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Ayşe Ufuk 1, Terence Garner 2, Adam Stevens 2,† and Ayşe Latif 1,*,†
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Simple Summary: Monocarboxylate transporters (MCTs) carry a variety of substrates, with MCT1–4
being well-characterised and involved in the proton-coupled transport of monocarboxylates (such as
lactate), which can be used as metabolic fuel for cancer cells. Increased acidity of the tumour microen-
vironment via MCTs favours remodelling of the extracellular matrix (ECM), leading to desmoplasia
associated with tumour metastasis and poor patient outcomes. Although MCT1, MCT2, and MCT4
are upregulated in several cancers, their expression and role in pancreatic ductal adenocarcinoma
desmoplasia is little understood. Here, we aimed to understand the role of MCTs in desmoplasia
through their association with ECM components. Our analysis using hypernetworks showed the
presence of bidirectional associations of MCTs and ECMs, suggesting the presence of a causal rela-
tionship and the need to further investigate their functional associations. It confirmed the role of
MCTs in desmoplasia, highlighting their importance as therapeutic targets alone or in combination
with key ECM components to potentially improve patient outcomes.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a five-year
survival rate of <8%. PDAC is characterised by desmoplasia with an abundant extracellular matrix
(ECM) rendering current therapies ineffective. Monocarboxylate transporters (MCTs) are key regula-
tors of cellular metabolism and are upregulated in different cancers; however, their role in PDAC
desmoplasia is little understood. Here, we investigated MCT and ECM gene expression in primary
PDAC patient biopsies using RNA-sequencing data obtained from Gene Expression Omnibus. We
generated a hypernetwork model from these data to investigate whether a causal relationship exists
between MCTs and ECMs. Our analysis of stromal and epithelial tissues (n = 189) revealed nine
differentially expressed MCTs, including the upregulation of SLC16A2/6/10 and the non-coding
SLC16A1-AS1, and 502 ECMs, including collagens, laminins, and ECM remodelling enzymes (false
discovery rate < 0.05). A causal hypernetwork analysis demonstrated a bidirectional relationship
between MCTs and ECMs; four MCT and 255 ECM-related transcripts correlated with 90% of the
differentially expressed ECMs (n = 376) and MCTs (n = 7), respectively. The hypernetwork model was
robust, established by iterated sampling, direct path analysis, validation by an independent dataset,
and random forests. This transcriptomic analysis highlights the role of MCTs in PDAC desmoplasia
via associations with ECMs, opening novel treatment pathways to improve patient survival.

Keywords: pancreatic cancer; transcriptomics; hypernetworks; tumour microenvironment

1. Introduction

Pancreatic cancer is the 12th most common cancer and the seventh-highest cause of
cancer mortality worldwide [1]. In the UK, it is the 10th most common malignancy, with its
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incidence rates predicted to increase 6% by 2035 [2]. PDAC is the most common malignancy
of the pancreas, accounting for 95% of all pancreatic cancer cases, with a five-year survival
rate of less than 8% [3,4]. The poor clinical prognosis of PDAC stems from the difficulty
of its diagnosis, ineffective treatment options at advanced stages, and surgery being the
only existing curative option that can be offered to only 10–20% of patients with resectable
PDAC [4–6]. The most well-known mutations in PDAC include KRAS, TP53, CDKN2A,
and SMAD4, with KRAS being present in more than 90% of patients with PDAC, and
are considered as initiators of tumorigenic progression [7]. In pancreatic cancer, K-Ras
signalling activates downstream effector pathways, including Raf/MAPK, PI3K/Akt, Ral-
GEFs, and phospholipase Cε, which have important roles in cell cycle regulation, apoptosis,
cell growth, differentiation, and migration, as well as the regulation of various transcription
factors [8–12]. Progression from the earliest pancreatic intraepithelial neoplasias to invasive
PDAC is accompanied by the inactivation of CDKN2A as the most frequently seen tumour
suppressor gene in pancreatic cancer, followed by the loss of function mutations in TP53
and SMAD4 [7,13].

A key feature of PDAC is the existence of extensive fibrotic stroma, also known as
desmoplasia, which has an abundance of dense extracellular matrix (ECM) surrounding
fibroblasts, immune cells, endothelial cells, and neuronal cells [14,15]. The components
of ECM include collagens; glycoproteins (e.g., laminins, elastin, and fibronectin); and
proteoglycans (e.g., hyaluronic acid), as well as ECM remodelling enzymes involved in
degradation or cross-linking of the ECM components (e.g., matrix metalloproteinases
(MMPs) and their tissue inhibitors (TIMPs) and lysyl oxidases (LOXs)) [16–18]. The ex-
cessive accumulation of ECM components has been highlighted as a major contributor
to PDAC progression and the resistance to therapeutic efficacy [5,16]. ECM remodelling
occurs as a result of the crosstalk between tumour cells and the microenvironment, in-
cluding pancreatic satellite cells (PSCs) in stroma, which cause aberrant secretion of ECM
components by the secretion of profibrotic and inflammatory growth factors.

Monocarboxylate transporters (MCTs) are key players in cellular metabolism and have
an important role in regulating intracellular pH [19]. They belong to the solute carrier
16 (SLC16) gene family, with MCT1/SLC16A1, MCT2/SLC16A7, MCT3/SLC16A8, and
MCT4/SLC16A3 being well-characterised in terms of their role in the proton-coupled
transport of monocarboxylates such as lactate, pyruvate, and ketone bodies. From a
metabolic standpoint, most solid tumours rely on glycolysis to produce energy, leading to
the production of large amounts of lactate that is exported by the MCTs [20,21]. Therefore,
MCTs help cancer cells maintain their high glycolytic activities and contribute to tumour
acidosis and progression [22,23]. MCT1, MCT2, and MCT4 are known to be upregulated in
different cancers, and a high expression of MCT1 and MCT4 is often associated with a poor
prognosis [20,22]. MCTs contribute to the acidification of the tumour microenvironment,
which is known to activate and increase the expression of the ECM remodelling enzymes
involved in ECM degradation, contributing to the desmoplastic reaction [24,25]. However,
their expression and association with desmoplasia are still largely unknown in PDAC.

So far, the association between MCTs and ECM components has been shown in a
limited number of cancer types in vitro. For example, the upregulation of MCT1 was
associated with increased invasiveness and migration of nasopharyngeal carcinoma cell
lines accompanied with increased expression of MMP2 and MMP9 and downregulation
of TIMP1 and TIMP2 [26]. Secondly, overexpression of lysyl oxidase-like 1 (LOXL-1) in
a non-small cell lung cancer metastasis model was associated with the upregulation of
MCT1/2, increased expression and activity of MMP2/9, and increased cell migration and
invasion, along with increased extracellular lactate at a low pH [27]. The latter findings
also support the correlation of acidic pH via lactate transport by the MCTs with increased
activity of the MMPs [18,21,22]. However, in PDAC, the link between MCT and ECM
components has not been elucidated. Therefore, it is vital to investigate the correlation
of MCTs with ECMs and consolidate the role of MCTs in PDAC desmoplasia, as well as
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bring forward novel treatment strategies co-targeting MCTs and key ECM players to reduce
tumour progression and improve patient survival.

Omics approaches are now widely used in the field of cancer to identify dysregulated
molecular mechanisms, provide insights into biological pathways, and propose potential
biomarkers for different cancer types. The incorporation of higher-order interactions driven
from omic data is now seen as an essential part of modelling biological systems [28].
Hypernetworks model higher-order interactions or relationships between omic elements
(represented by nodes) based on large numbers of shared correlations (represented by
edges) [29]. Such interactions that are normally not captured by traditional pairwise
transcriptomic approaches provide a model of functional relationships between these omic
elements [30,31].

In this study, we set out to evaluate MCT–ECM interactions using in silico approaches
utilising data available in a public repository, the National for Biotechnology Information
(NCBI) Gene Expression Omnibus (GEO). To achieve this, we investigated the causal link
between MCT and ECM interactions using a hypernetwork model of PDAC transcriptome
based on literature-collated RNA-sequencing data. Our hypothesis and study design
related to the causal analysis is illustrated in Figure 1. The purpose of the hypernetworks is
to decipher the high-dimensional relationships between multiple transcripts by flattening
them into a single metric of similarity using the summary of the correlation matrices [29].
In order to refine the hypernetwork model, the differential expression of MCT and ECM
genes were first determined. The findings of the causal analysis were validated using
independent approaches. In addition, we sought to understand the correlation between
MCT and ECM expression with age at PDAC diagnosis. Finally, we assessed MCT and
ECM expression in short- and long-term survivors of patients with PDAC.

Cancers 2022, 14, x FOR PEER REVIEW 3 of 27 
 

 

activity of the MMPs [18,21,22]. However, in PDAC, the link between MCT and ECM com-

ponents has not been elucidated. Therefore, it is vital to investigate the correlation of 

MCTs with ECMs and consolidate the role of MCTs in PDAC desmoplasia, as well as 

bring forward novel treatment strategies co-targeting MCTs and key ECM players to re-

duce tumour progression and improve patient survival. 

Omics approaches are now widely used in the field of cancer to identify dysregulated 

molecular mechanisms, provide insights into biological pathways, and propose potential 

biomarkers for different cancer types. The incorporation of higher-order interactions 

driven from omic data is now seen as an essential part of modelling biological systems 

[28]. Hypernetworks model higher-order interactions or relationships between omic ele-

ments (represented by nodes) based on large numbers of shared correlations (represented 

by edges) [29]. Such interactions that are normally not captured by traditional pairwise 

transcriptomic approaches provide a model of functional relationships between these 

omic elements [30,31]. 

In this study, we set out to evaluate MCT–ECM interactions using in silico ap-

proaches utilising data available in a public repository, the National for Biotechnology 

Information (NCBI) Gene Expression Omnibus (GEO). To achieve this, we investigated 

the causal link between MCT and ECM interactions using a hypernetwork model of 

PDAC transcriptome based on literature-collated RNA-sequencing data. Our hypothesis 

and study design related to the causal analysis is illustrated in Figure 1. The purpose of 

the hypernetworks is to decipher the high-dimensional relationships between multiple 

transcripts by flattening them into a single metric of similarity using the summary of the 

correlation matrices [29]. In order to refine the hypernetwork model, the differential ex-

pression of MCT and ECM genes were first determined. The findings of the causal analy-

sis were validated using independent approaches. In addition, we sought to understand 

the correlation between MCT and ECM expression with age at PDAC diagnosis. Finally, 

we assessed MCT and ECM expression in short- and long-term survivors of patients with 

PDAC. 

 

Figure 1. Study hypothesis and actions taken to conduct a causal analysis to determine the link 

between MCTs and ECMs using epithelial and stromal data from patients with PDAC. A differential 

gene expression analysis was first conducted to determine significant MCT and ECM genes to refine 

the causal analysis performed using a hypernetwork model. The findings were validated using four 

independent approaches. 

Figure 1. Study hypothesis and actions taken to conduct a causal analysis to determine the link
between MCTs and ECMs using epithelial and stromal data from patients with PDAC. A differential
gene expression analysis was first conducted to determine significant MCT and ECM genes to refine
the causal analysis performed using a hypernetwork model. The findings were validated using four
independent approaches.
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2. Materials and Methods
2.1. Study Selection and Data Processing

The NCBI GEO repository browser (https://www.ncbi.nlm.nih.gov/geo/browse/,
accessed on 15 December 2021) was used to search for RNA-sequencing (RNA-seq) studies
of pancreatic cancer involving “pancreatic” as a search term, “Homo sapiens” as an organism,
and “expression profiling by high-throughput sequencing” as a series type. Studies with
RNA-seq data from primary PDAC tissue biopsies with their matching controls where
available were included in the analysis.

The quality control for the raw sequencing data was performed with FastQC v0.11.9
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed on 19 December
2021). The raw sequencing reads were filtered using BBDuk from the BBMap toolkit v38.87
(ktrim = r, k = 21, mink = 9, hdist = 1; https://sourceforge.net/projects/bbmap/, accessed
on 19 December 2021) to remove adapters and quality trim both ends to Q15 (qtrim = rl,
trimq = 15, minlength = 36). Read mapping to human reference genome hg38 with Gencode
v35 annotations and gene quantification using “–quantMode GeneCounts” were performed
with STAR v2.7.6a [32]. Post-mapping quality control was performed with RseQC v4.0.0
(http://rseqc.sourceforge.net/, accessed on 19 December 2021).

2.2. Segregation Analysis

To evaluate the quality of the collated transcriptomic data and assess the similarities of
different datasets, we performed the unsupervised learning method Principal Component
Analysis (PCA). For the analysis of all collated studies (n = 4), each study was initially
processed independently to remove genes with low expression (genes with fewer than
10 reads) using the R package edgeR (version 3.32.1 [33]). Once genes with low expression
were filtered out, the raw count table, including all datasets, was trimmed down to these
common genes. Trimmed Mean of M-values (TMM) normalisation was used to facilitate
a comparison of expressions between samples. These normalised data were then used to
conduct PCA using the R package mixOmics (version 6.14.1 [34]). The analysis was run
with the pca function based on the calculation of the first two principal components while
both centring and scaling of the data were applied.

Segregation of the stromal and epithelial dataset alone (GSE93326) based on tumour
overall stage, grade, and N-score was also performed by applying each of these features as
a factor in the analysis.

2.3. Differential Gene Expression Analysis

Differentially expressed MCT, ECM, and ECM-related genes were identified using the
R package edgeR. When analysing differentially expressed genes (DEGs) in the stromal and
epithelial dataset alone (GSE93326), the comparison was performed between the stroma
and epithelium, which included 66 matched tissues and an additional 57 stromal data
in comparison to the analysis conducted by Maurer et al. (2019) (analysed 60 matched
tissues) [35]. The analysis of DEGs in short- (STS) and long-term survivors (LTS) from
the GSE79668 dataset was performed using tumour tissues from the mentioned survival
groups (14 and 13 samples from STS and LTS, respectively). When analysing DEGs between
tumour and non-tumour tissues from all datasets combined (n = 4), the pre-processing of
the studies in terms of the removal of low expression genes and data normalisation was
handled as described above. The gene expression levels were calculated as log2 count per
million (CPM). The difference in the gene expression levels was calculated as the log2-fold
changes (logFC) of genes between the comparison groups. Genes were filtered using a false
discovery rate (FDR)-adjusted p-value < 0.05 to determine the significance. Hierarchical
clustering analysis of the DEGs was done by the complete method with Euclidean distance.
The gene expression profiles were visualised with heatmaps using a modified version of
the heatmap.2 function of the R package gplots (version 3.1.1) [36] to allow simultaneous
visualisation of multiple annotations. Log-normalised expression levels of the MCT genes
were visualised with violin plots using the R package ggplot2 (version 3.3.5) [37].

https://www.ncbi.nlm.nih.gov/geo/browse/
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://sourceforge.net/projects/bbmap/
http://rseqc.sourceforge.net/
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We identified differentially expressed ECM and ECM-related genes based on the
NABA_MATRISOME gene set (version 5.0) from the Molecular Signature Database (MSigDB)
as a reference [17]. This gene set is an ensemble of 1026 genes that encode ECM and ECM-
associated proteins. Due to their roles in cell adhesion and migration and potential contribu-
tions to ECM remodelling and stiffness [11,33,34], we also included integrins and keratins
into the matrisome gene set to provide a broader coverage of the ECM-related genes.

The conversion of Ensembl IDs to gene names was performed either by using the R
package biomaRt (version 2.46.2) [38] or the BioMart online tool from Ensembl (Ensembl
release 104) [39].

2.4. Causal Analysis

The causal relationship between MCTs and ECMs was evaluated using a hypernetwork
modelling approach as previously described [29,31]. Briefly, hypernetworks represent
network structures where edges define a relationship between nodes (e.g., transcripts) and
can be shared by many nodes (Appendix A, Figure A1); this is the definition of “higher
order interactions” [28]. In this way, hypernetwork structures are used to delineate complex
relationships that connect multiple omic elements. We can determine the connectivity of
target elements (e.g., differentially expressed genes) within the whole transcriptome by
quantifying their number of shared edges (i.e., correlations or gene–gene interactions). This
not only provides a summary of higher-order interactions from correlation matrices but
also implies functional relationships between strongly associated elements [29].

Here, we used hypernetworks to evaluate the correlations between the MCT and
ECM (and ECM-related) transcripts within the stromal–epithelial dataset (GSE93326). The
differentially expressed MCTs and ECMs were used to refine the selection of target genes
for the hypernetworks. To assess the similarity of the differentially expressed MCTs (n = 9)
or ECM and ECM-related (n = 502) transcripts, we first determined the Pearson correlation
coefficients as a distance metric between each of these transcripts and the rest of the
transcriptome (n = 13,815 and n = 13,322 in the case of correlations with MCTs and ECMs,
respectively). Values were binarized using±1 standard deviation (SD) from the mean, such
that the direction of the correlations (i.e., negative or positive) was ignored. This formed
the matrix M, where

x > |1|sd, then x = 1

x ≤ |1|sd, then x = 0

The sd of the r-values were 0.20 and 0.28 for the MCT and ECMs, respectively, with
their distribution profiles shown in Figure A2. The binarized matrix M is the incidence ma-
trix of the hypernetwork where target genes are nodes and non-target genes are edges. This
matrix was then multiplied by its transpose Mt to generate a new matrix (M×Mt), which
describes the number of shared correlations between any pair of DEGs. This final matrix
represents the adjacency matrix of the hypernetwork, which describes the higher-order
interactions between the genes and has been suggested to describe functional relation-
ships [30]. Hierarchical clustering was used to identify the clusters formed within the
hypernetwork. The correlations between the highly connected cluster of transcripts from
the hypernetwork and the rest of the transcriptome were determined by interrogating the
incidence matrix, M [31]. This produced a subset of the whole transcriptome that correlated
with 90% of the transcripts from the hypernetwork cluster.

The robustness of the hypernetworks was evaluated using a number of approaches.
Firstly, we tested if the interactions between MCT and ECM genes observed in the hyper-
network model were more frequent than expected by random chance. This was achieved
by iterating one thousand hypernetworks using 7 and 376 randomly selected genes for
MCTs and ECMs, respectively, based on the findings of the primary hypernetwork analysis.
The mean number and SD of ECM and MCT genes that were found to correlate with these
random genes were calculated.

Secondly, we refined a network of MCTs and ECMs by silencing the indirect relation-
ships between genes, retaining only the direct links [40]. To demonstrate the presence
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of direct links between the MCTs and ECMs, we first correlated differentially expressed
MCT and ECM genes (9 and 502, respectively) together. Indirect relationships in this
correlation matrix were silenced using a modified version of Equation (5) of Barzel and
Barbasi (2013) [40], which incorporated the Moore–Penrose approximation of the inverse of
the correlation matrix. Consequently, matrix S represents the directness of the relationship
between gene pairs. The interaction directness was ranked to identify the strongest inter-
actions between connected nodes. The significance of these interactions was calculated
as a z-score (relationship directness score-mean(S))/sd(S)) and the associated p-values
calculated from the cumulative distribution function of the normal distribution.

To provide further validation for the causal relationship between MCTs and ECMs, we
used an independent RNA-seq dataset (GSE164665) from Birnbaum et al. (2021) including
19 pairs of matched epithelium and stroma samples. The raw count data were normalised
and scaled as described in the previous section. Hypernetwork models of these data
were generated in the same manner as our primary dataset (GSE93326): the differentially
expressed MCT and ECM genes that clustered in the primary dataset were used to form
the causal model, and the analysis was conducted bidirectionally (i.e., from MCT to ECM
transcripts and vice versa). Using the hypernetwork incidence matrix, the percentage of
target genes from the central cluster that interact with nontarget ECM and MCT genes was
determined. A Wilcoxon rank-sum test on these proportions was used to test whether the
ECM and MCT genes interacted more with one another than with any other genes.

Following the generation of the hypernetwork models, a direct path analysis was
performed as described above; the differentially expressed MCT and ECM genes from the
primary dataset (9 and 502, respectively) were correlated based on the expression values
from the validation (Birnbaum) dataset. The strength of the interactions found between
ECM and MCT genes in the primary dataset was assessed in the validation dataset.

Finally, a random forest (RF) model was generated using the primary dataset to
predict the tissue phenotype from the gene expression data. We used a Synthetic Minority
Oversampling TEchnique (SMOTE, R package smotefamily) [41] to balance the classes
before partitioning the dataset into training (70%) and test (30%) sets. In addition, we used
the Birnbaum data as validation for these models. RF models were generated using two sets
of genes: (1) a combination of the MCTs and ECMs identified by the hypernetwork model
and (2) a representative-sized set of non-differentially expressed genes in the primary
dataset. The statistical parameters used to evaluate the model performance were the model
out-of-bag (OOB) error rate, area under the curve (AUC) with 95% confidence interval
(CI), and AUC of the validation set and error rates for the test and validation sets. These
parameters were estimated using the R packages pROC, ROCR, caret, and randomForest,
respectively [42–45].

All primary analyses were performed in R (version 4.0.3). The silenced matrix resulting
from the direct path analysis was visualised in Cytoscape (version 3.9.0) and imported
using the aMatReader app (version 1.2.0).

2.5. Functional Annotation

Functional annotation of the genes that showed a correlation with the clustered
MCT and ECM genes in the hypernetwork analysis was conducted using the online tool
DAVID [46,47].

2.6. Investigation of the Correlation between MCT–ECM Expression in Stroma and Epithelium
with Age at PDAC Diagnosis

To investigate how the levels of differentially expressed MCT, ECM, and ECM-related
genes in stromal and epithelial tissue samples associate with age at diagnosis of PDAC,
we performed Pearson correlation analysis using the rcorr function of the R package
Hmisc (version 4.5-0; Hmisc:HarrellMiscellaneous(uib.no), accessed on 19 December 2021).
Log-normalised TMM data for 187 samples from the GSE93326 dataset with available age

Hmisc: Harrell Miscellaneous (uib.no)
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information were used in the correlations. Both the correlation coefficients and the p-values
were reported.

2.7. Assessment of MCT, ECM, and ECM-Related Gene Expression in Short- and
Long-Term Survivors

We evaluated the levels of MCT, ECM, and ECM-related genes identified as differen-
tially expressed in stromal-epithelial dataset in short- and long-term survivors from the
GSE79668 dataset (14 and 13 subjects, respectively). Violin plots were used to inspect the
log-normalised expression levels of the top four MCT genes that showed differential expres-
sion (p < 0.05) in the stromal–epithelial samples. ECM and ECM-related genes that were
significantly different (FDR < 0.05) in both the stromal-epithelial and STS–LTS datasets
were examined with a heatmap using the modified heatmap.2 function as described
previously.

3. Results
3.1. Large Interstudy Differences in Gene Expression Levels Exist in PDAC

In this study, we aimed to establish a link between MCTs and ECMs using publicly
available transcriptomic data. Based on the criteria outlined (RNA-seq, primary PDAC
tissue biopsies, and Homo sapiens), four RNA-seq datasets were included in the initial
analysis, as summarised in Supplementary Table S1 [35,48–50]. In addition to the studies
reporting RNA-seq data from primary PDAC bulk tissues, a study with GEO accession
number GSE93326 with data from PDAC stroma and epithelium was selected to help
delineate the role of MCTs in desmoplasia. One study was excluded from the analysis due
to RNA-seq data being generated from cell lines that were isolated from primary tumours
(GSE63124).

The PCA revealed large variations in the transcriptomic data from tumour tissues
between different datasets, whereas minimal differences were observed between tumour
and non-tumour tissues (Figure A3). Although the differences between tumour tissues and
studies were not clear in the PCA plots when all samples were included in the segregation
analysis (Figure A3a,b), this difference was highlighted when tumour stromal and epithelial
data were excluded, and the GSE79668 dataset was compared with the remaining datasets
(Figure A3c,d). As a result, we deemed the collated RNA-seq datasets on tumour and
non-tumour tissue biopsies inappropriate for the purpose of conducting a differential gene
expression analysis and focused on the analysis of epithelial and stromal data from the
GSE93326 dataset.

3.2. MCT, ECM, and ECM-Related Genes Are Differentially Expressed in PDAC Stroma
and Epithelium

The PCA of the GSE93326 dataset (including data from 66 paired epithelium and
stroma and additional 57 stroma) showed two distinct groups of epithelial and stromal
samples as similar to those previously observed by Maurer et al. (2019) for the 60 paired
samples [35]. We further investigated whether the separation of epithelial and stromal data
was influenced by cancer severity by segregating the samples based on the established
PDAC covariates (which were made available in the GEO database) [51–53]: overall tumour
stage, grade, and metastasis to nearby lymph nodes. The distinct separation of the stroma
and epithelium was not explained by any of the individual factors (i.e., tumour stage), as
their occurrence was homogenous among the samples (Figure A4).

Next, we conducted a differential gene expression analysis to determine the MCT and
ECM genes associated with epithelium and stroma. The analysis showed 13,824 features in
189 samples (123 stroma and 66 epithelium) following the filtering of low-expression genes.
Of these features, 8944 DEGs were identified between the PDAC stroma and epithelium
samples (FDR < 0.05), including 4481 upregulated and 4463 downregulated genes in the
stromal compartment (Figure A5 and Supplementary Table S2). The genes found to be
upregulated in both compartments showed agreement with those found by Maurer et al.,



Cancers 2022, 14, 1298 8 of 27

(2019) [35]. The transcriptional profiles for PDAC stroma were well-distinguished from the
epithelial counterparts, consistent with the trend observed in PCA (Figure A6).

Nine MCT genes were identified as differentially expressed in PDAC stroma (Table 1,
FDR < 0.05). Among the MCT genes, SLC16A10/MCT10 was the most significant DEG,
showing nearly 3.5-fold higher expression in the stroma relative to the epithelium (Figure 2).
In addition to the protein-coding SLC16A genes, we identified a long non-coding RNA
(lncRNA) SLC16A1-AS1 to be differentially expressed and highly upregulated (logFC of
2.25) in the stroma samples. Two other SLC16A genes that showed a higher expression in
PDAC stroma were SLC16A2/MCT8 and SLC16A6/MCT7, with the remaining MCT genes
having higher expression levels in the epithelium (Figure 2).

Table 1. Expression of MCT genes in PDAC stroma (n = 123) relative to the epithelium (n = 66). In total,
12 MCTs were identified, of which 9 showed significant differential expression between the stroma
and epithelium, with the remaining MCTs having similar expression in these tissues. In addition to
the protein-coding MCT genes, lncRNA SLC16A1-AS1 was also found to be downregulated in the
tumour epithelium.

Gene Name Protein Name FDR LogFC ‡ logCPM p-Value

SLC16A10 † MCT10 6 × 10−24 3.52 3.12 5 × 10−25

SLC16A7 † MCT2 2 × 10−16 −1.17 5.06 3 × 10−17

SLC16A5 † MCT6 3 × 10−12 −2.18 1.54 5 × 10−13

SLC16A1-AS1 † - 2 × 10−11 2.25 1.13 4 × 10−12

SLC16A2 † MCT8 2 × 10−11 1.63 4.13 5 × 10−12

SLC16A4 † MCT5 8 × 10−9 −1.05 4.29 2 × 10−9

SLC16A6 † MCT7 7 × 10−5 1.48 0.88 3 × 10−5

SLC16A9 † MCT9 1 × 10−3 −1.29 1.09 5 × 10−4

SLC16A13 † MCT13 2 × 10−3 −1.46 0.24 1 × 10−3

SLC16A1 MCT1 2 × 10−1 −0.28 4.25 1 × 10−1

SLC16A3 MCT4 2 × 10−1 −0.30 1.92 2 × 10−1

SLC16A14 MCT14 4 × 10−1 −0.33 2.64 3 × 10−1

FDR, false discovery rate; logCPM, log2 count per million gene expression; logFC, log2-fold change between
the stroma and epithelium. † Genes with FDR < 0.05. ‡ Positive and negative values indicate upregulation and
downregulation in the stroma, respectively.

To identify differentially expressed ECM and ECM-related genes, we used the
NABA_MATRISOME gene set from MSigDB. Using this gene set as a reference, and
by including integrins and keratins, we identified a total of 502 genes (Supplementary
Table S3), including several collagens, laminins, and ECM remodelling enzymes such LOXs
and MMPs.

3.3. There Is a Causal Relationship between MCT and ECM Gene Expression

Once the differentially expressed MCT, ECM, and ECM-related genes in the stroma
and epithelium samples were identified, a hypernetwork analysis was conducted to assess
the relationship between the MCT (n = 9) and ECM (n = 502) transcripts by revealing the
presence of multiple correlations between the groups of genes.

The hypernetwork analysis identified two clusters of MCT transcripts. The first clus-
ter included seven transcripts (SLC16A1-AS1, SLC16A6, SLC16A5, SLC16A10, SLC16A2,
SLC16A13, and SLC16A7), which shared >1500 correlations with the rest of the transcrip-
tome, suggesting similarity and strong functional associations between these sets of MCT
mRNAs (Figure 3). The second cluster had two MCT transcripts, including SLC16A4 and
SLC16A9, that share < 1000 correlations with the rest of the transcriptome, therefore having
weaker functional associations with one another and the remaining MCTs.

For the hypernetwork drawn for ECM and ECM-related transcripts, again, two
clusters were identified, including a cluster of 376 transcripts sharing approximately
1000–5000 correlations and a second cluster of 126 transcripts sharing relatively fewer
correlations with the rest of the transcriptome (Figure A7).
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Figure 2. Violin plots of log-normalised expression values of MCT genes in PDAC stroma (n = 123) and the epithelium (n = 66). FDR indicates a false discovery
rate of 5%. Four MCT genes showed significant upregulation in the stroma (SLC16A2/6/10 and SLC16A1-AS1), with 5 MCTs being significantly upregulated in the
epithelium (SLC4/5/7/9/13) and 3 showing no difference in expression between the two tissues. SLC16A4 and SLC16A10 showed the largest upregulation in the
epithelium and stroma, respectively.
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Figure 3. Hypernetwork heatmap of MCT transcripts (n = 9) in PDAC stroma and epithelium.
Colour intensity represents the number of binary relationships with the rest of the transcriptome
(n = 13,815 total transcripts) shared between a pair of MCT transcripts. Two clusters were identified,
with cluster 1 having seven MCTs, including SLC16A1-AS1, SLC16A6, SLC16A5, SLC16A10, SLC16A2,
SLC16A13, and SLC16A7 (highlighted in black box), and cluster 2 having two MCTs, including
SLC16A9 and SLC16A4.

Once we identified the functionally associated MCT and ECM transcripts that showed
high connectivity with the rest of the transcriptome, we extracted the transcripts from
the hypernetwork incidence matrix, which showed a strong correlation with each set of
transcripts. We found 1714 and 2790 transcripts, which correlated with 90% of the seven
MCT and 376 ECM transcripts, respectively. Among the transcripts associated with MCTs,
255 of them were ECM-related, including several collagens (COL1A1/2, COL3A1, COL4A1,
and COL5A1); laminins (LAMA2/3/4, LAMB2, and LAMC1/2), and fibronectin 1 (FN1), and
the ECM remodelling enzymes lysyl oxidase (LOX), lysyl oxidase-like 1/2/3 (LOXL1/2/3),
and matrix metalloproteinases (MMP2/7/11/16/19) (Table 2 and Supplementary Table S4).
Likewise, when the hypernetwork analysis was run for ECMs, four MCTs were found to
associate with them (Table 2). Of the four MCTs that associated with ECM and their related
transcripts, SLC16A2/MCT8, SLC16A10/MCT10, and SLC16A1-AS1 were differentially
expressed in stromal–epithelial samples. Likewise, nearly all ECM and ECM-related genes
that correlated with MCTs showed differential expression (n = 254, Supplementary Table S5).
By examining the link between MCTs and ECMs from both directions (i.e., from MCT to
ECM transcripts and vice versa) and establishing the bidirectionality of this relationship,
we provide evidence for a causal link existing between these sets of genes.
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Table 2. The number of MCT and ECM-related transcripts that showed association with ECM and
MCT transcripts in the hypernetwork analysis, respectively.

MCTs (N = 7) ECMs (N = 376)

Transcripts correlating with 90% of
differentially expressed

MCTs/ECMs

ECM-related transcripts
(n = 255)

SLC16A2, SLC16A10,
SLC16A14, SLC16A1-AS1

N indicates the number of MCT or ECM transcripts in the hypernetwork clusters.

To confirm that the number of observed interactions between MCTs and ECMs was
higher than expected by chance, hypernetworks were iterated using random transcripts. In
this way, the number of MCTs or ECMs associated with a random selection of transcripts
was calculated. The association was defined as previously, where transcripts must be
correlated with 90% of the target transcripts. When sampling 376 random transcripts
representative of the ECMs (Table 2), we found, on average, 2.45 ± 1.58 MCTs that were
associated with 90% of the random transcripts after 1000 iterations. When sampling seven
random transcripts, representative of the MCTs, we could not achieve our target of 1000 it-
erations, as we consistently found no transcripts to be correlated with 90% of our seven
random transcripts (Table 3). This demonstrated that MCTs were more closely associated
with ECMs than the random transcripts to such an extent that unrelated transcripts could
not replicate our methodology. With this approach, the bidirectional causal link between
MCTs and ECMs was validated and demonstrated as independent of random chance;
however, we also used an alternative approach to verify our results.

Table 3. Assessment of the robustness of the causal relationship between MCT and ECMs by
random sampling of transcripts 1000 times. The table shows the number of MCT and ECM-related
transcripts that showed correlation with randomly sampled transcripts given the maximum number
of iterations achieved.

Random Transcripts
Representative of MCTs

(n = 7)

Random Transcripts
Representative of ECMs

(n = 376)

Maximum number of
iterations achieved 23 1000

Transcripts correlating with 90% of the
random transcripts (mean ± SD) n/a 2.45 ± 1.58

n/a, not applicable.

An analysis of the direct paths in a correlation matrix containing differentially ex-
pressed MCT and ECM genes resulted in a silenced network S consisting of 511 nodes
(genes). Having ranked directness between node pairs, we found that some interactions
between the ECMs and MCTs were among the strongest interactions in the network. In-
cluded in this selection were SLC16A2/MCT8 and, most commonly, SLC16A10/MCT10,
which were both among the most highly connected MCT genes in our hypernetwork
(Table 4). Among the genes interacting with SLC16A10/MCT10 were HYAL1 and ANXA10
(p-values < 0.01) and COL4A4 (p-values < 0.05). This approach provides further validation,
independent of the hypernetworks, for a causal link between MCTs and ECMs.

Additional validation of the causal relationship between the MCTs and ECMs was
established by conducting hypernetwork and direct path analyses using the Birnbaum
dataset as an independent study. Firstly, examination of the expression patterns in the
Birnbaum dataset of the MCTs was highlighted by the primary analysis, which showed a
consistent direction of fold change between tissues (Figure A8).
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Table 4. The strongest interactions found between differentially expressed MCT and ECM genes
within the silenced network. Values from the matrix S describing the directness of the relationship
between node pairs are presented alongside a z-score describing the position of this value in the
whole network and the associated p-value of this position. All interactions presented below are
statistically significant.

Interacting Genes Relationship
Directness Z-Score p-Value

“SLC16A10” interacts with “HYAL1” 40.9 3.88 1.29 × 10−4

“SLC16A10” interacts with “ANXA10” 35.2 3.35 6.71 × 10−4

“SLC16A10” interacts with “MUC5AC” 34.4 3.26 1.33 × 10−3

“SLC16A10” interacts with “LGALS4” 32.1 3.04 2.78 × 10−3

“SLC16A10” interacts with “CTSE” 31.1 2.95 3.80 × 10−3

“SLC16A10” interacts with “PAMR1” 30.4 2.88 4.70 × 10−3

“SLC16A10” interacts with “BMP1” 30.2 2.86 5.01 × 10−3

“SLC16A10” interacts with “ANGPTL1” 28.6 2.72 5.53 × 10−3

“SLC16A10” interacts with “TNFSF12” 28.5 2.71 5.72 × 10−3

“SLC16A10” interacts with “PLXNC1” 28.2 2.68 6.29 × 10−3

“SLC16A10” interacts with “PI3” 27.3 2.59 8.12 × 10−3

“SLC16A10” interacts with “MFAP3” 28.3 2.68 8.53 × 10−3

“SLC16A2” interacts with “SEMA3B” 26.8 2.55 9.19 × 10−3

“SLC16A10” interacts with “FGF10” 26.8 2.55 9.37 × 10−3

“SLC16A10” interacts with “GPC1” 26.7 2.54 9.60 × 10−3

The silenced network was visualised in Cytoscape v3.9.0 using aMatReader v1.2.0. The modulus of the silenced
matrix score (relationship directness) are shown.

The hypernetwork model of MCTs in this validation dataset highlighted four MCTs:
SLC16A1-AS1, SLC16A10, SLC16A7, and SLC16A5 (Figure A9), which were all among
the clustered MCTs in the primary dataset. Interrogation of the incidence matrix of the
hypernetwork revealed 111 ECM genes interacting with all four of these MCTs (Table S9).
Seventy seven percent (85) of these ECMs were shown to be consistent with the incidence
matrix of the primary data. Furthermore, 88% (98) of these 111 ECMs were also found
within the central cluster of the hypernetwork from the primary data. A Wilcoxon rank-sum
test showed a significant difference in the strength of interaction between the MCTs and
ECMs compared to MCTs and non-ECM genes (p-value < 2.2 × 10−16).

Generation of the ECM hypernetwork highlighted a central cluster of 275 ECM genes.
The hypernetwork incidence matrix revealed SLC16A10/MCT10 and SLC16A1-AS1 as
the strongest interacting MCTs, bearing associations with 83% of the ECMs in the cluster,
followed by SLC16A6/MCT7 and SLC16A2/MCT8 (76% and 71% interaction, respectively)
(Table S9). These trends are in agreement with our findings in the primary dataset, which
showed that all four of these SLC16 genes were among the most highly connected MCTs.
The strength of MCT–ECM interactions was significantly higher than for ECMs interacting
with non-MCT genes (p-value = 0.008, Wilcoxon rank-sum test).

In addition to the findings of the hypernetwork modelling, the direct path analysis re-
vealed four significant interactions between the MCTs and ECMs from the Birnbaum dataset
that were found in the primary analysis, including the interaction of SLC16A10/MCT10
with COL4A4, HYAL1, and ANXA10 (p-values <0.01) (Table S10).

Finally, the RF model performed better in predicting the tissue phenotypes from both
the test (30%) and Birnbaum datasets when trained by the MCT–ECM gene cluster refined
from hypernetwork modelling than with a random selection of non-differentially expressed
genes from the primary dataset (Table S11).

3.4. Lactate and Thyroid Hormone Transporters Correlate with ECMs Involved in Cancer
Associated Signalling Pathways

Functional annotation of MCT (n = 7) and ECM (n = 254, differentially expressed
and correlated with MCTs) transcripts using DAVID revealed the presence of ECM com-
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ponents involved in ECM–receptor interactions, protein digestion and absorption, the
phosphoinositide-3-kinase–protein kinase B (PI3K-Akt) signalling pathway, the mitogen-
activated protein kinase signalling pathway, and pathways in cancer (Supplementary
Table S6). Extracellular matrix organisation and disassembly, cell adhesion, collagen
catabolic process, cell adhesion by integrin, and plasma membrane lactate transport were
found as biological processes associated with ECMs and MCTs, respectively. In addition to
lactate transport as a biological process for most MCTs, thyroid hormone transport was
highlighted for SLC16A2/MCT8 and SLC16A10/MCT10.

3.5. MCT and ECM mRNA Levels Are Not Associated with Age at PDAC Diagnosis

We investigated if the levels of MCT, ECM, and ECM-related mRNAs in stromal and
epithelial samples (n = 187) associated with age at PDAC diagnosis by a Pearson correlation
analysis. The age at diagnosis ranged between 38 and 89, with a mean and median of 68.3
and 69, respectively.

We found that there was no strong correlation between the levels of any of these
mRNA transcripts with age at diagnosis (Supplementary Tables S7 and S8).

3.6. SLC16A3/MCT4 and Several ECM Components Are Significantly Upregulated in
STS Subjects

When we examined the expression of the top four MCT genes, including SLC16A5/
MCT6, SLC16A7/MCT2, SLC16A10/MCT10, and SLC16A1-AS1, in stromal–epithelial
samples in short- and long-term survivors of PDAC (14 and 13 subjects, respectively)
from the GSE79668 dataset, we found that none of these MCT genes showed differential
expression in these subjects (FDR > 0.05). The only MCT gene that was significantly
upregulated in STS subjects was SLC16A3/MCT4 (FDR = 0.02, logFC = 1.55). However,
the unadjusted p-values of these MCTs indicated a significant upregulation of SLC16A7
(logFC = 1.3) and downregulation of SLC16A1-AS1 (logFC = −1.0) in STS subjects (p-values
of 0.003 and 0.006, respectively) (Figure 4).
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Figure 4. Log-normalised levels of MCT transcripts SLC16A5/MCT6, SLC16A7/MCT2, SLC16A10/
MCT10, and SLC16A1-AS1 in short- and long-term survivors (STS and LTS, respectively) from the
GSE79668 dataset. These four genes are the top 4 differentially expressed MCTs in PDAC stroma–
epithelium (FDR < 0.05) from the GSE93326 dataset, hence the rationale for selecting them for
investigation in the GSE79668 dataset. The number of samples from STS and LTS subjects are 14
and 13, respectively. The indicated p-values are not FDR-adjusted. Of the four MCTs investigated,
SLC16A7 and SLC16A1-AS1 were significantly upregulated in STS and LTS subjects, respectively,
with the other two MCTs showing similar expressions in both survival groups (p < 0.05).
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Among the ECM and ECM-related genes that were differentially expressed in the
stromal–epithelial samples (n = 255), only 15 of them were significantly expressed, with
the majority being upregulated in the STS subjects (Figure 5, FDR < 0.05), including CTSH,
S100A2, SERPINE1, WNT7B, GPC3, and a number integrins (ITGA3 and ITGA6).
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4. Discussion

PDAC is a devastating cancer with high morbidity and low survival rates worldwide,
with no effective medical treatments available to improve patient prognosis. The drawbacks
of the existing treatment strategies for PDAC and lack of improvement in patient outcomes
necessitate the need for a better understanding of the tumour microenvironment and the
mechanisms contributing to disease progression [5,7,46]. In this study, we hypothesised that
MCTs contribute to PDAC desmoplasia by associating with ECM components. We sought
to explore the presence of a causal relationship between MCTs and ECMs to suggest that the
increased expression of ECM components may be linked with increased MCT expression.

Our first aim was to understand the expression levels of MCT mRNAs in PDAC
biopsies relative to non-tumour tissues as such a comparison has not been widely explored
using RNA-seq data. The unsupervised segregation and hierarchical clustering analysis of
the collated data from GEO showed no separation of the tumour and non-tumour samples,
indicating the similarity of these tissue types. In addition, the hierarchical clustering of
tumour and non-tumour samples indicated large interstudy variations in gene expression.
The large intertumoral variations may perhaps be explained by the highly heterogenic
nature of PDAC disease and, consequently, the biopsy samples that were also highlighted
in previous studies [4,35]. In addition to biological variations, technical factors such
as the procedures used in tissue acquisition, the sequencing platform, and the library
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preparation method may also contribute to such heterogeneity. Even with the use of the
same sample acquisition technique, differences in the other mentioned factors may still
lead to variations in the data. For example, close examination of the tumour samples
in Figure A3a,b shows some separation of the tumour samples from the GSE93326 and
GSE79668 datasets, although both studies employed macrodissection of the bulk tissue
following surgical resection [35,48]. It was also interesting to see the lack of separation
between the tumour and non-tumour samples, which may be influenced by the purity of
the bulk tissue during sample collection. Another factor that might have played a role could
be the lack of properly paired samples, as we only had a single dataset, which included
paired tumour and non-tumour tissues with limited sample sizes with the remaining
datasets, not including non-tumour tissues. As a result of the large patient variability and
the limited sizes of non-tumour samples, we concluded that conducting a differential gene
expression analysis on tumour and non-tumour samples using the combined dataset would
be inappropriate.

We subsequently focused on the stromal and epithelial dataset. This is because MCTs
are reported in both the stroma and epithelium, and in PDAC, the main ECM production
happens in stromal cells. Hence, it is important to understand and correlate the expression
of MCTs and ECMs in different compartments. Our analysis revealed nine differentially
expressed MCT genes in both stromal and epithelial samples, including the upregulated
thyroid hormone (TH) transporters MCT8 (SLC16A12) and MCT10 (SLC16A10), monocar-
boxylate transporter MCT2 (SLC16A7), MCT6 (SLC16A5) with a potential role in glucose
and lipid metabolism, and an lncRNA SLC16A1-AS1 previously identified as a prognostic
or diagnostic biomarker in a number of cancers [20,54–61]. To our knowledge, the upregu-
lation of the TH transporters in the stromal–epithelial samples has not been highlighted
previously. TH transporters regulate the availability of THs T3 and T4 in cells based on their
levels in the local tissue. THs themselves are key regulators of energy metabolism, growth,
differentiation, and the physiological function of tissues [54,62]. The role of THs in cancer
has been pointed in several studies and their association been summarised in a recent
review [63]. For example, the induction of cell proliferation and metabolism by T3 via
activation of the TRβ1/Akt pathway was demonstrated in human pancreatic insulinoma
cells [64]. In addition, the inhibition of TH binding to their cell surface receptor integrin
αVβ3 was shown to inhibit tumour cell proliferation and angiogenesis in in vitro and
in vivo xenograft models of pancreatic cancer [65]. A more recent study proposed pharma-
cologically induced TH inactivation as a strategy to reduce tumour metastatic potential
based on their observation that T3 promoted epithelial–mesenchymal transition by the
transcriptional activation of ZEB-1, mesenchymal genes, and MMPs and suppression of
E-cadherin, thereby influencing tumour progression and metastasis in skin squamous cell
carcinoma [66]. Furthermore, a link between THs and ECM organisation has been shown,
where T3 was suggested to induce the secretion of growth factors that stimulate cellular
proliferation, ECM reorganisation involving fibronectin and laminin, and changes in cell
spreading and adhesion [67]. In contrast to the influence of THs on tumour progression
discussed above, the synergistic action of T3 in combination with gemcitabine and cisplatin
was shown to enhance the cytotoxicity of the chemotherapy agents in in vitro models of
pancreatic cancer, highlighting the benefits of combination therapy for the treatment of
pancreatic cancer [68]. Despite the presence of associations between thyroid dysfunction,
including hypothyroidism and the increased risk of pancreatic cancer, the effects of THs in
cancer neoplasia is currently conflicting [47,56,62]. Therefore, a better understanding of the
molecular mechanisms involved in the contribution of THs to pancreatic cancer is needed.
The lncRNA SLC16A1-AS1 has previously been found to be upregulated in osteosarcoma,
glioblastoma, and oral squamous cell carcinoma [50,52,63]; downregulated in non-small
cell lung cancer and cervical squamous cell carcinoma [26,56]; and show conflicting ex-
pression profiles in hepatocellular carcinoma [51,53,54]. This is the first study highlighting
the differential expression of SLC16A1-AS1 in PDAC, showing lower levels of expression
in the epithelial relative to the stromal compartment. With increasing number of reports
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showing SLC16A1-AS1 as a potential biomarker in cancer, we propose an investigation
to understand how the upregulation of this lncRNA in PDAC associates with tumour
development, progression, and overall survival.

In addition to the MCT genes mentioned above, we found several mitogenic growth
factors and their receptors such as EGFR (epidermal growth factor receptor), IGF1 (insulin-
like growth factor 1), IGF1R (insulin-like growth factor 1 receptor), FGF1/7 (fibroblast
growth factor 1/7), FGFR1/2 (fibroblast growth factor receptor 1), and VEGFB/C (vascular
endothelial growth factor B/C) to have significant differential expressions in the stromal–
epithelial dataset. In the majority of cases, these signalling molecules showed upregulation
in the stromal compartment, presumably secreted by the PSCs of the tumour microenviron-
ment, contributing to angiogenesis and tumorigenesis [69–71]. Epithelial-to-mesenchymal
transition (EMT), which has a crucial role in fibrosis and the formation of metastasis, is
associated with a poor prognosis [4]. EMT during PDAC progression is induced by both
hyaluronic acid and collagen (non-soluble) and soluble components of the ECM [7]. In this
study, the analysis of the stromal–epithelial dataset showed significant upregulation of the
relevant genes, such as HAS2 (hyaluronan synthase 2), COL1A1/2 (collagen-type I alpha
1/2 chain), FGF1/7, HGF (hepatocyte growth factor), NOTCH1/3/4 (Notch receptor 1/3/4),
TGFB1/3 (transforming growth factor beta 1/3), and WNT2/2B/4/5A (Wnt family member
2/2B/4/5A) in the stromal compartment, indicating their potential contribution to the EMT
in PDAC. Our second primary goal was to explore the causal relationship between MCTs
and ECMs in PDAC and understand if the expression of the latter is influenced by the
upregulation of MCTs. We used hypernetworks to investigate the relationships between
MCTs and ECMs and tease out the functional connectivity among the individual elements.
Hypernetworks summarise the conditional independence between genes in a network
model by using all the interaction data, not just pairwise [28]. This defines a roadmap
of the relationships between genes where the “width” of the roadways is recognised as
defining the importance of the higher-order organisation that represents the generation of
the mechanism [72]. These features of hypernetworks are considered to support a causal
model [73], although we recognise that the validation of bidirectional interactions would re-
quire further supporting laboratory work. Hypernetworks, therefore, highlight causal links
between biological pathways. Recently, the modelling of conditional transcriptomic inter-
actions has been shown to improve prognostic predictions in cancer [74], and we have used
random forest to highlight the potential predictive value of our findings derived from the
hypernetwork. Our analysis indicated seven MCTs with functional association in a pairwise
manner, including the lncRNA SLC16A1-AS1, MCT7 (SLC16A6), MCT6 (SLC16A5), MCT10
(SLC16A10), MCT8 (SLC16A2), MCT13 (SLC16A13), and MCT2 (SLC16A7). The extraction
of the genes associated with MCTs from the hypernetwork matrix revealed 255 ECMs
that showed a correlation with 90% of these MCTs, including several collagens, laminins,
fibronectin 1, and the ECM remodelling enzymes. A similar analysis conducted for the
ECMs indicated 376 ECM transcripts that were functionally connective and correlated with
four MCTs, including the differentially expressed SLC16A1-AS1, SLC16A2/MCT8, and
SLC16A10/MCT10. Hypernetworks generated for both MCTs and ECMs demonstrate the
presence of bidirectional associations and suggest that a causal link exists between these
two sets of transcripts. To rule out the randomness of this observation, we conducted a
robustness testing by firstly generating hypernetworks with random transcripts that were
of identical sizes to the number of MCTs and ECMs that were clustered in our analysis. The
difficulty we experienced in executing iterations with random transcripts in replacement of
MCTs showed that the relationships between MCTs and ECMs were stronger than those
that were frequent between random transcripts (Table 3). When the analysis was repeated
for ECMs, we found 2.45 ± 1.58 MCTs that were associated with ECMs, similar to our
primary findings. As a result, we further conducted a direct path analysis that aimed to
refine the correlation matrix of MCTs and ECMs and revealed only the direct gene–gene
interactions with a causal relationship by silencing indirect connections. Correlations in
biological networks that retain both direct and indirect links can confound the identifica-
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tion of direct interactions [40]. Independent from the hypernetwork modelling approach
used, the direct path analysis confirmed the presence of significant MCT–ECM interac-
tions, involving particularly SLC16A10/MCT10, which were among the strongest of all
interactions observed within the whole silenced network. The bidirectional relationship
between the MCTs and ECMs and the presence of significant direct interactions, partic-
ularly with SLC16A10/MCT, were both evident from the hypernetwork and direct path
analysis conducted using the Birnbaum dataset, directly validating our primary findings.
Despite the high intersample variation in PDAC tissues and differences in the gene ex-
pression levels often seen between studies, our ability to validate the primary findings
with an independent dataset is paramount. This analysis therefore further reinforces that
the connectivity of MCTs and ECMs is not by random chance, and the causal relationship
between the MCTs and ECM action is robust. The mechanisms of the direct interactions
between the MCTs and ECMs identified in this study are currently unknown and requires
further elucidation. One potential facilitator of this interaction may be CD147, an MCT
chaperone and regulator, which is a key contributor to tumour growth and metastasis by
promoting ECM remodelling through the induction of MMPs [75]. The expression of CD147
is influenced by its association with MCTs, and the synergistic action of both proteins could
enhance metastasis via acidification of the tumour microenvironment and degradation of
ECM by MMPs [24].

The tumour biomarkers are undoubtedly valuable in several aspects of patient manage-
ment, including screening, diagnosis, monitoring, or patient stratification for an associated
cancer therapy. Given the insidious nature and poor prognosis of PDAC, the identification
of novel biomarkers for early detection, personalised therapy, and post-resection follow-up
are urgently needed to improve patient overall survival. As ECM is a driver of tumori-
genesis, the use of ECM-derived biomarkers can immensely facilitate the diagnosis and
prognosis of patients with cancer in the clinic [76]. To this end, we evaluated the presence of
correlations between the levels of the MCT and ECM components in stromal and epithelial
samples and age at PDAC diagnosis. Many of the ECM components that showed differ-
ential expression and were highlighted in the hypernetwork analysis, including MMPs,
TIMP3, FN1, LAMC1, and COL4A1/6A2, have previously been reported as prognostic or
diagnostic markers in different cancers [76]. In our analysis, we found no association
between any of the MCTs or ECM components with age at diagnosis. However, scrutinising
the expression levels of these ECM components in short-term survivors of PDAC revealed
a number of genes that were upregulated in these subjects and have been suggested to
have a diagnostic, predictive, or prognostic value in different cancers, including S100A2
(pancreatic cancer), cathepsin H/CTSH (thyroid carcinoma), SERPINE1 (gastric cancer and
oesophageal cancer), WNT7B (breast cancer and colorectal cancer), and GPC3 (hepatocellu-
lar carcinoma) [77–84]. Although the latter analysis using the GSE79668 dataset comes from
a rather small dataset and poses a limitation, the findings still highlight some potential
biomarkers that could be investigated in PDAC. Finally, of the significant interactions
identified in the direct path analysis, SLC16A10/MCT10 showed the strongest interactions
with HYAL1 and ANXA10, genes proposed to have a prognostic value in patients with
PDAC [85,86], which opens an avenue for further investigation.

5. Conclusions

Our transcriptomic analysis revealed multiple MCTs in PDAC stromal and epithelial
compartments, including lncRNA SLC16A1-AS1, which may serve as a novel potential
diagnostic or prognostic biomarker. In addition, a subset of the differentially expressed
ECM components showed associations with MCTs, such as collagens, laminins, fibronectin
1, and ECM crosslinking and remodelling enzymes, highlighting the role of MCTs in PDAC
desmoplasia, which should be considered when developing future treatment strategies to
improve patient outcomes. Analysis of the higher-order interactions through hypernet-
works indicates the presence of a causal link between MCTs and ECMs and warrants the
need for further studies to elucidate their functional connections.
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Figure A3. Unsupervised segregation of the collated datasets using Principal Component Analysis.
Segregation of (a) all datasets based on tissue type (tumour = 123, non-tumour = 10, tumour epithe-
lium = 66, and tumour stroma = 123); (b) all datasets based on the GEO accession number; (c) all
datasets excluding GSE93326 based on the tissue type (tumour = 108 and non-tumour = 10); and
(d) all datasets, excluding GSE93326, based on the GEO accession number.
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Figure A4. Unsupervised segregation of 187 samples with available metadata (65 epithelium and
122 stroma) from the GSE93326 dataset using Principal Component Analysis. Segregation of the
samples was performed based on (a) tumour N-score (n = 177), (b) overall tumour stage (n = 187),
and (c) tumour grade (n = 187). N-scores: 0 and 1 indicate no spread to nearby lymph nodes and
spread to no more than three nearby lymph nodes, respectively.
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Figure A5. Volcano plot of the genes (n = 13,824) after filtered for low expression in PDAC stroma
(n = 123) and epithelium (n = 66) samples. Sixty-six out of 123 stroma samples are matching counter-
parts of epithelium samples. Cyan and orange dots indicate genes that are differentially expressed
(n = 8944) and no change in expression between the epithelium and stroma (n = 4880), respectively
(FDR < 0.05).
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Figure A6. Heatmap and dendrogram showing the normalised and scaled (z-scored) expression levels
of genes (n = 8944) differentially expressed in PDAC stroma relative to the epithelium (FDR < 0.05)
across n = 189 samples. Red and blue colours indicate increased and decreased expression, respectively.
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Figure A7. Hypernetwork heatmap of ECMs (n = 502 transcripts) in PDAC stroma and epithelium.
Colour intensity represents the number of binary relationships shared between a pair of transcripts
with the rest of the transcriptome (n = 13,322 total transcripts). Two clusters were identified, with
cluster 1 having 376 ECMs with a higher connectivity (highlighted in black box) and cluster 2 having
126 ECMs with relatively fewer correlations with the rest of the transcriptome.
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Figure A8. Heatmaps of (a) differentially expressed MCT genes that were clustered in the causal
hypernetwork analysis of the GSE93326 dataset and (b) the same MCT genes in the Birnbaum
(validation) dataset. The expression levels were normalised and scaled (z-scored) across 189 and 38
samples present in the GSE93326 and Birnbaum datasets, respectively. Red and blue colours indicate
increased and decreased expression, respectively.
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