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Abstract

High dietary salt intake increases risk of stress-related neuropsychiatric disorders. Here, we explored the contribution of high 
dietary salt intake-induced neuroinflammation in key stress-responsive brain regions, the hypothalamic paraventricular 
nucleus and basolateral amygdala, in promoting exaggerated neuronal activation and coping behaviors in response to 
acute psychogenic stress. Mice that underwent high dietary salt intake exhibited increased active stress coping behaviors 
during and after an acute swim stress, and these were reduced by concurrent administration of minocycline, an inhibitor of 
microglial activation, without affecting body fluid hyperosmolality caused by high dietary salt intake. Moreover, minocycline 
attenuated high dietary salt intake-induced increases of paraventricular nucleus tumor necrosis factor-α, activated microglia 
(ionized calcium-binding adaptor molecule 1), and acute swim stress-induced neuronal activation (c-Fos). In the basolateral 
amygdala, similar effects were observed on ionized calcium-binding adaptor molecule 1+ and c-Fos+ counts, but not tumor 
necrosis factor-α levels. These data indicate that high dietary salt intake promotes neuroinflammation, increasing recruitment 
of neurons in key stress-associated brain regions and augmenting behavioral hyper-responsivity to acute psychological stress.
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Introduction
Excessive dietary sodium intake is a worldwide health con-
cern (Whelton, 2015). We recently reported that high dietary 
NaCl (salt) intake (HDSI) in mice increases activation of stress-
sensitive neurons of the hypothalamic paraventricular nucleus 
(PVN) and basolateral amygdala (BLA) and increases stress cop-
ing behaviors during and after acute swim stress (SS) (Mitchell 
et  al., 2018). Blockade of vasopressin 1a receptors in the BLA 

attenuated active coping behavior independent of salt intake, 
indicating another central mechanism is likely responsible for 
the observed HDSI-induced elevations in neuronal activation 
and active coping behavior (Mitchell et al., 2018).

Sodium-induced neuroinflammation is implicated in devel-
opment of neuropsychiatric disorders (Dipasquale et al., 2013; 
Abdoli, 2017), putatively via activation of microglia (Réus et al., 
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2015). Proinflammatory activation of microglia, which increases 
production of neuro-active cytokines such as tumor necrosis 
factor-alpha (TNF-α) (Bardgett et  al., 2014), can be blocked by 
the anti-inflammatory antibiotic minocycline (Kobayashi et al., 
2013). Here, we sought to examine how HDSI, alone and con-
current with minocycline administration, affects the state of 
microglial activation, TNF-α levels, and neuronal transcriptional 
activation in the PVN and BLA, as well as active coping behav-
iors, in response to an acute SS. Our findings reveal that even 
moderately elevated salt intake, insufficient to increase serum 
osmolality, can induce neuroinflammation and sensitize neu-
ronal and behavioral stress responses.

Methods

Animals

Adult male C57BL/6J mice (3–10 months old) from Jackson Labs 
were housed in plastic cages (29 cm × 18 cm × 13 cm) containing 
bedding (Sani-chips, Harlan Teklad) in a temperature-controlled 
(24°C) vivarium on a 12/12 h-light/dark cycle (lights on at 7:00 
am). Animals were group housed and given free access to food 
(irradiated rodent sterilizable diet, Harlan Teklad) and water 
except where noted.

Experimental procedures conformed to the National Research 
Council’s Guide for the Care and Use of Laboratory Animals and 
were approved by the Animal Care and Use Committee of the 
University of Texas Health Science Center at San Antonio.

HDSI Protocol and Minocycline Administration

Mice were randomly assigned to drink tap water (vehicle) or 2% 
or 4% saline (NaCl) ad libitum for 7 consecutive days. Mice con-
suming each drinking solution were divided into 2 groups, only 
one of which had minocycline added to their drinking solution. 
Mice that drank minocycline-containing solutions had a prim-
ing dose added to their tap water 24 hours prior to initiating the 
HDSI protocol.

Concentrations of minocycline (Sigma-Aldrich) in drinking 
solutions varied from 0.41 to 0.54 mg/mL to compensate for dif-
ferences in the volume of each solution that mice drank per day 
(Mitchell et  al., 2018), thereby ensuring that the daily dose of 
minocycline was consistently approximately 100 mg/kg/d for all 
HDSI treatments. Estimated daily dosages of minocycline were 
not different in any HDSI treatment [F(2,15) = 1.6, P = .2]. The oral 
route of administration and dosing regimen were chosen for 
their demonstrated capacity to inhibit proinflammatory micro-
glial activation (Kohman et al., 2013).

Behavioral Testing

Experiments were conducted as described in Mitchell et  al. 
(2018). SS was conducted for 5 minutes in an acrylic cylindri-
cal tank (20 cm i.d., 25 cm high) filled to a depth of 18 cm with 
approximately 25°C tap water. Mobility was defined as active 
leg movement greater than required to prevent submersion 
and resulting in forward propulsion. Data were graphed as 
time (in seconds) mobile to quantify active coping changes, 
in accord with recent reports (Castagné et al., 2011; Nackenoff 
et  al., 2017; Mitchell et  al., 2018). After testing, mice were 
removed from the tank, dried, and placed inside a transpar-
ent cage (29 cm × 18 cm × 13 cm). There, grooming behavior 
was assessed as time (in seconds) spent stroking or licking 
the nose, paws, face, or body. Behaviors were recorded with a 

digital camera and scored by an experimenter binded to treat-
ment conditions.

Serum Osmolality

As previously described (Mitchell et  al., 2018), blood samples 
were drawn via cardiac puncture prior to perfusion fixation 
while mice were deeply anesthetized with isoflurane (3% for 180 
seconds). Blood samples (0.3  mL) were centrifuged for 8 min-
utes at 5000 rpm, and serum was collected to measure osmo-
lality by freezing point depression (Advanced Instruments, Inc., 
model 3320). Reports are conflicting whether, and over what 
time course, isoflurane anesthesia might affect inflamma-
tory markers (Wu et al., 2012; Altay et al., 2014); for the present 
experiments, all mice were exposed to the same concentra-
tion of isoflurane (3% in oxygen) for no longer than 3 minutes 
immediately prior to perfusion fixation to minimize potential 
confounds.

Immunohistochemistry

Immunohistochemistry was conducted as described in 
Mitchell et  al. (2018). Brain sections 30  µm thick were incu-
bated in 0.5% sodium borohydride/0.1 M phosphate buffered 
saline (PBS) (30 min), rinsed (3×, 5 minutes in 0.1 M PBS), and 
incubated in blocking solution (0.1 M PBS/0.3% Triton-X 100/3% 
goat serum; 2 hours at 22.5°C). Antigen detection was achieved 
by incubating adjacent sections in 4°C blocking solution con-
taining polyclonal rabbit anti-ionized calcium-binding adap-
tor molecule 1 (Iba1; to specifically measure the number of 
positively stained microglia; Ito et al., 1998) (1:200: Wako Labs) 
for 12 hours, polyclonal rabbit anti-c-Fos (an indicator of neu-
ronal activation; Mitchell et  al., 2018) (1:10 000; Millipore) for 
72 hours, or polyclonal rabbit anti-TNF-α (1:250: Abcam) for 12 
hours. Sections were rinsed (3×, 5 minutes in 0.1 M PBS), incu-
bated in blocking solution containing biotinylated goat anti-
rabbit IgG secondary antibody (1:250; Thermofisher, 2 hours at 
22.5°C), rinsed again (3×, 5 minutes in 0.1 M PBS), and immu-
noreactivity revealed by incubation in streptavidin-AlexaFluor 
594 conjugate (1:250; Thermofisher, 10 minutes at 22.5°C). 
Tissue underwent a final rinse (3×, 5 minutes in 0.1 M PBS) 
before being mounted on glass slides with ProLong Diamond 
(Thermo Fisher Scientific).

Iba1 and c-Fos staining was imaged with a confocal micro-
scope (Prairie Technologies) using a Sapphire 561-nm laser 
(Coherent), and TNF-α immunoreactivity was imaged under 
mercury illumination epifluorescence (X-cite 120PCXL). A 16-bit 
Cascade II digital camera (Photometrics, Inc.) captured images, 
and NIS-Elements Advanced Research 3.2 software was used 
for analysis. Localization of immunoreactivity was determined 
according to histological plates  38 (PVN) and 43 (BLA) in the 
mouse brain atlas of Franklin and Paxinos (1997). Quantification 
details are described in Mitchell et al. (2018).

Data Analysis

Statistical analyses were performed using GraphPad Prism v7.0 
(San Diego, CA). An estimate of the minocycline dose per mouse 
was calculated daily at approximately 9:00 am as the product of 
the fractional bodyweight gain of each mouse in a given cage 
and the volume of solution drunk during the previous 24 hours. 
A 1-factor ANOVA was used to determine if dosages varied in 
any HDSI treatment. All other data were analyzed using a 2-fac-
tor ANOVA (HDSI condition, minocycline treatment) followed by 
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Dunnett’s or Bonferroni’s multiple comparisons test (see figure 
legends for details).

Results

Minocycline Attenuates HDSI-Induced Increases 
in Swimming and Grooming Behavior as Well 
as Markers of Neuroinflammation and Neuronal 
Activation in the PVN

A significant HDSI × minocycline interaction was detected for 
mobility time [F(2,40) = 5.8, P < .01; Figure 1A], indicating minocy-
cline’s behavioral effects were dependent on HDSI. Whereas HDSI 
with 2% and 4% saline each significantly increased mobility time 
during SS compared with tap water controls (P < .05, P < .001), 
time spent mobile in minocycline-treated mice was increased 
relative to tap water controls only in the 2% saline group (P < .05) 
(Figure 1A). Most prominent is that the 66% increase in mobility 
time detected in vehicle-treated mice with 4% HDSI compared 
with tap water controls was reduced to only 17% when 4% HDSI 
mice underwent concurrent minocycline treatment. Comparing 
across minocycline condition within HDSI treatment, only 2% 
HDSI animals treated with minocycline swam more than vehi-
cle-treated 2% HDSI mice (P < .05). Though no significant inter-
action between HDSI × minocycline was observed [F(2,39) = 2.3, 
P  =  .11; Figure 1B], time spent grooming after SS was affected 
by HDSI [F(2,39) = 4.1, P < .05], with grooming time significantly 
increased only in vehicle-treated mice with 4% HDSI compared 
with tap water controls (P < .001). A main effect of minocycline 
treatment on grooming time [F(1,39) = 6.4, P < .05] (Figure 1B) was 
revealed by posthoc tests to have ablated the enhanced groom-
ing elicited by 4% HDSI (P < .05).

Serum osmolality was influenced by a main effect of HDSI 
[F(2,25)  =  31.1, P  <  .001] (Figure 1C) and unaltered by minocy-
cline [F(1,25)  =  0.069, P  =  .8], with no significant interaction 
[F(2,25)  =  2.0, P  =  .16]. Posthoc tests indicated osmolality was 
greater in 4% HDSI mice relative to both tap water vehicle and 
tap water minocycline groups (P < .001, P < .01). These behavioral 
and osmolality results in vehicle-treated animals align with our 
previous findings (Mitchell et al., 2018).

Immunohistochemical staining revealed main effects of 
HDSI [F(2,27)  =  10.6, P  <  .001] and minocycline [F(1,27)  =  19.9, 
P  <  .001] on numbers of Iba1+ cells in the PVN (Figure 1D,G). 
A trend toward a HDSI × minocycline interaction suggested that 
minocycline might preferentially reduce Iba1+ cells in HDSI 
mice [F(2,27)  =  3.2, P  =  .06] (Figure 1G). Vehicle-treated mice 
receiving 2% and 4% HDSI had greater Iba1+ cells than tap water 
controls (P < .01, P < .001), and these increases were attenuated 
by minocycline treatment (P < .05, P < .001, respectively). Though 
no significant HDSI × minocycline interaction [F(2,21)  =  2.1, 
P = .15; Figure 1E,H] or main effect of HDSI [F(2,21) = 2.1, P = .15] 
on PVN TNF-α immunoreactivity was detected, posthoc test-
ing indicated vehicle-treated 4% HDSI mice had elevated levels 
compared with tap water controls (P < .05) (Figure 1E,H). No main 
effect of minocycline treatment on TNF-α levels in the PVN was 
detected (F(1,21) = 1.2, P = .3).

Because microglial activation can result from and promote 
further release of TNF-α and thereby lead to increased neuronal 
excitability and excitatory synaptic transmission, c-Fos+ cells 
were counted to determine if neuronal activation correspond-
ingly increased with HDSI-induced neuroinflammation after 
acute SS (Figure 1F,I). A  significant HDSI × minocycline inter-
action was detected for c-Fos+ PVN cells [F(2,24) = 7.6, P <  .01] 

(Figure 1F,I). Heightened levels of c-Fos+ nuclei in vehicle-treated 
mice receiving 2% and 4% HDSI (P < .001, P < .001) were shown by 
posthoc tests to be significantly reduced by concurrent minocy-
cline treatment (P < .001, P < .05).

Minocycline Attenuates HDSI-Induced Increases of 
Iba1+ and c-Fos+ Cells in the BLA After SS

In contrast to the PVN, the interaction between HDSI × minocy-
cline on Iba1+ cells in the BLA reached significance [F(2,27) = 6.9, 
P <  .01] (Figure 2A,D). Posthoc tests indicated both 2% and 4% 
HDSI increased Iba1+ cells in BLA compared with vehicle-treated 
tap water controls (P < .05, P < .001), and these elevations were 
blocked by minocycline for both 2% and 4% HDSI mice (P < .05, 
P < .01) (Figure 2D). Also unlike the PVN, levels of TNF-α in the 
BLA were unaffected by HDSI or minocycline [F(2,19)  =  0.25, 
P = .8; F(1,19) = 0.66,P = .4] (Figure 2B,E), and no significant inter-
action was observed [F(2,19) = 0.54, P = .6].

Paralleling c-Fos+ observations in the PVN, c-Fos+ cells in the 
BLA after acute SS were affected by an interaction between HDSI 
and minocycline [F(2,24) = 3.8, P < .05]. Relative to vehicle-treated 
tap water controls, 2% and 4% HDSI mice treated with vehicle 
had greater c-Fos+ cells (P < .001, P < .05) as indicated by posthoc 
tests. Minocycline significantly reduced BLA c-Fos+ cells in mice 
receiving 2% HDSI (P < .01), but not 4% HDSI (P = .4).

Discussion

Our findings suggest that HDSI-induced enhancement of active 
coping behavior during and after a psychogenic stress likely 
involves actions of neuroinflammation mediated through activa-
tion of microglia in stress-relevant brain regions. This is particu-
larly important considering numbers of microglia and activated 
neurons were heightened in mice that did not exhibit serum 
osmolality changes (2% HDSI), suggesting even modest elevations 
in dietary salt could augment neurophysiological responses to 
psychological stressors. Moreover, treatment with the microglial 
inhibitor minocycline largely prevented microglial activation as 
well as exaggerated neuronal and behavioral SS responses result-
ing from HDSI without altering serum osmolality. Thus, effects 
of minocycline appear related to its anti-inflammatory actions in 
stress-relevant brain regions and are not secondary to any blunt-
ing of the disruptive effect of HDSI on body fluid homeostasis.

Though originally developed by Porsolt as an antidepressant 
screen, prevailing views suggest that activity during SS reflects 
the animal’s coping strategy during stress exposure (Commons 
et al., 2017; de Kloet and Molendjik, 2016). Active stress coping 
associates with increased mobility in SS, aggression, grooming, 
and social dominance (Cannon, 1915; Engel and Schmale, 1972; 
Benus et al., 1991). Thus, enhanced behavioral responses to SS 
resulting from HDSI likely extend from environmental to inter-
individual stress stimuli, though this needs to be further charac-
terized. Such interactions are particularly important to examine 
considering SS or HDSI alone do not substantially elevate c-Fos+ 
cell counts (Mitchell et  al., 2018). The present findings in 
vehicle-treated animals closely parallel our previous report 
(Mitchell et al., 2018), demonstrating the reproducibility of this 
heterotypic stress paradigm with relatively small group sizes. 
Certainly, HDSI-mediated neuroinflammation as a contributor 
to heightened stress reactivity and the pathogenesis of anxi-
ety, mood, and psychotic disorders needs to be explored more 
fully in preclinical studies given growing clinical evidence of an 
association between salt intake and neuropsychiatric disorders 
(Dipasquale et al., 2013; Réus et al., 2015; Abdoli, 2017).
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Figure 1.  Concurrent minocycline treatment attenuates high dietary salt intake (HDSI)-induced increases in active stress coping, as well as markers of neuroinflam-

mation and neuronal activation in the paraventricular nucleus (PVN). Summary data for (A) time spent mobile during (n = 6–11), (B) time spent grooming (n = 5–11) 

immediately after, and (C) serum osmolality (n = 3–9) following an acute swim stress (SS). Representative images of (D) ionized calcium-binding adaptor molecule 1 

(Iba1) (white), (E) tumor necrosis factor (TNF)-α (green), and (F) c-Fos (red) immunoreactivity in the PVN of mice after HDSI/minocycline treatment protocols. Summary 

data for (G) Iba1+ cells (n = 5–6), (H) TNF-α immunofluorescence (n = 4–5), and (I) c-Fos+ cells (n = 5). Values were obtained after the 7-day HDSI protocol with or without 

concurrent minocycline treatment (approximately 100 mg/kg/d) in drinking solution after acute SS. *P < .05, **P < .01, ***P < .001 difference from tap water treatment 

within same condition (vehicle/minocycline) by Dunnett’s multiple comparisons test; #P < .05, ###P < .001 difference within HDSI treatment across condition (vehicle/

minocycline) by Bonferroni’s multiple comparisons test after 2-factor ANOVA (HDSI, vehicle/minocycline). Data are mean ± SEM.
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Our present data indicate that TNF-α is an HDSI-inducible 
inflammatory cytokine that is more readily elevated in the 
hypothalamus compared with the amygdala, which is con-
sistent with literature evidence (Connor et  al., 1998; Churchill 
et  al., 2006). HDSI and/or SS might elevate other cytokines 
in the amygdala not measured here, such as interleukin-1β 

(Churchill et al., 2006). Alternatively, the brief SS may not have 
been severe or prolonged enough to have sufficiently increased 
TNF-α production in the amygdala to reach statistical signifi-
cance. We have previously shown that locally administered 
TNF-α increases PVN-driven neuronal output (Bardgett et  al., 
2014), and this might help explain elevated c-Fos+ numbers 
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Figure 2.  Concurrent minocycline treatment attenuates high dietary salt intake (HDSI)-induced increases in ionized calcium-binding adaptor molecule 1 (Iba1+) and 

c-Fos+ cells in the basolateral amygdala (BLA), without affecting tumor necrosis factor (TNF)-α immunoreactivity. Representative images of (A) Iba1 (white), (B) TNF-α 

(green), and (C) c-Fos (red) immunoreactivity in the BLA after acute swim stress (SS) in mice that underwent the 7-day HDSI protocol with concurrent minocycline 

treatment (approximately 100 mg/kg/d) in drinking solution. Summary data of (D) Iba1+ cells (n = 5–6), (E) TNF-α immunofluorescence (n = 4–5), and (F) c-Fos+ cells 

(n = 5). *P < .05, ***P < .001 difference from tap water treatment within condition (vehicle/minocycline) with Dunnett’s multiple comparisons test; #P < .05, ##P < .01 dif-

ference within HDSI across condition (vehicle/minocycline) by Bonferroni’s multiple comparisons test after a 2-factor ANOVA (HDSI, vehicle/minocycline). Data are 

mean ± SEM.
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in this region following HDSI and SS. The lack of significantly 
greater TNF-α levels in the BLA despite elevated c-Fos+ nuclei 
indicates additional or distinct neuronal activation processes 
are occurring. One possibility is a change in chloride gradients 
due to HDSI. HDSI in rats reduces active (i.e., phosphorylated) 
levels of the potassium chloride co-transporter (KCC2) in hypo-
thalamic subregions (Choe et al., 2015), thus increasing intracel-
lular chloride and limiting the inhibitory efficacy of GABAergic 
inputs. Continued investigations based on these findings will 
help determine if induction of TNF-α production or KCC2 phos-
phorylation by HDSI are necessary, separately or collectively, to 
increase PVN and BLA neuron excitability after SS and to evalu-
ate how such manipulations impact active coping behavior.

Strikingly, HDSI induces neuroinflammation and augments cel-
lular and behavioral responses to a brief, acute SS, without a req-
uisite increase in serum osmolality (i.e., 2% HDSI). A conventional 
high salt diet may increase an individual’s behavioral reactivity to 
day-to-day perceived stressors, inadvertently increasing their sus-
ceptibility to psychiatric and neuroimmune disorders. The current 
findings implicate microglial activation and neuroinflammation 
as important considerations in future studies exploring how HDSI 
influences neurophysiological and behavioral responses to stress.
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