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Abstract

Background: The impact of appropriate antimicrobial therapy for A. baumannii bacteremic pneumonia has not
been well established due to the inclusion of the three phenotypically indistinguishable Acinetobacter species and
confounding factors including underlying diseases and severity of infection. This retrospective study aimed to
evaluate the impact of appropriate antimicrobial therapy on 14-day mortality in A. baumannii bacteremic
pneumonia patients after adjusting for risk factors.

Methods: This study was conducted at five medical centers in Taiwan between July 2012 and June 2016. A.
baumannii species identification was performed using reference molecular methods. Risk factors for 14-day
mortality were analyzed via logistic regression. The interaction between the Acute Physiology and Chronic Health
Evaluation (APACHE) II score and appropriate antimicrobial therapy was assessed using the logistic model.

Results: A total of 336 patients with monomicrobial A. baumannii bacteremic pneumonia were included in this
study. The overall 14-day mortality rate was 47.3%. The crude mortality of appropriate antimicrobial therapy was
35.9% (57 of 151 patients). Appropriate antimicrobial therapy was associated with a lower mortality after
multivariate adjustment (odds ratio [OR], 0.57; 95% confidence interval [CI], 0.34–0.97; p = 0.04), and the effect was
influenced by APACHE II score (OR for interaction term, 0.0098; 95% CI, 0.0005–0.1885; p = 0.002). Further analysis
demonstrated that appropriate antimicrobial therapy significantly reduced 14-day mortality among the patients
with an APACHE II score > 35 (OR 0.0098; 95% CI 0.0005–0.1885).

Conclusion: Appropriate antimicrobial therapy decreases 14-day mortality of the most severely ill patients with A.
baumannii bacteremic pneumonia.
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Background
Nosocomial pneumonia is one of the main causes of
mortality and morbidity among hospitalized patients [1,
2]. The estimated attributable mortality ranges between
33 and 50% [3]. Acinetobacter baumannii is one of the
leading pathogens of nosocomial pneumonia worldwide
and is associated with poorer outcomes [4–7]. Although
it is difficult to determine the attributable mortality due
to severe comorbidities [5, 8], many studies have shown
that the high levels of resistance of A. baumannii to an-
timicrobials may play an important role [8–12]. The
high antimicrobial resistance of A. baumannii leads to
higher rates of inappropriate empirical antimicrobial
therapies, and may contribute to a greater risk of death
[13, 14].
Numerous studies have investigated the efficacy of

antimicrobial therapy for A. baumannii bacteremia [15–
18]. Appropriate antimicrobial therapy is associated with
a lower mortality rate in A. baumannii bacteremia pa-
tients [15, 17], and the therapeutic effects might be more
significant in severely ill patients [18]. The impact of ap-
propriate antimicrobial therapy for A. baumannii
bacteremic pneumonia has not been well established.
Many factors contribute to the mortality of A. bauman-
nii bacteremic pneumonia, and it remains unclear
whether appropriate antimicrobial therapy increases sur-
vival among all patients or only among patients with cer-
tain demographic or clinical characteristics.
Furthermore, the association between appropriate anti-
microbial therapy and mortality for A. baumannii
bacteremic pneumonia has been difficult to establish
due to the confounding influence of the three phenotyp-
ically indistinguishable Acinetobacter species that make
up the A. baumannii (Ab) group (A. baumannii, Acine-
tobacter nosocomialis and Acinetobacter pittii). The aims
of this retrospective study were to evaluate the impact of
appropriate antimicrobial therapy on the 14-day mortal-
ity in genomically identified A. baumannii bacteremic
pneumonia patients, and to determine if the therapeutic
effect of appropriate antimicrobial therapy differed be-
tween patients with different infection severities.

Materials and methods
Data collection and patients
This study was conducted at the following five medical
centers in Taiwan: Taipei Veterans General Hospital
(TVGH, 2900 beds), Tri-Service General Hospital
(TSGH, 1712 beds), Mackay Memorial Hospital (MMH,
2055 beds), and National Taiwan University Hospital
(NTUH, 2200 beds) in Northern Taiwan and Changhua
Christian Hospital (CCH, 1676 beds) in Central Taiwan.
Data was collected between July 2012 and June 2016.
The inclusion criteria for A. baumannii bacteremic
pneumonia were: (1) ≥1 positive blood culture for A.

baumannii which could not be attributed to an infection
source other than the lower respiratory tract; (2) a clin-
ical course compatible with the diagnosis of pneumonia,
including a new pulmonary infiltrate plus one additional
criterion (fever ≥38 °C, blood leukocytosis ≥10,000 cells/
mm3 or leucopenia ≤3000 cells/mm3), together with one
or more of the following conditions: new cough, change
in sputum color, chest pain, and dyspnea; (3) ≥1 positive
respiratory sample (sputum, endotracheal aspirate, or
broncho-alveolar lavage [BAL]) for A. baumannii col-
lected within 48 h before or after the first positive blood
culture for A. baumannii. Patients below 20 years of age
or without a complete medical record were excluded.
The study protocol was approved by the Research Ethics
Committee of all participating hospitals. Informed con-
sent was waived because of the retrospective nature of
the study and the analysis used anonymous clinical data.

Study variables and definitions
The following data were collected from patient’s medical
records: demographic information, comorbid conditions,
duration of hospital and intensive care unit (ICU) stays,
time, dose and route of antimicrobial therapy, the use of
ventilator, and procedures (central venous catheters, ar-
terial catheters, foley catheter, nasogastric tube,
hemodialysis, and tracheostomy) at the time of
bacteremia.
The onset of bacteremia was defined as the day the

positive blood culture of A.baumannii was collected.
The bacteremic pneumonia was considered acquired in
the ICU if the positive respiratory sample for A.bauman-
nii and positive blood culture for A.baumannii were
both obtained at least 48 h after ICU admission. Previous
ICU admission was defined as being admitted to ICU
within 4 weeks prior to the onset of bacteremia.
Immunosuppressive therapy was defined as receiving

cytotoxic agents within 6 weeks, corticosteroids at a dos-
age equivalent to or higher than 15mg of prednisolone
daily for 1 week within 4 weeks, or other immunosup-
pressive agents within 2 weeks of the onset of
bacteremia. Chronic kidney disease was defined as an es-
timate glomerular filtration rate < 60mL/min/1.73 m2.
Neutropenia referred to an absolute neutrophil count <
0.5 × 109 neutrophils/L. Recent surgery was defined as
undergoing an operation within 4 weeks of the onset of
bacteremia. Previous ventilator use was defined as mech-
anical ventilation use for more than 3 days in the past 4
weeks. The severity of patient illness was evaluated using
the Acute Physiology and Chronic Health Evaluation
(APACHE) II score within 24 h before bacteremia onset.
Appropriate antimicrobial therapy was defined as ad-

ministration of the antimicrobial agent to the pathogen
susceptible in vitro, within 48 h after the onset of
bacteremia, with an approved route and dosage
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appropriate for end organ(s) function. Antimicrobial
therapy that did not meet this definition was considered
inappropriate. Monotherapy with an aminoglycoside was
also considered to be an inappropriate therapy. An anti-
microbial agent (or antimicrobial agents)-based therapy
was defined as treatment with the antimicrobial agent(s)
alone or in combination with other antimicrobial
agent(s). The colistin loading dose was 5 mg/kg colistin
base activity, followed by 5 mg/kg/d colistin base activity
divided over 8 or 12 h in patients with normal renal
function. For those with impaired renal function, the
dosage was adjusted according to renal function as pre-
viously described [19, 20]. The loading dose of tigecyc-
line was 100 mg, followed by a maintenance dose of 50
mg every 12 h. The primary outcome was all-cause 14-
day mortality after the onset of A. baumannii
bacteremia.

Microbiological studies
The presumptive identification of the isolates to the level of
the A. baumannii complex was determined using the Vitek
2 system (bioMérieux). All A. baumannii complex blood-
stream isolates were regrown from storage, identified to
species level, and tested for their susceptibility to various
antimicrobials. A multiplex polymerase chain reaction
method was used to identify A. baumannii to the genomic
species level [21]. Polymicrobial bacteremia was defined as
the concurrent isolation of one or more microorganisms
other than A. baumannii from blood. Antimicrobial sus-
ceptibility to ampicillin-sulbactam, ceftazidime, cefepime,
piperacillin-tazobactam, imipenem, meropenem, ciprofloxa-
cin, levofloxacin, and amikacin was determined by the agar
dilution method according to Clinical Laboratory Standards
Institute criteria. Colistin minimal inhibitory concentrations
(MICs) were determined by the broth macrodilution
method to problems arising from the fact that the surface
charge on the polystyrene microplate applied during manu-
facturing influences the level of colistin adsorption to the
plate surface [22, 23] Tigecycline MICs were determined by
the broth microdilution method using fresh medium [24].
Multidrug resistance (MDR) was defined as resistance to at
least one agent in at least three of the following classes of
antimicrobials: antipseudomonal cephalosporins, antipseu-
domonal carbapenems, ampicillin-sulbactam, fluoroquino-
lones, and aminoglycosides. Carbapenem resistance was
defined as resistance to imipenem or meropenem. Exten-
sive drug resistance (XDR) referred to non-susceptibility to
imipenem or meropenem and all drug classes with the ex-
ception of colistin and tigecycline.

Statistical analysis
Chi-squared test or Fisher’s exact test was used to com-
pare categorical variables. The Student’s t test or Man-
Whitney rank sum test was used to analyze continuous

variables. Logistic regression models were used to assess
independent risk factors for 14-day mortality. Biologic-
ally plausible variables which were significantly associ-
ated with mortality (p ≤ 0.05) in the univariable analysis
were included in the multivariable analysis. Stepwise lo-
gistic regression was used. Interactions between the
APACHE II score and the covariates were assessed in
the logistic regression model. APACHE II scores were
categorized into four groups (APACHE II score ≤ 15, >
15 and ≤ 25, > 25 and ≤ 35, > 35) in the logistic regression
models based on their quartile distribution and previous
studies [18, 25]. The time between bacteremia onset to
mortality was analyzed using Kaplan-Meier survival ana-
lysis. A p-value < 0.05 was considered to be statistically
significant. All the analyses were processed with Stata
software version 12.

Results
During the study period, 875 patients were found to
have had at least one episode of bacteremia caused by A.
baumannii. We excluded 164 patients with polymicro-
bial bacteremia and 375 patients with a positive blood
culture attributable to another source of infection. A
total of 336 patients who met the criteria of A. bauman-
nii monomicrobial bacteremic pneumonia were included
during the 4-year study period.
The overall 14-day mortality rate of A. baumannii

bacteremic pneumonia was 47.3% (159 of 336 patients).
The crude mortality of appropriate antimicrobial therapy
was 35.9% (57 of 151 patients). The demographic and
clinical characteristics are demonstrated in Table 1. The
14-day non-survivors were more likely to have
hematological malignancies and have underwent im-
munosuppressive therapy but less likely to have cerebro-
vascular accident or recent surgery. Non-survivors had a
significantly higher APACHE II score and higher rates of
previous ventilator use. There was no significant differ-
ence in the rates of invasive procedures between the 14-
day survivor and non-survivors.
The bloodstream isolates of non-survivors had higher

MDR, XDR and carbapenem resistance rates than those
of survivors (p < 0.05). Survivors were significantly more
likely to have received appropriate antimicrobial therapy
than non-survivors. Factors that significantly predicted
14-day mortality in logistic regression are shown in
Table 2. Multivariable analysis showed that administra-
tion of appropriate antimicrobial therapy was independ-
ently associated with lower mortality (OR, 0.57; 95% CI,
0.34–0.97; p = 0.04). APACHE II score and XDR were
independent predictors of 14-day mortality (both p <
0.001).
Further exploration of the potential effect modification

on the impact of appropriate antimicrobial therapy on
14-day mortality suggested that the severity of infection
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Table 1 Demographic and clinical characteristics of patients with Acinetobacter baumannii bacteremic pneumonia stratified by 14-
day mortality

Characteristics Survivors (n = 177) Non-survivors (n = 159) P-value

Demographics

Male, No. (%) 128 (72.3) 122 (76.7) .36

Age, median (IQR), years 70 (67–72) 69 (66–72) .64

Acquired in ICU, No. (%) 91 (51.4) 90 (56.6) .34

Previous ICU admission 127 (71.8) 110 (69.2) .61

Length of hospitalization before bacteremia, median (IQR), days 36 (24–48) 35 (27–44) .98

Comorbidities, No. (%)

Charlson co-morbidity score 3.8 (3.4–4.2) 3.9 (3.5–4.2) .75

Malignancy 50 (28.3) 44 (27.7) .91

Solid tumor 42 (23.7) 30 (18.9) .28

Hematologic malignancy 8 (4.5) 21 (13.2) .005

Type 2 diabetes mellitus 63 (35.6) 44 (27.7) .12

Cerebrovascular accident 47 (26.6) 21 (13.2) .002

Hypertension 85 (48.0) 65 (40.9) .19

Immunosuppressant use 35 (19.8) 56 (35.2) .001

Liver cirrhosis 19 (10.7) 14 (8.8) .55

Chronic kidney disease 58 (32.8) 62 (39.0) .23

Coronary artery disease 29 (16.4) 24 (15.1) .75

Congestive heart failure 34 (19.2) 34 (21.4) .62

Chronic obstructive pulmonary disease 39 (22.0) 33 (20.8) .78

Collagen vascular disease 10 (5.7) 18 (11.3) .06

Chemotherapy 13 (7.3) 21 (13.2) .08

Neutropenia 8 (4.5) 13 (8.2) .17

Recent surgery 64 (36.2) 32 (20.1) .001

Invasive procedures, No. (%)a

Arterial line 63 (35.6) 69 (43.4) .14

Central venous catheter 111 (62.7) 113 (71.1) .11

Hemodialysis 21 (11.9) 26 (16.4) 024

Tracheostomy 44 (24.9) 50 (31.5) .18

Ventilator (previous use) 73 (41.2) 92 (57.9) .002

Ventilator (current use) 121 (68.4) 121 (76.1) .12

Ventilator associated pneumonia 121 (68.4) 113 (71.1) .59

Clinical condition

APACHE II score within 24 h before bacteremia, median (IQR) 23 (21–24) 33 (32–35) <.001

Shock 75 (42.4) 75 (47.2) .38

Resistance profiles of bloodstream isolates, No. (%)

Multidrug resistance (MDR)b 156 (88.1) 150 (94.3) .046

Carbapenem resistance 104 (58.8) 129 (81.1) <.001

Extensive drug resistance (XDR)c 58 (32.8) 95 (59.8) <.001

Appropriate antimicrobial therapy 94 (53.1) 57 (35.9) .001

Abbreviations: APACHE II Acute Physiology and Chronic Health Evaluation II, ICU intensive care unit, IQR interquartile range
aAt the time the blood culture was obtained
bResistance to at least one agent in at least three of the following classes of antimicrobials: antipseudomonal cephalosporins, antipseudomonal carbapenems,
ampicillin-sulbactam, fluoroquinolones, and aminoglycosides
cExtensive drug resistance (XDR) referred to non-susceptibility to imipenem or meropenem and all drug class except for colistin and tigecycline
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is an effect modifier. Interactions between the APACHE
II score and appropriate antimicrobial therapy were
added to the logistic regression model. The interaction
term was statistically significant (OR for interaction
term, 0.0098; 95% CI, 0.0005–0.1885; p = 0.001). Table 3
demonstrates the adjusted ORs for appropriate anti-
microbial therapy administered to four different sever-
ities of infection by APACHE II score categories.
Appropriate antimicrobial therapy was not associated
with a lower mortality among patients with APACHE
scores ≤15 or > 15 and ≤ 25 or > 25 and ≤ 35 (Groups I,
II, and III). On the other hand, among those with APAC
HE II scores > 35 (Group IV), appropriate antimicrobial
therapy significantly reduced the 14-day mortality (OR
0.0098; 95% CI, 0.0005–0.1885). A similar magnitude of
association and trend was also obtained when the APAC
HE II score was categorized into four groups based on
its quartile distribution (Supplemental Table S1). Among
patients with APACHE scores ≤35 (Groups I + II + III),
appropriate antimicrobial therapy was not associated
with a lower mortality by univariate and multivariate
analysis (Supplemental Table S2). Subgroup analyses
showed that among the patients who were admitted in
the ICU at the time of bacteremia (101 patients), appro-
priate antimicrobial therapy lowers 14-day mortality in

the patients with APACHE score > 35 (OR 0.023; 95% CI
0.0015–0.3508). Of the patients who were ventilator
assisted at the time of bacteremia (242 patients), those
with an APACHE score > 35 had a lower 14-day mortal-
ity rate if receiving appropriate antimicrobial therapy
(OR 0.014; 05% CI 0.0007–0.2812).
Kaplan-Meier survival curves were used to compare

the impacts of receiving appropriate or inappropriate
antimicrobial therapy on mortality, stratified by APAC
HE II score groups as mentioned in Table 3. Although
no significant differences in survival were noted between
patients receiving appropriate versus inappropriate anti-
microbial therapy in group I (p = 0.7106, by log-rank
test), II (p = 0.9843, by log-rank test) (figures not shown),
and III (p = 0.2014, by log-rank test) (Fig. 1a), there was
a significant advantage in survival for appropriate com-
pared to inappropriate use of antimicrobial therapy in
group IV (p < 0.001, by log-rank test) (Fig. 1b).
The effect of appropriate antimicrobial therapy on 28-

day survival was analyzed as per the above analyses. The
results were similar to those found when using all-cause
14-day mortality as the primary outcome measure (data
not shown).
The multivariate analysis of the demographic and clin-

ical characteristics between patients receiving

Table 2 Logistic regression of predictors for 14-day mortality in patients with Acinetobacter baumannii bacteremic pneumonia

Univariable Analysis Multivariable Analysis

Characteristic OR (95% CI) P-value OR (95% CI) P-value

Hematologic malignancy 3.21 (1.38–7.48) .004

Cerebrovascular accident 0.42 (0.24–0.74) .003 0.40 (0.20–0.81) .011

Immunosuppressant use 2.21 (1.35–3.61) .002 1.73 (0.95–3.16) .072

Recent surgery 0.44 (0.27–0.73) .001 0.50 (0.27–0.92) .025

Carbapenem resistance 3.02 (1.84–4.96) <.001

Extensive drug resistance 3.05 (1.95–4.76) <.001 3.19 (1.86–5.46) <.001

Previous ventilator use 1.96 (1.27–3.02) .002

APACHE II score (categorical) 3.47 (2.57–4.68) <.001 3.20 (2.33–4.39) <.001

Appropriate antimicrobial therapy 0.49 (0.32–0.76) .001 0.57 (0.34–0.97) .04

All biologically plausible variables with a p-value < 0.05 in the univariable analysis were considered for inclusion in the logistic regression model in the
multivariable analysis. A stepwise selection process was utilized. We found that only cerebrovascular accident, recent surgery, extensive drug resistance, APACHE II
score, and appropriate therapy were statistically significant factors for 14-day mortality
Abbreviations: APACHE II Acute Physiology and Chronic Health Evaluation II, CI confidence interval

Table 3 Adjusted odds ratios for appropriate antibiotics for 14-day mortality in patients with Acinetobacter baumannii bacteremic
pneumonia: Stratified by APACHE II score categories

Group APACHE II score Patients, No. 14-Day
Mortality (%)

Adjusted ORa (95% CI) P-value

I <=15 43 16.3 2.42 (0.38–15.18) 0.345

II 16–25 108 26.9 0.83 (0.33–2.13) 0.704

III 26–35 110 51.8 0.61 (0.26–1.40) 0.241

IV > = 36 75 88.0 0.0098 (0.0005–0.1885) 0.002

Abbreviations: APACHE II Acute Physiology and Chronic Health Evaluation II, CI confidence interval, OR odds ratio
aAdjusted for cerebrovascular accident, immunosuppressant use, recent surgery, extensive drug resistance, APACHE II score, and appropriate therapy
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appropriate (151 patients) or inappropriate (185 pa-
tients) antimicrobial therapy showed that those with a
history of myocardial infarction (p = 0.045), higher
APACHE II scores (p = 0.001), and extensive drug resist-
ance (p = 0.029) were more likely to receive inappropri-
ate antimicrobial therapy. On the other hand, patients
who has history of connective tissue disease (p = 0.035)
and received a central venous catheter at the time of
bacteremia onset (p = 0.004) had a higher chance of re-
ceiving appropriate antibiotics.

The independent impact of appropriate antimicro-
bial therapy on 14-day mortality were further ex-
plored by including age, gender, extensive drug
resistance, APACHE II score and all the comorbidities
in Table 1 in the multivariable logistic regression
model (Supplemental Table S3). The results were
similar to those including the statistically significant
predictors using stepwise logistic regression (Table 2).
Further analysis showed that the interaction between
APACHE II score and appropriate antimicrobial

Fig. 1 Kaplan-Meier survival curves at 28 days after Acinetobacter baumannii bacteremic pneumonia onset for patient receiving appropriate or
inappropriate antimicrobial therapy, stratified by severity of infection. A, Group III, with Acute Physiology and Chronic Health Evaluation II scores
>25 and ≤35. B, Group IV, with APACHE II score >35. Abbreviation: APACHE II, Acute Physiology and Chronic Health Evaluation II
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therapy was statistically significant after adjusting for
the demographic characteristics and comorbidities
(Supplemental Table S4). The results were similar to
the analysis using the statistically significant predic-
tors in the regression model (Table 3), demonstrating
that appropriate antimicrobial therapy has an inde-
pendent association with a lower 14-day mortality of
the most severely ill patients.
Both appropriate and inappropriate antimicrobials pre-

scribed to patients are analyzed (Tables 4 and 5, respect-
ively) and APACHE II scores among patient groups
receiving different regimens were not significantly differ-
ent. Among patients who received appropriate anti-
microbial therapy, those receiving tigecycline-based or
colistin-based therapy had a higher 14-day and 28-day
mortality (Table 4), and no antimicrobial class was asso-
ciated with a higher or lower 14-day and 28-day mortal-
ity after a multivariable analysis (data now shown).

Patients receiving tigecycline-based or colistin-based
therapy had been infected carbapenem-resistant A. bau-
mannii (CRAB) more frequently than those receiving
other antimicrobial agents (97.1% vs 57.3%, p < 0.001).
Among patients who received inappropriate antimicro-
bial therapy, patients receiving antipseudomonal penicil-
lins had a higher 28-day mortality compared to other
antimicrobial therapies after multivariable adjustment
(data not shown). For patients infected with CRAB re-
ceiving appropriate antimicrobial therapy, carbapenem +
tigecycline-based therapy was associated with a higher
14-day and 28-day mortality (univariate analysis, Supple-
mental Table S5), but no antimicrobial class was associ-
ated with a higher or lower 14- or 28-day mortality after
multivariable adjustment. For patients infected with
CRAB receiving inappropriate antimicrobial therapy, no
antimicrobial class was associated with a higher or lower
14- or 28-day mortality (Supplemental Table S6).

Table 4 Antimicrobial regimens for the treatment of Acinetobacter baumannii bacteremic pneumonia (appropriate antibiotics)

Main agents useda,b No. (%)
of
patients
(n =
151)

APACHE II
score,
median
(IQR)d

No. (%) of patients

Combination therapye 14-Day
Mortality

P-value 28-Day
Mortality

P-value

Anti-pseudomonas penicillin-based therapy 13 (8.6) 245 (19–29) 8 (61.5) 6 (46.2) 0.513 8 (61.5) .319

Anti-pseudomonas cephalosporin-based therapy 31 (20.5) 25 (19–32) 24 (77.4) 10 (32.3) 0.479 12 (38.7) .229

Carbapenem-based therapy 59 (39.1) 25 (18–28) 25 (42.4) 20 (33.9) 0.434 28 (47.5) .861

Colistin-based therapy 55 (36.4) 25 (19–29) 49 (89.1) 28 (50.9) 0.012 33 (60.0) .030

Tigecycline-based therapy 54 (35.8) 28 (22–32) 46 (85.2) 28 (51.9) 0.008 32 (59.3) .045

Fluoroquinolone-based therapy 7 (4.6) 25 (12–36) 3 (42.9) 4 (57.1) 0.278 4 (57.1) .633

Sulbactam-based therapy 24 (15.9) 26 (22–28) 13 (54.2) 7 (29.2) 0.344 10 (41.7) .475

Carbapenem + colistin-based therapy 15 (9.9) 24 (18–28) 6 (40.0) 9 (60.0) 0.061 11 (73.3) .041

Carbapenem + tigecycline-based therapy 12 (8.0) 25 (22–28) 7 (58.3) 9 (75.0) 0.006 10 (83.3) .011

Carbapenem + sulbactam-based therapy 6 (4.0) 25 (22–28) 5 (83.3) 4 (66.7) 0.200 5 (83.3) .107

Colistin + tigecycline-based therapy 25 (16.6) 27 (20–32) 12 (48.0) 14 (56.0) 0.039 15 (60.0) .202

Carbapenem + colistin + tigecycline-based therapy 4 (2.7) 24 (20–28) 2 (50.0) 4 (100.0) 0.019 4 (100.0) .052

Antimicrobial regimensc

Anti-pseudomonas penicillin only 5 (3.3) 24 (19–30) 2 (40.0) 1.000 4 (80.0) .198

Anti-pseudomonas cephalosporin only 7 (4.6) 23 (16–30) 2 (28.6) 0.711 2 (28.6) .444

Carbapenem + colistin 9 (6.0) 24 (18–26) 4 (44.4) 0.730 6 (66.7) .315

Carbapenem + tigecycline 5 (3.3) 25 (26–28) 3 (60.0) 0.366 3 (60.0) .673

Carbapenem + sulbactam 1 (0.7) 17 0 1.000 0 1.000

Carbapenem + tigecycline + colistin 2 (1.3) 17, 22 2 (100) 0.141 2 (100) .232

Tigecycline only 8 (5.3) 29 (28–33) 5 (62.5) 0.155 5 (62.5) .484

Colistin + tigecycline 13 (8.6) 29 (22–38) 7 (53.9) 0.210 7 (53.9) .678
aAn antimicrobial agent (or antimicrobial agents)-based therapy denotes the corresponding antimicrobial agent(s) alone or in combination with other
antimicrobial agent(s)
b“Colistin” denotes intravenous colistin only. Inhaled colistin is not included
cNot in combination with other antimicrobial agents
dIQR, interquartile range. When the case number is less than 4, the APACHE II score for each case is shown
eCombination therapy is defined as administration of more than one antimicrobial agent
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Discussion
The efficacy of antimicrobial therapy for A. baumannii
bacteremic pneumonia has been difficult to establish
due to the three phenotypically indistinguishable Acine-
tobacter species that make up the Ab group and the con-
founding influence of underlying diseases and severity of
infection. This retrospective study analyzed the effect of
appropriate antimicrobial therapy on the 14-day mortal-
ity of the patients with genomically identified monomi-
crobial A. baumannii bacteremic pneumonia after
adjusting for multiple risk factors. We demonstrated that
appropriate antimicrobial therapy lowers mortality in the
most severely ill patients.
The impacts of appropriate antimicrobial therapy on

patients might be modified by the illness severity. It
has been found that inappropriate antimicrobial ther-
apy seem to do less harm in non-severe cases and in
the most severely ill patients with short life expectan-
cies [26]. On the other hand, our previous study of

A. baumannii bacteremia patients showed that appro-
priate antimicrobial therapy reduced mortality in se-
verely ill patients (APACHE II score > 25) [18]..
Another study on carbapenem nonsusceptible Klebsi-
ella pneumoniae also suggested that appropriate anti-
microbial therapy did not benefit non-severe patients
(APACHE II < 15) [27]. Our observation that appro-
priate antimicrobial therapy may be of crucial import-
ance to the survival of the most severely ill patients
(APACHE II score > 35) is in line with the previous
studies. To our knowledge, this study is the first to
explore the influence of severity of illness on the im-
pacts of appropriate antimicrobial therapy in A. bau-
mannii bacteremic pneumonia patients.
The pneumonia caused by phenotypically identified“A.

baumannii” described in many studies actually com-
prises pneumonia caused by either one of the Acineto-
bacter species in the Ab group [13, 28]. There are
differences in antimicrobial resistance and outcomes

Table 5 Antimicrobial regimens for the treatment of Acinetobacter baumannii bacteremic pneumonia (inappropriate antibiotics)
Main agents useda,b No. (%)

of
patients
(n =
185)

APACHE
II score,
median
(IQR)d

No. (%) of patients

Combination therapye 14-Day Mortality P-value 28-Day Mortality P-value

Anti-pseudomonas penicillin-based therapy 28 (15.1) 33 (24–39) 3 (10.7) 19 (67.9) .142 22 (78.6) f .077

Anti-pseudomonas cephalosporin-based therapy 36 (19.5) 31 (21–40) 8 (22.2) 17 (47.2) .287 22 (61.1) .710

Carbapenem-based therapy 61 (33.0) 29 (24–38) 11 (18.0) 38 (62.3) .170 45 (73.8) .047

Colistin-based therapy 7 (3.8) 28 (21–30) 7 (100) 3 (42.9) .702 6 (85.7) .425

Tigecycline-based therapy 13 (7.0) 33 (25–39) 10 (76.9) 9 (69.2) .390 10 (76.9) .382

Fluoroquinolone-based therapy 10 (5.4) 28 (20–39) 3 (30.0) 5 (50.0) .737 7 (70.0) 1

Sulbactam-based therapy 10 (5.4) 30 (18–37) 6 (60.0) 5 (50.0) .737 7 (70.0) 1

Carbapenem + colistin-based therapy 3 (1.6) 19, 27, 28 1 (33.3) 0 .088 3 (100) .555

Carbapenem + tigecycline-based therapy 4 (2.2) 27 (22–31) 2 (50.0) 2 (50.0) 1 3 (75.0) 1

Carbapenem + sulbactam-based therapy 5 (2.7) 31 (29–31) 3 (60.0) 3 (60.0) 1 4 (80.0) .655

Colistin + tigecycline-based therapy 2 (1.1) 19, 40 1 (50.0) 1 (50.0) 1 2 (100) .535

Carbapenem + colistin + tigecycline-based therapy 1 (0.5) 19 0 0 .449 1 (100) 1

Antimicrobial regimensc

Anti-pseudomonas penicillin only 25 (13.5) 33 (24–39) 18 (72.0) .068 20 (80.0) .070

Anti-pseudomonas cephalosporin only 28 (15.1) 32 (22–41) 14 (50.0) .553 17 (60.0) .714

Carbapenem + colistin 2 (1.1) 27, 28 0 .200 2 (100.0) .535

Carbapenem + tigecycline 2 (1.1) 25, 33 1 (50.0) 1 1 (50.0) 1

Carbapenem + sulbactam 2 (1.1) 31, 40 2 (100) .503 2 (100) .535

Carbapenem + fluoroquinolone 1 (0.5) 43 1 (100) 1 1(100) 1

Carbapenem + tigecycline + colistin 1 (0.5) 19 0 .449 1(100) 1

Tigecycline only 3 (1.6) 30, 33, 38 3 (100) .254 3 (100) .555

Colistin + tigecycline 1 (0.5) 40 1 (100) 1 1 (100) 1
aAn antimicrobial agent (or antimicrobial agents)-based therapy denotes the corresponding antimicrobial agent(s) alone or in combination with other
antimicrobial agent(s)
b“Colistin” denotes intravenous colistin only. Inhaled colistin is not included
cNot in combination with other antimicrobial agents
dIQR, interquartile range. When the case number is less than 4, the APACHE II score for each case is shown
eCombination therapy is defined as administration of more than one antimicrobial agent
fPatients receiving antipseudomonal penicillin therapy had a significantly higher 28-day mortality compared to other antimicrobial therapy after
multivariable adjustment
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between A. baumannii and other Acinetobacter species
in the Ab group [29–31], therefore pneumonia caused
by these different Acinetobacter species cannot be con-
sidered as a single clinical entity. This study separated A.
baumannii from other Acinetobacter species to avoid
the confounding effect caused by the inclusion of a mix-
ture of Acinetobacter species.
Colistin and tigecycline are often used for treatment of

carbapenem-resistant Acinetobacter infections or as a sal-
vage therapy for Acinetobacter infections with carbapenem
treatment failure. However, our results showed that pa-
tients receiving tigecycline-based or colistin-based therapy,
even both appropriate, still had a high 14- and 28-day mor-
tality. Admittedly, patients receiving tigecycline-based or
colistin-based therapy were more likely to have had been
infected by CRAB strains and CRAB infection were associ-
ated with poorer outcome. However, tigecycline-based or
colistin-based therapy was still not associated with a lower
14- and 28-day mortality for patients infected with CRAB.
Colistin is administered as an inactive prodrug (colistin
methanesulfonate) which results in a prolonged period of
low plasma concentrations of the active drug and thereby
influences its efficacy [32]. Possible explanations for tigecyc-
line include its bacteriostatic property, a low AUC/MIC ra-
tio [33–37], pneumonia as a source of bacteremia [36, 38],
and relatively high MICs of tigecycline of our study isolates
that were unachievable by the currently approved dose of
tigecycline in the serum [21].
Among patients who received inappropriate antimicrobial

therapy, patients receiving antipseudomonal penicillins had
a higher 28-day mortality compared to other antimicrobial
therapies. The similarity of APACHE II scores between pa-
tient groups receiving different regimens excludes disease
severity as a confounder to explain the difference in mortal-
ity. Our finding suggested the potential detrimental effect
of antipseudomonal penicillins for the treatment of A. bau-
mannii bacteremic pneumonia. Further investigation is
warranted to explore the cause of the finding.
Our study had some limitations. First, it is a retro-

spective study which is prone to selection bias and may
limit the generalizability of our study. Second, our study
included only patients with bacteremic pneumonia, thus
the findings may not be applicable to A. baumannii
pneumonia patients without bacteremia. The strengths
of our study include the large case numbers obtained
from multiple medical centers, genomically defined A.
baumannii, and the adjustment of various risk factors.

Conclusion
Appropriate antimicrobial therapy decreases the 14-day
mortality of the most severely ill patients with A. bau-
mannii bacteremic pneumonia. Further research is
needed to determine the most effective antimicrobial
therapy for A. baumannii bacteremic pneumonia.
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