of microbes in low-microbial-biomass environments
makes accurate determination of community composition challenging. Identifying and
controlling for contaminant bacterial DNA are critical steps in understanding microbial
communities from these low-biomass environments. Our study introduces the use of a
mock community dilution series as a positive control and evaluates four computational
strategies that can identify contaminants in 16S rRNA gene sequencing experiments
in order to remove them from downstream analyses. The appropriate computational
approach for removing contaminant sequences from an experiment depends on
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prior knowledge about the microbial environment under investigation and can be
evaluated with a dilution series of a mock microbial community.

KEYWORDS 16S rRNA gene sequencing, contamination, Decontam, low microbial
biomass, microbiome, SourceTracker

Advances in genomic sequencing have transformed our ability to identify and study
microbes without depending on culture-based laboratory techniques. A common

method used to study microbial communities is sequencing of marker genes, such as
the 16S rRNA gene. In this method, the bacterial DNA is extracted from a sample,
amplified by PCR, and then sequenced. This technique is relatively inexpensive and
easy to perform and has increased our ability to detect and identify microbes in a
variety of environments, including those of low microbial biomass, such as the upper
atmosphere (1), lower airway (2), and urinary bladder (3–5).

The unexpected discovery of microbes in these niches is exciting and can revolu-
tionize our understanding of these environments. However, a major challenge hinder-
ing our ability to accurately characterize microbial communities in these environments
is bacterial DNA contamination from exogenous sources that are introduced during
sample collection and processing. Contaminant bacteria introduced to the sample prior
to PCR can dominate the composition of low-microbial-biomass samples (6–9), com-
prising over 80% of the sample in extreme cases (10). Failure to account for contam-
inants may also affect biological conclusions drawn from studies, such as inflating
alpha-diversity metrics, distorting the abundance of true microbial members of the
environment (10), and altering differences between clinical groups (7, 9, 11).

Currently, there is no standard method to minimize or control for contaminants in
16S rRNA gene sequencing experiments. During sample processing, procedures can be
taken to minimize the amount of exogenous DNA introduced into the samples. These
include pretreating reagents in an attempt to remove exogenous DNA (10, 12) and
using DNA extraction kits designed specifically to minimize contamination. However,
techniques involving pretreating reagents are challenging and may be ineffective when
examining low-microbial-biomass samples (10).

Several approaches to objectively remove contaminants after 16S rRNA gene se-
quencing have been suggested. One directly identifies and removes sequences that
have been previously identified as contaminants in published databases or reference
lists (7). However, this is a generalized approach and might not accurately reflect the
contamination present in the actual experiment. A second approach applies an abun-
dance filter to remove all sequences that are below a defined relative abundance
threshold (13, 14). However, this method assumes that all microbial contaminants have
a low relative abundance, which may not be the case particularly for low-microbial-
biomass samples. This also will remove all noncontaminant sequences below this
threshold. A third approach is to remove sequences that are present in a negative-
control sample (15, 16). However, this approach may be too harsh since low levels of
real sequences from the sequence run may be present in the negative control due to
multiplexing artifacts (17, 18). This leads to removing bacterial sequences that are
actually biologically relevant; thus, this approach has been found to be too strict (10).
A fourth approach is to identify bacterial sequences that have an inverse correlation
with bacterial DNA concentration after 16S rRNA library preparation (9, 13, 19). This has
been recently implemented in an open-source R package, Decontam (20). A fifth
approach uses a Bayesian approach implemented in SourceTracker (21) to predict the
proportion of an experimental sample that arose from a defined contaminant source.

While the above-described methods have been proposed to identify and remove
contaminants from 16S rRNA gene sequencing studies, there is no current guidance for
evaluating their success. Here, we propose using a mock microbial community dilution
series to evaluate the effectiveness of approaches to minimize and remove contami-
nants. The use of mock microbial communities as a positive control for 16S rRNA gene
sequencing experiments has been advocated (22), though it is unclear how often they
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are used in practice. Mock microbial communities are composed of mixtures of known
bacterial composition and are subject to the same experimental and computational
processing as experimental samples. Since the expected composition of the mock
microbial community is known, it can be used to identify problems in the experimental
protocol, understand biases introduced in the experimental protocol (i.e., PCR ampli-
fication bias), optimize the bioinformatics workflow used, or develop new methods.

In this study, we use a dilution series of a mock microbial community to determine
the success of existing approaches to control for laboratory contaminants in studies
involving low-microbial-biomass samples. We demonstrate that a dilution series of a
mock microbial community is a valuable tool to evaluate optimal inputs and parame-
ters for two filtering approaches and two computational approaches that have been
proposed for contaminant identification from low-microbial-biomass samples.

RESULTS

To identify the impact of exogenous bacterial DNA on low-microbial-biomass mi-
crobiome studies, we used 16S rRNA gene sequencing of a mock microbial community
that had undergone eight rounds of serial 3-fold dilutions (see Table S1 in the
supplemental material). This allowed us to mimic the decreasing biomass of biological
samples and its effect on the fidelity of 16S rRNA sequencing. We chose a mock
microbial community since most microbiome studies aim to identify mixtures of
bacteria rather than pure bacterial isolates. In mock communities, the expected 16S
rRNA gene sequences are known; thus, any unexpected sequences identified in the
analysis of the dilution series can be attributed to error. These errors can arise from
sequencer errors (base miscalls or barcode cross talk), chimeric sequences, or laboratory
contaminants.

16S rRNA gene sequencing of the mock microbial dilution series and negative
control. The total number of paired-end reads from the mock community dilution
samples was 2,555,160. Following quality filtering, a total of 1,675,028 sequences were
further analyzed and grouped into 1,414 amplicon sequence variants (ASVs). Each
sample in the mock community dilution series had between 40,927 and 251,419 reads.
As expected, the number of reads per sample generally decreased with increased
dilution, though not linearly (Fig. 1A and Table 1).

(i) Undiluted mock community sample composition. The mock microbial com-
munity consisted of 8 bacterial species from 8 distinct genera (see Materials and
Methods). These mapped to 9 unique expected mock community ASVs since sequences
from one expected constituent, Salmonella enterica, were split into two ASVs based on
a single nucleotide variation (G-to-T transition). In total, sequencing of the undiluted
mock community resulted in 18 unique ASVs, which corresponded to 15 known genera
(Table 1). The expected mock community ASVs were represented in 99.95% of the
sample. The other 9 unexpected ASVs totaled 0.05% of the sequences. Due to their low
relative abundance and lack of other explanation, these were likely either contaminants
from sample processing or barcode cross talk from sequencing.

(ii) Negative-control composition. The negative control was composed of 655
ASVs that mapped to 136 genera. The most abundant taxa were the genus Bacteroides
(15.1%), followed by the family Lachnospiraceae (6.9%) and the genera Faecalibacterium
(6.3%) and Ruminiclostridium_6 (6.0%). Within the sample, 21 genera were present at
relative abundances between 1% and 5%, whereas the remaining genera were present
at relative abundances of less than 1%. Three of the 8 mock community ASVs were
present in the negative control. These were in low abundance (0.03% to 1.1%), making
up 1.7% of the total relative abundance of the negative-control sample.

(iii) Mock community dilution series composition. The amount of contaminant
DNA increased with subsequent dilutions of the mock microbial dilution series, indi-
cated by an increased number of ASVs and bacterial genera (Table 1) that were not in
the mock microbial community. As expected, the numbers of ASVs and genera in-
creased with decreased starting microbial biomass for dilutions D1 to D6. However, this
trend did not hold for the most diluted samples (D7 and D8, Table 1). This is likely due
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to the lower number of total sequences from these samples. We did identify an
increased percentage of contaminant ASVs, which had a relationship with dilution
(Fig. 1B).

There were 937 contaminant ASVs in the dilution series. After two rounds of dilution,
contaminant ASVs became more predominant in the microbial community profiles
(Fig. 1B and C), with contaminants having relative abundances greater than 0.5%. After
the 6th round of dilution (D6), contaminants contributed over 50% to the estimated
community composition. Importantly, contaminant genera in these dilutions were
detected with relative abundances greater than 10%, making individual contaminants
easily mistaken for signal from actual microbes present in a sample.

The contaminants identified with abundances greater than 1% in a sample are listed
in Table S2. The most prevalent ASV was the genus Bacteroides, present at relative
abundances of up to 8.6% in the most diluted samples (D6 to D8), followed by two ASVs

FIG 1 Analysis of a mock microbial community dilution series reveals that contaminating bacteria increase
with decreasing starting DNA. A mock microbial community consisting of 8 known bacteria was subject to
8 series of a 3-fold dilution (1:3 through 1:6,561), subject to bacterial DNA isolation and amplification, and
sequenced with the Illumina MiSeq platform. (A) Number of reads per sample. (B) The proportion of reads
from contaminant DNA increased with the amount of dilution. (C) Stacked bar plot representing the
bacteria identified in each sample. The expected ASVs from the mock microbial community are displayed
in color, while all other bacterial ASVs are in grayscale.

TABLE 1 Impact of decreasing starting material for 16S rRNA gene sequencing

Parameter

Data by dilution

D0 D1 D2 D3 D4 D5 D6 D7 D8

No. of reads 251,419 172,915 250,861 247,581 216,341 136,081 128,053 41,071 40,927
No. of unique ASVs 18 20 114 172 262 312 381 147 193
No. of unique genera 15 16 64 61 80 86 107 58 74
% contaminantsa 0.1 0.1 1.8 4.5 12.0 27.9 64.5 55.8 80.1
aPercent contaminants calculated as the percentage of sequences in each sample that were not an exact match to the mock microbial community reference
sequences.
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identified as the Lachnospiraceae NK4A136 group with relative abundances of up to
3.2%. Other contaminant ASVs comprised less than 2% relative abundance per sample.

One hundred ninety-four of the 937 contaminant ASVs were present in the negative-
control sample. ASVs from the negative control made up 35.2% to 62.7% of the
contaminant sequences per sample (average, 50.1%). Of the ASVs that were not present
in the negative control, 675 ASVs were only present in a single dilution series sample,
with 2 to 696 sequences per sample (mean, 77.8 sequences). These ASVs were present
in other samples multiplexed on the same sequencing run and are likely due to barcode
cross talk.

(iv) Impact of contaminants on alpha-diversity metrics. To identify the impact of
including contaminants in downstream microbiome analyses, we calculated the fol-
lowing commonly used measures of alpha diversity: observed number of ASVs, the
inverse Simpson index, and the Shannon index. The expected values for these measures
based on the expected mock microbial community sequences are 9, 1.86, and 5.40,
respectively. The inclusion of contaminant sequences led to increases in all estimates
(observed ASVs, 18 to 381; inverse Simpson index, 5.41 to 71.58; Shannon index, 1.86
to 4.78; see Fig. 2).

Methods to identify and remove contaminants. We evaluated the following four
approaches to identify contaminant ASVs from the mock microbial dilution series:
filtering ASVs present in the negative-control sample, filtering based on ASV relative
abundance, using the frequency method in Decontam, and using the predictive
modeling approach in SourceTracker (Table 2).

(i) Contaminant removal by filtering. We evaluated using a negative control or
relative abundance threshold for identifying contaminant ASVs. For filtering by nega-
tive control, we removed any ASV with a nonzero abundance in the negative control
from the mock community dilution series. Relative abundance filtering was performed
by setting a filter to remove ASVs with an abundance less than a specified relative
abundance (0.01, 0.1, or 1.0) from each sample.

(ii) Contaminant removal by correlation with DNA concentration using Decon-
tam. The frequency method in the open-source R package Decontam (20) identifies an
inverse relationship between sample amplicon concentration after library preparation
and individual ASV abundance. This relationship has been reported for both Illumina
sequencing (9) and pyrosequencing (13) and provides an objective way to identify
contaminants. We evaluated the performance of the Decontam frequency method
using a variety of user-defined thresholds, ranging from the default 0.1 to 0.5. These

FIG 2 Impact of contaminants on common alpha-diversity measures. Failure to remove contaminants from the data set leads to increased estimates of alpha
diversity evaluated by the number of observed ASVs (Observed) inverse Simpson index (InvSimpson), and Shannon diversity index (Shannon). Expected results
were calculated based on the expected mock community ASVs in each dilution sample.
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thresholds dictate the value at which an ASV is classified as a contaminant or noncon-
taminant.

(iii) Contaminant removal with SourceTracker. We used the SourceTracker algo-
rithm (21) to identify and remove contaminant ASVs from the mock microbial dilution
series. SourceTracker uses a Bayesian approach to predict the proportion of each ASV
in an experimental sample that arises from defined “source” environments that the user
provides. The source environments can be created from existing sequence databases
(e.g., of published laboratory contaminants) or by using samples that originate from a
known potential source (e.g., experimental blank controls). For each ASV, the proba-
bility of the ASV arising from each defined source is calculated. If an ASV does not fit
any of the defined sources, it is classified as arising from an unknown source.

We tested two scenarios for recovering the expected mock microbial community
profiles from the mock microbial dilution series using SourceTracker. In the first
scenario, we created a source environment from the expected sequences present in the
undiluted mock microbial community sample, mimicking the scenario when the ex-
perimental environment is well defined. In the second scenario, the expected mock
microbial community is unknown; the proportion of sequences not predicted to be
from the defined negative-control source or contaminant profile source is considered
the contamination-corrected profile. The second scenario is the more commonly
encountered scenario, where the microbial environment that is being studied is poorly
defined. For each scenario, we evaluated two cases defining different contaminant
source environments. In case 1, the contaminant source environments were defined as
both a contaminant profile and a negative-control profile. In case 2, we used only the
negative control as a contaminant source environment to test if the negative controls
alone were enough to identify contaminants.

Evaluation of methods to remove contaminants. To evaluate the overall perfor-
mance of each contaminant removal method, ASVs were classified as being correctly or
incorrectly identified as a contaminant ASV or a mock community ASV. A contaminant
ASV is an ASV that was not expected to be part of the mock community. A mock
community ASV is an ASV that is expected to occur in the mock community. We
calculated the overall accuracy of each method, i.e., the ability to differentiate between
contaminant ASVs and mock community ASVs. To evaluate the success of contaminant
removal methods, we calculated commonly used alpha-diversity metrics and the
relative abundance of the corrected microbial profiles after contaminant removal.

(i) Classification of ASVs. To evaluate the overall performance of each contaminant
removal method, ASVs were classified as being correctly or incorrectly identified as
mock community or contaminants (Fig. 3 and Table S3). Using the negative control to
remove contaminant ASVs misclassified mock community ASVs as contaminant ASVs
(20.1 to 33.9% of mock community ASVs; Fig. 3A and Table S3) and only classified 33.5
to 62.7% of the contaminants correctly. Contaminant removal using a low relative
abundance filter (0.01%) misclassified the majority of contaminant ASVs (Fig. 3B and

TABLE 2 Details of computational methods for identifying and removing contaminants

Method Details Parameters evaluated

Filter, negative control ASVs present in the negative control are
removed

None

Filter, abundance ASVs below a relative abundance
threshold are removed

Abundance threshold, 0.01%, 0.10%, or 1.00%

Decontam, frequency ASVs with a correlation with DNA
concentration are removed

Threshold parameter, 0.1, 0.2, 0.3, 0.4, or 0.5

SourceTracker, scenario 1; experimental
source environment is well defined

Proportions of ASVs predicted to not be
from a defined experimental source
are removed

Source environments; for case 1, mock community
profile � contaminant profile � negative-
control profile; for case 2, mock community
profile � negative-control profile

SourceTracker, scenario 2; experimental
source environment is not defined

Proportion of ASVs predicted to be from
a contaminant source are removed

Source environments; for case 1, contaminant
profile � negative-control profile; for case 2,
negative-control profile
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Table S3). An abundance filter of 0.1% successfully classified the contaminant ASVs
when the prevalence of contaminants was low, but it misclassified the majority of
contaminant ASVs (�50%) when the prevalence of contaminants increased (Fig. 3C,
samples D5 to D8, and Table S3). An abundance filter of 1% successfully classified
greater than 70% of the contaminant ASVs correctly across the dilution series but
misclassified up to 3.9% of the mock community ASVs in the most diluted samples
(Fig. 3D, D6 to D8, and Table S3). The Decontam frequency method correctly classified
all mock community ASVs and correctly classified 10.9% to 90.4% of the contaminant
ASVs (Fig. 3E to I and Table S3). As expected, increasing the threshold led to an

FIG 3 Classification of ASVs. Red, mock community ASVs correctly classified; light gray, mock community ASVs
incorrectly classified; blue, contaminant ASVs correctly classified; dark gray, contaminant ASVs incorrectly classified.
(A) Not correcting for contaminants leads to a large proportion of sequences being incorrectly considered mock
ASVs across the dilution series. (B) Filtering by removing ASVs present in the negative control incorrectly classified
many mock community ASVs as contaminants and misclassified many contaminant ASVs as mock community ASVs
in the diluted samples. (C to E) Abundance filtering required an abundance of 1% to classify the majority of
contaminant ASVs correctly, but it also removed mock community ASVs (E). (F to J) The Decontam frequency
method did not misclassify any mock community ASV sequences and correctly classified the majority of contam-
inant ASVs. In highly diluted samples (D6 to D8), contaminant ASVs are misclassified as mock community ASVs. (K
to N) SourceTracker performs well, correctly classifying the majority of mock community and contaminant ASVs,
though some mock community ASVs are classified incorrectly as contaminant ASVs (K and L). However, in the
scenario where the experimental environment is not well defined (M and N), many of the ASVs are incorrectly
classified as mock community ASVs. S1, scenario 1; S2, scenario 2.
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increased proportion of ASVs being correctly classified as contaminants across the
dilution series, with a threshold of 0.5 correctly classifying over 69.6% of the contam-
inant ASVs correctly across the dilution series. SourceTracker correctly classified the
majority of mock community ASVs and contaminant ASVs in the scenario with well-
defined experimental environments, with less than 0.2% of the contaminant ASVs
misclassified. However, SourceTracker also misclassified mock community ASVs (0 to
21.7%) (Fig. 3J and K and Table S3). In the experimental scenario where the expected
source environment was not well defined, SourceTracker failed to correctly classify
many contaminant ASVs (0 to 67.0% across the dilution series; Fig. 3L and M and
Table S3).

The overall accuracy of each method is presented in Fig. 4. All methods except the
negative-control filter had high accuracy (�0.95) when the prevalence of contaminant
in the sample was low (�5% of the total sample composition). For moderate levels of
contaminants, the accuracy dropped below 0.90 for most methods but remained above
0.90 for the 1% abundance filter, the Decontam frequency method with a threshold
above 0.3, and SourceTracker with well-defined experimental environments. For high
levels of contaminants (�50% of the sample composition), accuracy decreased for all
methods but remained above 0.90 for SourceTracker with well-defined experimental
environments and above 0.75 for the Decontam frequency method with a threshold of
0.5 and an abundance filter of 1%.

Results after contaminant removal. To demonstrate the ability of contaminant
removal methods to lead to a more accurate representation of microbial profiles, we
calculated commonly used alpha-diversity metrics and the relative abundance of the
corrected microbial profiles (Fig. 5). For brevity, the results are displayed for three
dilution series samples each with either low, moderate, or high levels of initial con-
taminants. Overall, contaminant removal methods worked best on samples with low to
moderate levels of contaminant. Once the prevalence of contaminants increased to
above 50%, most methods were unable to accurately identify contaminants. Using the
negative-control filter distorted the relative abundances of expected mock community
ASVs. For example, Lactobacillus spp. were overrepresented in samples with low levels
of contaminants (i.e., D3, Fig. 5A), and Escherichia/Shigella spp. were removed from the
data set since they were present in the negative-control sample (Fig. 5B). The methods
best able to recover the expected microbial community composition were Source-
Tracker, with well-defined experimental environments, followed by the Decontam
frequency method, with a threshold of 0.5 and an abundance filter of 1.0%.

FIG 4 Accuracy of methods to identify contaminants. The negative-control filter has poor accuracy, regardless of prevalence of contaminants. All other methods
have high accuracy when the prevalence of contaminants is �5%. As the prevalence of contaminants increases, the accuracy of most methods drops, with the
exception of SourceTracker with well-defined experimental conditions. Thr, threshold.
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DISCUSSION
Impact of contaminants on microbial community composition. Our study dem-

onstrates the impact of laboratory contaminants on 16S rRNA gene sequencing exper-
iments of various starting microbial biomass levels on a mixed microbial community.
The diluted mock microbial community samples showed a marked increase in the
number of ASVs and, thus, genera with decreasing starting material. This led to
increased estimates of commonly used alpha-diversity metrics incorporating species or
genus richness. Highly diluted samples also demonstrated contaminant bacteria that
were higher in abundance than the expected sequences. The inclusion of such large
amounts of contaminant taxa can artificially decrease the relative abundance of the
actual expected microbial communities. Thus, our findings further extend the work
of Salter et al. (7), demonstrating the magnitude of error from biological data sets
harboring contaminants unaddressed by suitable control procedures on a mixed
microbial sample.

Contaminated laboratory reagents in 16S rRNA gene-based experiments have long
been recognized in the scientific literature (23). Several groups have recently investi-
gated the impact of bacteria arising from DNA extraction kits and other commonly used
laboratory reagents specifically on 16S rRNA gene sequencing experiments. Salter et al.
performed a serial dilution of a pure bacterial isolate to assess contaminants (7). Similar

FIG 5 Example of the effect of contaminant removal on common microbiome summary measures
(relative abundance of ASVs, alpha diversity). (A) Relative abundance of Lactobacillus. (B) Relative
abundance of Escherichia/Shigella. (C) Alpha diversity summarized by the inverse Simpson index. For
brevity, results are shown for three dilution series samples representing low (less than 5%, D3), moderate
(between 10% and 50%; D6), and high (greater than 50%, D8) levels of contaminant ASVs. Expected
results shown by solid black line are based on the composition of the expected mock community ASVs
in the specified dilution sample. See Fig. S1 and S2 for results across the entire dilution series.
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to our study, after 4 10-fold dilutions of a single bacterial isolate, they found that
samples were predominantly composed of contaminant DNA sequences. Glassing et al.
demonstrated the effect of contaminants on biological samples of low microbial
biomass and evaluated methods for mitigating contaminant contributions using a
variety of negative controls (10). These studies exemplify the need for researchers to be
adamant about the contaminant control procedures used.

Identifying contaminants in low-microbial-biomass experiments. Using a dilu-
tion series of mock microbial communities, where the composition and sequences of
the mock microbial community are known, we evaluated several strategies for identi-
fying and removing contaminant sequences. In our evaluation, we used a negative
control and an abundance filter, as well as two available computational methods to
minimize and remove contaminant sequences from downstream analyses. To our
knowledge, this is the first study examining the performance of these methods.

Our data suggest that the use of negative controls alone is insufficient to inform
researchers of appropriate measures to minimize contaminants from their experiments.
While we found that ASVs present in the negative-control sample were also present in
the mock community dilutions, we also identified many contaminant ASVs in the mock
microbial dilution samples that were absent from the negative control. Further-
more, we found that three of the nine expected sequences from the mock microbial
community were also present in the negative control. This could be due to sample
cross-contamination, the presence of closely related organisms, or barcode cross talk
(18). Removing all sequences present in the negative control led to erroneous removal
of many of the expected mock community dilution sequences.

We also evaluated the use of a relative abundance filter to remove contaminant
ASVs, with mixed success. We evaluated a range of relative abundances and found
low-abundance filters (0.01% and 0.1%) to be too conservative, leaving the majority
of contaminant ASVs in the data set, especially as the prevalence of contaminants
increased. The use of a higher relative abundance (1%) removed a large number of
contaminant ASVs but also removed mock community ASVs and missed contaminant
ASVs present at abundances greater than 1%, particularly in the most diluted samples
(D7 and D8). Thus, an appropriate filter that balances contaminant removal with
retention of real ASVs is challenging.

In addition to filtering methods, computational approaches have been developed
to identify and remove potential contaminants. These methods include identifying
correlations with ASV or operational taxonomic unit (OTU) frequency and starting DNA
material measured either before library preparation with a PicoGreen assay or a
NanoDrop spectrophotometer (9) or by more accurate but more labor-intensive quan-
titative PCR (qPCR) (19). We evaluated this approach as implemented in the Decontam
package available in R (20). The Decontam frequency method demonstrated reasonable
performance by removing the majority of contaminants while not removing any
expected mock community ASVs with all tested thresholds, though some contaminants
still remained in the most diluted samples. At the highest threshold evaluated (0.5), the
Decontam frequency method removed 70 to 90% of contaminant ASVs. The remaining
contaminant ASVs were in low abundance, and additional filtering steps, such as
low-abundance filtering or the prevalence method available in Decontam, would likely
further remove these contaminant ASVs.

Another approach uses Bayesian modeling to estimate the proportion of contami-
nants as implemented in SourceTracker. Our study indicates that using SourceTracker
is an excellent approach if the environment under investigation is well defined,
removing 98% of contaminants. This scenario represents a highly controlled experi-
ment or extremely well-characterized environment where the microbial composition is
well defined. However, SourceTracker performed poorly in the scenario where the
environment under investigation is unknown, which is likely the case for most low-
microbial-biomass environments. In this scenario, SourceTracker identified less than 1%
of contaminants.
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Another consideration for selecting a contaminant removal method is the format of
the results, which may limit downstream analysis. The filtering approaches and Decon-
tam classify individual ASVs (or operational taxonomic units [OTUs]) as either being
contaminants or not, and ASVs/OTUs that are identified as contaminants are removed
from the entire data set. This has the benefit of retaining the raw read count of the data,
but it does not permit removal of a proportion of a contaminating sequence, which
may be desirable if a known contaminant is also known to be part of the experimental
environment being studied. In contrast, SourceTracker has the benefit of estimating
proportions of sequences that arise from a contaminant source rather than removing
the entire sequence from the data set. However, with the current implementation, it is
unclear how to recover raw sequencing counts from the results. Furthermore, Source-
Tracker takes a significant time to run, which increases with increasing sequencing
depth. To overcome this, it is common/recommended practice to subsample the data
prior to using SourceTracker, which is currently a controversial practice in microbiome
analysis (24).

Limitations. Our study used a commercial mock microbial community consisting of
8 known bacterial species; it also included 2 fungal species (which do not possess a 16S
rRNA gene and thus were not analyzed in this study). Mock microbial communities that
are representative of or have characteristics similar to the expected experimental
microbial community can also be generated and may provide a more robust estimate
of the experimental contaminants present in a study. Furthermore, in our study, all
negative controls were barcoded with the same barcode, limiting their utility. For
example, we were unable to use the prevalence method for contaminant removal that
is available in the Decontam package. We also limited our evaluation to computational
strategies for identifying contaminants that do not require additional experimental
information, such as spike-in controls (25), KatharoSeq (26), or qPCR (19).

Conclusion. Controlling for contaminants in low-microbial-biomass experiments
remains an important and unsolved problem, particularly in the age of easily accessible
high-throughput next-generation sequencing. We demonstrate that using a dilution
series of a mock microbial community can provide researchers studying low-microbial-
biomass environments with an effective means to evaluate laboratory contaminants in
16S rRNA gene sequencing experiments. This includes identifying the actual back-
ground noise specific for a particular experiment, as well as for evaluating the success
and optimizing the parameters of methods used to identify exogenous contaminant
DNA from experiments. Since the exogenous DNA present in DNA extraction kits has
been shown to vary across kit types and different lots of the same kit, a control such
as a mock community dilution series is an important addition to each 16S rRNA gene
sequencing experiment in order to identify experiment-specific contaminants. This is
particularly important for studies investigating environments with low microbial bio-
mass, such as urine, lower airway, and upper atmosphere. We recommend that inves-
tigators use a whole-cell mock community dilution series consisting of at least high,
medium, and low dilutions representing the expected range of DNA concentration in
the environment being studied in addition to extraction blanks as negative controls.

We demonstrated that identifying contaminants in 16S rRNA gene sequencing
experiments is challenging, and that computational strategies can be used to identify
and remove contaminant ASVs. We found that aside from the negative-control filter,
each method had conditions under which it performed well. Most methods did not
perform well once the amount of contaminants increased to one-third of the sample.
We found that the Decontam frequency method was robust, did not misclassify any
mock community ASVs, and did not require prior information about the microbial
community being studied.

Importantly, it is likely that a single approach for removing contaminants from
low-biomass samples will not work equivalently across all sequencing studies investi-
gating low-microbial-biomass environments. Thus, it is important that the method used
for controlling contaminants be evaluated and reported upon publication. A mock
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microbial dilution series can serve as a way to evaluate different methods of contam-
inant removal for a specific experiment. This will ensure that the science is transparent
and will make results more robust and reproducible.

MATERIALS AND METHODS
Microbial mock community dilution. ZymoBIOMIC mock community standards were used (Zymo

Research). This mock community consisted of 8 bacterial species (Pseudomonas aeruginosa, Escherichia
coli, Salmonella enterica, Lactobacillus fermentum, Enterococcus faecalis, Staphylococcus aureus, Listeria
monocytogenes, and Bacillus subtilis) and two fungal species (Saccharomyces cerevisiae and Cryptococcus
neoformans). The mock community was diluted with microbial DNA-free water (Qiagen) in 8 rounds of
a serial 3-fold dilution prior to DNA extraction. A total of 50 �l of community standard (equivalent to
�1.5 � 109 total bacteria) was used as the highest microbial standard for DNA extraction (see Table S1).
Blank controls of microbial DNA-free water also were used and subjected to all processing steps.

DNA extraction and PCR amplification. A total of 50 �l of each serially diluted microbial standard
was subject to DNA extraction using the cultured cell protocol supplied with the DNeasy blood and
tissue kit (Qiagen, Germany), as per the manufacturer’s instructions. DNA was eluted in a total volume
of 50 �l. The extracted DNA was quantified and quality checked at A260/A280 (NanoDrop spectropho-
tometer; Thermo Fisher Scientific, USA) prior to amplification by PCR. Bacterial DNA was amplified by PCR
using Golay barcoded primers, which target the V4 region of 16S rRNA genes (37). Template DNA was
amplified in triplicate using the GoTaq Hot Start polymerase kit (Promega, USA). One microliter of
template DNA and 1 �l of a unique barcoded reverse primer were added to 48 �l of master mix
containing 1� colorless reaction buffer, 1.5 mM MgCl2, 0.2 mM dinucleoside triphosphates (dNTPs),
0.2 mM forward primer, and 1.25 U of polymerase enzyme. The reaction volumes were placed in a
thermocycler and run through the following conditions: 94°C for 3 min (initial denaturation), followed by
35 cycles of 94°C for 45 s (denaturation), 55°C for 40 s (annealing), 72°C for 1.5 min (extension), and a final
extension at 72°C for 10 min.

PCR product purification and sample pooling. Ten microliters of each product was used to verify
amplification by gel electrophoresis on a 2% agarose gel. Replicates yielding visible bands at bp 382 were
pooled and purified according to provided protocol of the QIAquick PCR purification kit (Qiagen,
Germany). Purified products were again quantified and quality checked at A260/A280 (NanoDrop spec-
trophotometer; Thermo Fisher Scientific, USA). Products were diluted to 10 ng/�l, and 5 �l of each
sample was pooled for sequencing on a MiSeq sequencer (Illumina, USA).

Sequencing and sequence processing. Primers and sequence adapters were removed with the
Illumina MiSeq Reporter (version 2.5). The sequences were further processed using scripts implemented
in the R statistical computing environment with the DADA2 (version 1.10.1) package (27) (scripts are
available on GitHub at https://github.com/lakarstens/ControllingContaminants16S). Briefly, sequences
were quality filtered and trimmed (forward reads at 230 nucleotides [nt] and reverse reads to 210 nt) prior
to inferring amplicon sequence variants (ASVs) with the DADA2 algorithm. ASVs, which group similar
sequences together according to a model that considers sequence abundance and sequencing error,
were chosen over traditional operational taxonomic units (OTUs) since they have a finer resolution
(28–30). Chimeric sequences were removed with the approach implemented in the DADA2 package.
Taxonomy was assigned for each ASV to the genus level using the RDP Naive Bayesian Classifier (31)
implemented in DADA2 with the SILVA database (version 132). The R package phyloseq (version 1.26.1)
(32) was used for storing the ASV table, taxonomy, and associated sample data and for calculating
alpha-diversity measures. Expected values for alpha-diversity measures were calculated on the subset of
the mock microbial community dilution samples that only contained expected sequences.

Contaminant identification and removal. Both negative-control filtering and relative abundance
filtering were performed in R (version 3.5.2) using custom-made scripts available on GitHub (https://
github.com/lakarstens/ControllingContaminants16S). Negative-control filtering was performed by re-
moving any ASV that had a nonzero abundance in the mock community dilution series. Abundance
filtering was performed transforming the mock microbial community data set to relative abundances and
then setting any ASV values below the specified value (0.01, 0.1, and 1%) to zero.

Decontam (version 1.2.1) (20) was used to identify ASVs with significant inverse correlations with DNA
concentration measured by a NanoDrop spectrophotometer (prior to library preparation; values provided
in Table S1). We evaluated the performance of the Decontam frequency method using different
user-defined classification threshold P* from 0.1 (default value) to 0.5. While values above 0.5 can be
used, 0.5 is the threshold at which sequences will be classified as a contaminant if the contaminant
model is a better fit than the noncontaminant model (20).

SourceTracker version 1.0.1 (21) was used to determine the amount of contamination in samples and
recover the true microbial community of each sample. To test optimal inputs as source environments, we
performed a series of analyses with the following samples labeled as source samples: contaminant
profiles (created by removing the expected ASVs from the diluted mock microbial community samples),
negative control (blank extraction controls that went through all the sample processing steps and
microbial DNA-free water), and the expected mock microbial community profile (the undiluted mock
microbial community sample).

Software used. R (version 3.5.2) (33) was used to process the raw sequencing data with the DADA2
package (version 1.10.1) (27). All analyses were completed in R (33) using the following packages:
SourceTracker version 1.0.1 (21), Decontam version 1.2.1 (20), phyloseq version 1.26.1 (32), ggplot2
version 3.1.0 (34), tidyr 0.8.3 (35), and dplyr version 0.8.0.1 (36).
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Data availability. The sequencing data supporting the conclusions of this article are available in
the SRA under accession number SRP155048. The data and R markdown scripts necessary to reproduce
the analysis presented in this paper are available at https://github.com/lakarstens/Controlling
Contaminants16S.

SUPPLEMENTAL MATERIAL
Supplemental material for this article may be found at https://doi.org/10.1128/

mSystems.00290-19.
FIG S1, PDF file, 0.1 MB.
FIG S2, PDF file, 0.1 MB.
TABLE S1, CSV file, 0.0 MB.
TABLE S2, CSV file, 0.1 MB.
TABLE S3, XLSX file, 0.1 MB.
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