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In the past decades, many studies have focused on aging because of our pursuit of

longevity. With lifespans extended, the regenerative capacity of the liver gradually declines

due to the existence of aging. This is partially due to the unique microenvironment in the

aged liver, which affects a series of physiological processes. In this review, we summarize

the related researches in the last decade and try to highlight the aging-related alterations

in the aged liver.

Keywords: aging, microenvironment, regeneration, hepatic cells, extracellular matrix

INTRODUCTION

During aging, the liver undergoes a series of degenerative changes. Briefly, it presents a progressive
decrease in functional liver mass, thus reducing its functional reserve, making it more difficult to
maintain homeostasis and vulnerable to external stress or damage (1). Till now, the mechanisms
underlying liver aging still remain unclear. As we known, the main causes of aging are DNA
damage, telomeres shortening, epigenic alterations, and impairment of proteostasis (2). The
aged liver is usually accompanied with failure of regeneration, metabolic dysfunction, redox
imbalance, and development of chronic or malignant liver diseases (3–6). The impairment of
regenerative capacity in the aged liver is affected by both intracellular factors and extracellular
factors (7). Intriguingly, we may be able to recover their regenerative capacity via changing a
microenvironment for the senescent hepatocytes (8). The aging-related alterations in the liver form
a unique microenvironment and affect a series of physiological processes. Moreover, this unique
microenvironmentmay function as a vital role that causes the liver to become susceptible to chronic
diseases or tumors (9). For instance, it affects the fate of hepatocytes and promotes neoplastic
development (10). Moreover, hepatocytes in this microenvironment are more susceptible to
ischemia/reperfusion (I/R) injury (11–13). Of particular interest is the way to effectively eliminate
the effects of aging and reverse the unique aging microenvironment in the aged liver. As reviewed
by Xu et al., modulation of autophagy could function as an effective strategy for reverse of the
aged liver (14). Autophagy mainly functions as a cytoprective role in liver diseases. Modulation of
autophagy couldmarkedly alleviate aging-related liver injury, promote liver regeneration, block I/R
induced injury, and reverse the aging microenvironment in the aged liver (14–17).

HALLMARKS OF HEPATIC AGING PROCESS

Over the past years, our understanding of the aging process experiences a great advance.
Of notable interest is calling for accurate hallmarks of aging in different organisms and in
different organs. In 2013, Lopez-Otin et al. reviewed and concluded 9 cellular hallmarks of aging:
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genomic instability, epigenetic alterations, loss of proteostasis,
telomere attrition, mitochondrial dysfunction, deregulated
nutrient sensing, cellular senescence, stem cell exhaustion,
and altered intercellular communication (18). Aging related
changes in the aged liver occur at genomic, epigenetic, molecular,
cellular and sub-cellular levels. Moreover, the aging process
in the liver undergoes all the cellular hallmarks, these changes
occur in various cells in the liver (parenchymal cells and non-
parenchymal cells) and extracellular matrix (ECM) (Figure 1),
and finally lead to impairment of liver function (19–21). In a
recently published review, Hunt et al. enumerated the hallmarks
of the aging process in the liver. Besides the hallmarks reviewed
by Lopez-Otin et al., they also covered response to endoplasmic
reticulum (ER) stress and aging human liver into discussion
(18). Recent years, long non-coding RNAs and microRNAs have
gained a lot of interest, and they are considered to be involved
in the aging process, especially in the metabolic modulation
and intercellular communication (22–25). Moreover, Barbosa
et al. also highlighted the relevance of autophagy activity to the
hallmarks of aging (26).

AGING LIVER: SUITABLE ANIMAL MODELS

To fully understand the aging-related alterations in liver, suitable
animal models are deemed necessary. Generally, these animal
models can be divided into: naturally aging models, accelerated
aging models, mimetic aging models, and transgenic aging
models. Naturally aging models, especially aging rodents (mice
aged ≥ 12 months, rats aged ≥ 16 months), are widely used
in aging research because of their similarity of characteristics
with human aging process. They have been applied in most of
the studies related to aging liver in the last decade. Moreover,
researchers used the senescence-accelerated mouse (SAMP10)
to study the underlying mechanism of the aging liver (27, 28).
In addition, mimetic aging models are also widely applied,
which included D-galactose, radiation, β-amyloid, aluminum
chloride induced aging models. Of these, D-galactose mimics
naturally aging via inducing mitochondrial dysfunction and
oxidative stress, increasing inflammation and apoptosis in the
liver. Radiation induced aging models are usually used in
cancer treatment (radiotherapy) related aging researches (29).
Application of β-amyloid and aluminum chloride induces brain
disorders, and these models are usually applied in Alzheimer’s
Disease related studies (30, 31). In recent years, transgenic aging
models gain more and more attention with the development of
gene editing technologies. Nevertheless, these animal models can
only partially reproduce the typical pathological and biochemical
alterations of aging.

AGING RELATED ALTERATIONS IN THE
LIVER

Currently, many researchers have reported the mechanisms
of aging and its effects on the liver. In 2013, Capel et al.
found that aging-related genes in the aged liver were mainly
related to xenobiotic and fatty acid metabolism, retinoid

X receptor function, and oxidative stress (32). In another
microarray based study in the liver of aged rats, various
genes involved in lipid metabolism and cell growth were
downregulated (33). In 2015, White et al. revealed the main
aging related alterations were involved in immune response,
metabolic processes, RNA modification, and cell activation (34).
Bochkis et al. showed that the inflammatory regulators (NFκB,
IRF3, TLR4, et al.) upregulated related genes in the aged
livers, nucleosome occupancy increased with age in mammalian
liver (35). Sato et al. revealed that the aging process induced
reprogramming of circadian rhythms in the liver. They showed
that hepatic metabolic processes, such as protein acetylation
and Nicotinamide adenine dinucleotide (NAD+) metabolism,
were critically involved in the circadian change and remodel
(36). In 2019, Chen et al. reported the transcriptional profiling
of aging liver in Yana pigs (37). They showed that the up-
regulated genes in pig aging liver were mainly involved in
immune response, while the down-regulated genes were mainly
enriched for metabolism (34). In another research, Bacalini et
al. identified aging correlated genes enriched in the following
biological processes: inflammatory response, interferon gamma
response, and allograft rejection (38).

It is well known that oxidative stress plays a key role in the
process of aging. Considering mitochondria and peroxisomes
are important sources of reactive oxygen species (ROS), several
studies have characterized aging related changes in liver
peroxisomes and mitochondria using proteomics technology.
In 2011, Amelina et al. identified 8 differentially expressed
proteins of young (10-week-old) vs. old (18-month-old) in
mouse liver peroxisomes (39). Five proteins were significantly
up-regulated in the aged liver: epoxide hydrolase 2, 3-ketoacyl-
CoA thiolase A, peroxisomal sarcosine oxidase, peroxisomal
2,4-dienoyl-CoA reductase, and prohibitin-2. And 3 proteins
were down-regulated: pancreatic alpha-amylase, cytochrome c
oxidase subunit 6C, and Cytochrome b-c1 complex subunit 2.
These differentially expressed proteins mainly involved in the
following processes: detoxification of xenobiotics, peroxisomal-
oxidation, and production of ROS (39). In 2011, Musicco
et al. identified differentially expressed hepatic mitochondrial
proteins between old (28-month-old) and adult (12-month-
old) rats. These differentially expressed proteins were involved
in several mitochondrial metabolic pathways, such as pyruvate
dehydrogenase complex, tricarboxylic acid cycle, and oxidative
phosphorylation system chain (40). In another study, Bakala
et al. revealed 16 differentially expressed hepatic mitochondrial
proteins between young (3-month-old) and old (20-month-
old) rats. They also found that most of these proteins were
enzymes related to metabolic processes including fatty acid
β-oxidation reaction, oxidative phosphorylation system chain
complex I/V components, and tricarboxylic acid cycle (41).
Moreover, to deeply reveal the aging-related organ specific
function deterioration, Ori et al. identified the molecular
alterations in the liver in young (6-month-old) and old (24-
month-old) rats using an integrated approach (42). In this study,
the researchers revealed several aged-related changes: altered
translation and protein abundance, protein re-localization,
alternative splicing, and altered protein phosphorylation. The
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FIGURE 1 | Schematic diagram of the aging-related changes in the liver. During the aging process of the liver, a series of alterations was observed in genes, proteins

and metabolites. The oxidative homeostasis was disrupted, thus lead to oxidative stress. During aging, the number of polyploid, senescent, and apoptotic

hepatocytes increased. Hepatic stellate cells in the aged liver contained more lipid droplets and released less growth factors than those in the young liver. The

defenestration liver sinusoid endothelial cells occurred during aging, and thus disrupted the substance exchange, such as insulin and growth factors. Moreover, more

extracellular matrix was deposited in Disse space in the aged liver.

liver proteome homeostasis was affected during aging, and
the majority of these alterations were due to transcriptional
regulation. The age-specific impacts on the liver were tightly
related to the liver function: small molecule metabolism,
monosaccharide metabolism, angiogenesis, protein degradation,
complement activation, and antigen processing (42). To further
investigate the molecular networks of longevity, Heinze et
al. conducted a cross-species comparison between the long-
lived naked mole-rats and shorter-lived guinea pigs (43). They
revealed that 30 hepatic proteins were associated with sustaining
longevity and most of these proteins were linked to lipid or
fatty acid, and xenobiotic metabolism (43). Taken together, all
of the above studies advance our understanding of aging-related
changes in liver proteins that are significantly associated with
organ function. However, we have to recognize there are several
limitations to these studies. Firstly, different animal models are
utilized in these studies. Some researchers choose mice as animal
models, while others choose rats. In addition, they selected
animals of different ages for the aging study. Secondly, the
number of biological replicates is limited. Thus, these above
findings need to be further validated.

In addition, metabolites are markedly altered during aging.
Metabolomics technology enables us to fully understand the
dynamic changes of metabolites, qualitatively and quantitatively
(44). In 2013, Smiljanic et al. revealed aging-related cholesterol
metabolism alterations in the liver of aged rats, and found
that aging induced elevation of 2 cholesterol precursors:
lanosterol and lathosterol (45). In another study, Pagliassotti
et al. identified several metabolites that reduced in the
liver of aged mice: pyruvate, lactate, nicotinamide, UDP-N-
acetylglucosamine and UDP-N-acetylgalactosamine (46). Of
these, UDP-N-acetylglucosamine was associated with longevity

and protein quality control (47). Sato et al. quantitatively
measured NAD+ and metabolites participated in its biosynthetic
pathway (36). The authors revealed that nicotinamide and ADP
ribose were significantly altered during aging and identified
NAD+ metabolism as a core liver specific circadian metabolic
pathway of aging. The improvement of NAD+ availability
increased sirtuin 1 activity and rescued protein acetylation,
thereby reversed the aging process (36). In 2019, Ando et al.
found that ether-linked diacylglycerols accumulated in the liver
of aged mice, which may associate with cell arrest and apoptosis
(48). Wesley et al. reported the liver specific elevation of B-
alanine and uridine, and the decrease of NAD and formate in
aged rats (49).

Hepatic Cells of the Aging Liver
In the aged liver, number of hepatocytes decreases, and
remnant hepatocytes experience an autonomous decline in
the regenerative capacity (50). Moreover, the aging related
hepatic structural changes form a hypoxia condition, which
induces higher glucose production and elevation of phosphoenol
pyruvate carboxykinase, a gluconeogenesis-regulating enzyme.
This process is regulated by hepatocyte nuclear factor 4 α, and
targeting its expression can reverse the aging related effects
on gluconeogenesis (51). In addition, apoptotic, senescent and
polyploidy hepatocytes accumulate in the aged liver (52–54).
Intriguingly, targeted approaches that modulating the level
of apoptosis can block the aging effects (52). The senescent
hepatocytes are typically characterized by accumulation of
DNA damage, activation of tumor suppressor pathways (p53,
p16ink4a, and C/EBPα) (53, 55, 56). These senescent cells remain
metabolically active, but no longer able to proliferate. They
present with the senescence-associated secretory phenotype and
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affect their neighboring cells, e.g., induce macrophage migration,
immune cell recruitment, and modulation of ECM (52, 57).
For polyploidy hepatocytes, its role in aging liver still remains
controversial. Polyploidy is also considered as a feature of the
aging process, and several hypotheses have been proposed to
explain their function and significance (58, 59). Some studies
indicated that hepatocyte polyploidy is a terminally differentiated
state (58). It is suggested that the polyploidy state restricted
proliferation of hepatocytes (60). Reversal of hepatocyte ploidy
can reverse the aging-related function disorder (61). Oppositely,
other studies reported that hepatocyte polyploidy may enhance
liver function, retains the ability to divide and proliferate, and
even contributes to hepatocyte turnover during aging (58, 62,
63). Verma et al. found that hepatocytes and cholangiocytes in
liver donors over a wide range showed no telomere shortening
(64). However, Aini et al. observed telomere shortening in
hepatocytes in human liver allografts (54). Thus, it is still debated
about the contribution of telomere shortening to senescent
hepatocytes (20). Intriguingly, Lin et al. identified a novel subset
of hepatocytes with high levels of telomerase that repopulated
the liver (65). This emerging view may enable us to re-consider
the role of telomerase in senescent hepatocytes. Moreover,
continuous cell proliferation could reactive telomerase, reverse
senescence and polyploid in hepatocytes during aging (53).
In addition, Bacalini et al. reported DNA methylation of 6
age-related differentially methylated positions (ELOVL2 island,
MACROD1 island, CYP1B1 island, CCNJ island, ZIC1 island,
ZIC1 shore) in primary human hepatocytes (38). IFN-α and
its related signaling elevate in aging hepatocytes (66). During
aging, hepatocytes highly express activin A and p15INK4b, which
are thought related to decreased proliferation and increased
apoptosis (67). Ultrastructural changes of aged hepatocytes
were characterized by cytoplasmic vacuolization, hypertrophy,
and changes in density of the nuclei and mitochondria
(68). Moreover, somatic mutations were accumulated with
age in human hepatocytes (69). However, post-translational
modification of histone (H3K9me3/H3K14ac modification) was
decreased, which subsequently lead to gene alteration (70). Liver
sinusoidal endothelial cells (LESCs) are critically involved in
managing the liver microenvironment. However, LSECs in the
aged liver are gradually thickened and undergo typical age-
related changes (defenestration or pseudocapillarization) (71–
73). Pseudocapillarization of the sinusoid lining delays liver
regeneration in the aged liver via disturbing endothelium-
dependent processes, decreasing hepatosinusoidal blood flow,
impairing platelet adhesion to sinusoid, and preventing growth
factors to reach target cells (74). The old LESCs present
with reduced endocytic capacity and low responsive to 2,5-
Dimethoxy-4-Iodoamphetamine (71, 75). In addition, aging-
related changes in LESCs lead to hepatic insulin resistance
and influence glucose homeostasis, consistent with the reduced
transendothelial transfer activity of insulin (76). Moreover, aging
LESCs leads to up-regulation of cell adhesion molecules, thus
induces an accumulation of CD68 macrophages and neutrophils.
Together with the up-regulation of p16 and fibrinogen 2,
these alterations induced by aging LESCs finally lead to pro-
inflammatory phenotype (77). However, these changes may be

reversed by targeting aging-related defenestration (78). HSCs
reside around LESCs and their activation is partially regulated
by LESCs (79). Thus, the above mentioned aging-related LESCs
changes also have an impact on HSCs. In general, HSCs are
activated and transdifferentiate into myofibroblasts (α-SMA+)
upon injury. Aging is related to the hyperplasia of HSCs. During
aging, it exists an increase in the number and diameter of lipid
droplets in HSCs (80). Telomere attrition, a hallmark of the
aging liver, also occurs in HSCs (64). In addition, integrin α5/β1
decreases in HSCs and thereby reduces the levels of hepatocyte
growth factor in the aged liver, thus impairs liver regeneration
(81). Moreover, production of ECM components by HSCs, such
as laminin, is impaired in aged mice (81, 82). Thus, aging-related
HSCs alterations have a vital influence on ECM remodeling.
As we know, there is a close association between HSCs and
liver progenitor cells (LPCs) (83), and HSCs may act as positive
regulators of LPCs. LPCs, or called oval cells, are critically
involved in maintaining the liver homeostasis. However, they
are rarely observed in normal conditions. LPCs activation exists
in various liver diseases, such as viral hepatitis, liver cirrhosis,
and liver cancer (84, 85). Upon injury, LPCs activate, proliferate,
and accumulate around the portal vein or central vein, and this
process is termed ductual reaction (86). However, their activation
decreases with age. As reported, Thy-1 (+) LPCs declined in aged
donor, which might responsible for impaired liver regeneration
(87). Qian et al. revealed that oval cell in aged mice showed low
response to 3,5-diethoxycarbonyl-1,4-dihydrocollidine induced
liver injury, due to the down-regulation of laminin (82).

Besides non-immune cells mentioned above, immune cells
are also play important roles in maintaining liver function.
Aged liver exhibits increased immune cell infiltration, such
as macrophages, T-cells, B-cells, NK cells, and neutrophils,
which is accompanied by a high inflammatory status (88).
The increased immune cell infiltration and high inflammatory
status in the aged liver were thought to be a detrimental
factor of liver regeneration. Till now, our understanding of the
infiltrated immune cells in aged liver is still superficial. During
aging, neutrophils are recruited by p16Ink4a-expressing cells
and induce oxidative damage telomeres in non-immune cells
(89). Intriguingly, modulation of the immune cell infiltration in
aged liver, such as depletion of macrophages and NK cells could
significantly leads to improved regeneration (66). Nevertheless,
aging leads to decline ofmacrophage function. Briefly, aging leads
to impaired autophagy and phagocytosis, dysregulated secretion
of pro-inflammatory mediators, alterations in cell morphology
and distribution, and changes in epigenetic signature (90).

Extracellular Matrix of the Aging Liver
The ECMprovides structural support and reside environment for
liver cells. In recent years, the ECM gains a lot of attention and
some of its novel functions in regenerative medicine have been
uncovered (91, 92). The role of the ECM in aging and longevity
has been reviewed (93, 94). Major aging-induced modifications
of the ECM are glycation, fragmentation and carbamylation (94).
Karsdal et al. outlined the aging-related changes in the turnover
of the ECM by detecting 15 serum biomarkers, which provided
a new perspective for the therapy of chronic liver disease (95,
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96). Mahmoud et al. observed increased ECM deposit in the
Disse space in the livers of old rats by transmission electron
microscopy (68). Delire et al. showed that the liver of old mice
with impaired ECM remodeling capacity was more susceptible
to carbon tetrachloride induced fibrosis, owing to a reduction
of the chemokine (C-X-C motif) ligand 9 and matrix metallo-
proteinases-13 axis (19).

Till now, the researches referred to the aging-related
alterations of liver ECM are limited. The ECM is important
for not only structural support, and also for maintaining
liver function during aging. Aging induces impairment of
ECM remodeling, making the liver more susceptible to injury.
However, to fully understand the role of the ECM in the aging
liver, we still need more experimental work.

CONCLUDING REMARKS AND FUTURE
DIRECTIONS

Liver aging is a complicated process with a series of organ-
specific alterations, from genes, proteins to metabolites. These
alterations form a unique microenvironment in the aged liver
and have an impact on liver functions. Elimination of the
aging effects and reversal of the aging microenvironment are

beneficial to the reparative capacity of the aged liver. In the
future, the development of drugs or anti-aging vaccines to treat
aging-related liver disorders will be urgently needed. Modulation
of autophagy is considered as a promising “rejuvenation”
strategy for the aging liver. However, how to effectively and
appropriately modulate autophagy without harm is still not
available. Meanwhile, novel therapeutic targets for reversing the
hepatic aging microenvironment are hotly pursued. Hopefully,
we will develop effective anti-aging strategies based on novel
therapeutic targets in the future.
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