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Abstract
The anterior pituitary is the most important endocrine organ modulating animal postnatal

growth, mainly by controlling growth hormone (GH) gene transcription, synthesis, and

secretion. As an ideal model for animal postnatal growth studies, the Bama minipig is char-

acterized as having a lower growth performance and fewer individual differences compared

with larger pig breeds. In this study, anterior pituitaries from Bama minipig and Landrace pig

were used for miRNA and mRNA expression profile analysis using miRNA microarrays and

mRNA-seq. Consequently, a total of 222 miRNAs and 12,909 transcripts were detected,

and both miRNAs and mRNAs in the two breeds showed high correlation (r > 0.97). Addi-

tionally, 41 differentially expressed miRNAs and 2,254 transcripts were identified. Pathways

analysis indicated that 32 pathways significantly differed in the two breeds. Importantly, two

GH-regulation-signalling pathways, cAMP and inositol 1, 4, 5-triphosphate (IP3), and multi-

ple GH-secretion-related transcripts were significantly down-regulated in Bama minipigs.

Moreover, TargetScan and RNAHybrid algorithms were used for predicting differentially

expressed miRNAs (DE miRNAs) and differentially expressed mRNAs (DE mRNAs) inter-

action. By examining their fold-changes, interestingly, most DE miRNA–DEmRNA target

pairs (63.68–71.33%) presented negatively correlated expression pattern. A possible net-

work among miRNAs, mRNAs, and GH-regulation pathways was also proposed. Among

them, two miRNA-mRNA interactions (Y-47 targets FSHB; ssc-miR-133a-3p targets

GNAI3) were validated by dual-luciferase assay. These data will be helpful in understanding

the possible molecular mechanisms involved in animal postnatal growth.
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Introduction
The pituitary (to be more exact, the anterior pituitary) is the most important endocrine organ
regulating animal postnatal growth due to its central role in the growth axis[1]. It is well
known that the pituitary exerts growth-promoting actions that are dependent on growth hor-
mone (GH): pituitary somatotropes integrate complicated extracellular signals from the hypo-
thalamus (such as GHRH, SS)[2], the feedback of target organs (such as the liver)[3], as well as
paracrine regulation (such as luteinizing hormone, LH)[4], and then lead to intracellular sig-
nalling pathways modulating GH gene transcription, hormone synthesis, and secretion. Obvi-
ously, GH synthesis and secretion regulation within the pituitary are determined by thousands
of molecules from multiple levels, including mRNAs at the transcriptional level and miRNAs
at the post-transcriptional level.

Transcriptional regulation of GH within the pituitary has been extensively studied over
decades. Previous studies revealed a variety of genes and pathways involved in GH gene regula-
tion, such as GH1 genes, transcription factor POU1F1 (Pit-1), SP-1, and CREB[5, 6], as well as
signalling pathways, cAMP signalling (adenylate cyclase/cAMP/protein kinase A), and IP3 sig-
nalling (phospholipase C-IP3-protein kinase C signal pathways)[7, 8]. MicroRNAs (miRNAs)
are small (~21-nt) but powerful non-coding RNAs that post-transcriptionally regulate gene
expression, mainly by binding to the 30-untranslated region (30-UTR) of its target mRNAs,
reducing mRNA transcription or translation[9, 10]. Evidence of the importance of pituitary
miRNAs involved in GH regulation is increasing; for example, miR-26b regulated GH by tar-
geting LEF-1, a repressor of POU1F1[11]. A previous study demonstrated that miR-34b, miR-
326, miR-432, miR-548c-3p, miR-570, and miR-603 may participate in human GH adenomas
[12]. Collectively, pituitary GH is regulated by thousands of molecules at both the transcrip-
tional and the post-transcriptional levels.

The pig (Sus scrofa) is an important meat source in human food[13] and it is also a good
biomedical model due to the similarities in anatomy and physiology with humans, especially
the miniature pig[14]. The Bama minipig is a Chinese local miniature pig breed that has been
frequently used in biomedical studies[15]. Compared with European pig breeds (such as Land-
race pigs), Bama minipigs are characterized as having fewer individual differences (highly
inbred) and lower growth performance (average adult weight: 50–60 kg)[16]. Therefore Bama
minipigs are ideal models for studying animal growth. A previous study has investigated the
pituitary gene-expression profiles of two miniature pig breeds (Bama minipigs and Tibetan
minipigs) at different postnatal development stages[17], but little is known of the anterior pitu-
itary mRNA as well as miRNA expression differences between minipigs and large pigs at the
whole-genome level. In this present study, we have focused on the anterior pituitary, and ana-
lysed miRNA and mRNA expression profiles between Bama minipigs and large pigs (Land-
race) using miRNA microarray and mRNA-Seq in order to identify possible molecules
(miRNAs and mRNAs) and pathways that are involved in animal postnatal growth regulation.
The potential networks among miRNAs, mRNAs, and signalling pathways were also
investigated.

Materials and Methods

Ethics Statement
The animal slaughter experiments were conducted in accordance with the guidelines of Guang-
dong Province on the Review of Welfare and Ethics of Laboratory Animals approved by the
Guangdong Province Administration Office of Laboratory Animals (GPAOLA). All animal
procedures were conducted under the protocol (SCAU-AEC-2010-0416) approved by the
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Institutional Animal Care and Use Committee (IACUC) of South China Agricultural
University.

Animal
Three 20-day-old healthy female Landrace (YC) and Bama minipig (YB) piglets were used.
The average body weight of Landrace cohort was 6.43±0.55 kg; and the average body weight of
Bama minipig cohort was 3.24 ± 0.88 kg, so a significant difference in the body weight was
observed between YC and YB.

RNA extraction and quality assessment
Briefly, under sterile conditions, pituitary glands were removed and the anterior lobe was
immediately dissected from each pituitary gland. Anterior pituitary glands were washed in PBS
solution for about 5–10 s, in order to reduce blood contamination. Three anterior pituitary
glands were immediately frozen in liquid nitrogen until RNA extraction. Total RNA was
extracted from the anterior pituitary tissue using TRIzol reagent (Invitrogen, Carlsbad, CA,
USA) following the manufacturer’s instructions. RNA quality and quantity of all samples were
evaluated by using a ND-2000 nanodrop spectrophotometer (NanoDrop Technology,Wil-
mington,DE). Total RNAs were assessed further for RNA integrity on the Agilent Bioanalyzer
(Santa Clara, CA), and all samples had an RNA Integrity Number (RIN) of 7 or better. Quali-
fied RNAs were used for further miRNA microarray analysis and mRNA-seq analysis.

miRNA probe design and microarray assay
Custom-designed μParaflo microfluidic chips (LC Sciences, Houston, TX) were used for
miRNA expression analysis. In this study, we used all porcine miRNAs deposited in miRBase
18.0 and designed sequences as miRNA microarray probes. In detail, miRBase 18.0 collected a
total of 257 porcine miRNAs (255 miRNAs according to its sequence). We added 100 probes
(probes labelled with prefix ‘Y-’) according to our previous reports[18, 19] and miRNA
sequence homology with other species (human, mouse, rat). In addition, precursor sequences
of these miRNAs were also analysed (see S1 Table) and the mature miRNA sequences con-
firmed through sequencing (unpublished data). All probes for the microarray were made by in
situ synthesis using PGR (photogenerated reagent) chemistry.

Microarray assays were obtained using a service provider (LC Sciences, Houston, TX). In
brief, 2–5 μg total RNA samples were used for small RNAs (<300 nt) enrichment by a YM-100
Microcon centrifugal filter (Millipore, Billerica, MA); the collected small RNAs were then 30-
extended with a poly (A) tail using poly (A) polymerase and an oligonucleotide tag was ligated
to the poly (A) tail for later fluorescent dye staining. Hybridization was performed overnight
on a μParaflo microfluidic chip using a micro-circulation pump (Atactic Technologies, Hous-
ton, TX). After hybridization, detection was performed by fluorescence labelling using tag-
specific Cy5 dyes. Hybridization images were collected using a laser scanner (GenePix 4000B,
Molecular Device, Silicon Valley, CA) and digitized using Array-Pro image analysis software
(Media Cybernetics, Bethesda, MD). Data were analysed by first subtracting the background
and then normalizing the signals using a LOWESS filter (locally weighted regression). miRNAs
had to meet at least three conditions to be considered detectable: a signal intensity higher than
3× (background standard deviation), a spot CV< 0.5 calculated by (standard deviation)/(sig-
nal intensity), and a p-value� 0.01. We used Log2|fold-change|� 1, p� 0.01(statistical signif-
icance was determined by Student's t test.) as the cut-off for filtering the differentially
expressed miRNAs between the two groups. The miRNA microarrays data have been submit-
ted to the GEO database under accession number GSE68489 (GSM1673695, GSM1673696).
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mRNA analysis by mRNA-seq
The anterior pituitary mRNAs (transcripts) of Bama minipigs and Landrace pigs were analysed
using the mRNA-seq technique. In brief, qualified total RNAs were prepared for the cDNA
library construction; the library products were prepared for sequencing analysis via an Illumina
HiSeq2000, in order to obtain raw sequence data. To obtain clean reads, adaptor contamina-
tion, those in which unknown bases numbered more than 10, and low-quality reads (where the
percentage of low-quality bases of quality value� 5 was more than 50% in a read) were
removed. Clean reads were further mapped to reference genome (ftp://ftp.ensembl.org/pub/
release-65/fasta/sus_scrofa/dna/Sus_scrofa.Sscrofa9.65.dna.toplevel.fa.gz) and gene databases
(ftp://ftp.ensembl.org/pub/release-65/fasta/sus_scrofa/cdna/Sus_scrofa.Sscrofa9.65.cdna.all.fa.
gz) using SOAPaligner/soap2; mismatches of no more than two bases were allowed in the
alignment. After assessment of sequencing (including sequence read quality, statistics of align-
ment analysis, sequencing saturation analysis, distribution of reads on reference genes/
genome), the gene-expression level was calculated using the RPKMmethod (Reads Per kb per
Million reads)[20]. The significance of differentially expressed genes among samples was deter-
mined according to Audic and Claverie[21]. We used false discovery rate (FDR)� 0.001 and
the absolute value of log2Ratio(YB/YC)� 1 as the threshold for judging the significance of the
gene-expression difference; differentially expressed genes were further employed to KEGG
pathway analysis. All mRNA-seq assays and analyses were conducted by the Beijing Genomics
Institute (BGI, Shenzhen, China), the mRNA-Seq data have been submitted to the GEO data-
base under accession number GSE68490 (GSM1673697, GSM1673698).

qRT–PCR validation of miRNAs and mRNAs
To validate the microarray data and mRNA-seq data, 2 μg total RNAs of each sample of Bama
minipigs and Landrace pigs were transcribed to cDNA using the One Step PrimeScript miRNA
cDNA Synthesis Kit (Takara, Dalian, China) according to methods as described by our previ-
ous study[22]. To quantify miRNA and mRNA expressions of each group, cDNA was diluted
5-fold with ddH2O; a final 20-μl volume qRT–PCR reaction was performed on a STRATA-
GENEMx3005P sequence detection system. The PCR Reaction mix consisted of 2 μl cDNA,
10 μl 2× SYBR Green PCRMaster Mix (Toyobo, Osaka, Japan), and 10 uM of each primer.
The thermal profile of real-time PCR was as follows: 1 min at 95°C, 40 cycles of 15 s at 94°C
and 15 s at the corresponding annealing temperature (Tm), and 72°C for 40 s, followed by a
quick denaturation at 95°C for 5 min, Tm, plus a slow ramp from Tm to 95°C to generate a
melt curve to control the specificity of the amplified product. NTC (no template control) was
set as the negative control for each miRNA and mRNA; all reactions were performed in tripli-
cate. For all the differentially expressed miRNAs, the U6 small nuclear RNA was used as an
internal control. The 2-ΔCt method was employed to quantify and normalize the expression
data. For the mRNA validation, gene expression was examined using the same template, vol-
ume and thermal reaction conditions, using β-actin gene as the control. All primers were
designed by Primer 5.0; information about primers is listed in S2 Table.

Differentially expressed miRNA–mRNA interaction prediction
RNAhybrid algorithm (https://bibiserv2.cebitec.uni-bielefeld.de/rnahybrid) and TargetScan
algorithm (www.targetscan.org/) were employed to analyse the potential miRNA–mRNA tar-
get relationships. In brief, we obtained all differentially expressed porcine transcripts 30-UTR
from the Ensemble database (www.ensembl.org/). In RNAhybrid algorithm analysis, a cut-off
‘perfect match of 2–8 seed sequence and –25 kcal/mol thermal energy, G: U matches allowed’
was employed. For the TargetScan prediction, the default parameters were used. Due to the
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negative regulatory role of miRNAs, the proportions of negatively correlated miRNA–mRNA
pairs (up-regulated miRNA–down-regulated mRNA or down-regulated miRNA–up-regulated
mRNA pairs were considered) in RNAhybrid- and/or TargetScan-predicted miRNA–mRNA
target pairs were calculated. We plotted the potential network between miRNAs and mRNAs
using Cytoscape3.2.0(http://www.cytoscape.org/)[23].

Dual-luciferase miRNA target expression vector
Based on the predicted miRNA-mRNAs results, FSHB 30-UTR bearing ssc-miR-7139-3p seed
binding site and GNAI3 30-UTR bearing ssc-miR-133a-3p seed binding site (S1 Text) were gen-
erated by two complementary chemically synthesized oligos (Sangon,Shanghai,China), respec-
tively. The complementary oligonucleotides were resuspended at a 1:1 ratio (1 μg/μL each) in
an annealing buffer (10 mM Tris, pH 7.5–8.0, 50 mM NaCl, and 1 mM EDTA) and heated to
95°C for 10 min to remove secondary structures. The temperature was then gradually reduced
until room temperature was reached. The annealed products were then cloned into the pmir-
GLO vector (Promega) downstream from the firefly luciferase coding region (Xho I and Xba I
sites).

Luciferase reporter assay
CHO cells were seeded in 48-well cell culture plates (4 × 104 cells per well), and cultured in
RPMI 1640 (Life Technologies, Grand Island, NY) supplemented with 10% FBS. The next day,
the cells were firstly transfected with recombinant pmirGLO-30-UTR vector (200ng/well) using
Lipofectamine 2000 (Life Technologies, Grand Island, NY) as described by the manufacturer
for adherent cell lines. Six hours after transfection, the second transfection were performed
with their corresponding miRNAs mimics (ssc-miR-7139-3p for FSHB, ssc-miR-133a-3p for
GNAI3) or a negative control (10pmol/well, GenePharma, Shanghai, China). Cells were har-
vested 48h after the second transfection, and luciferase activity was determined using a dual
luciferase reporter assay system, according to the manufacturer’s recommendations (Promega,
Madison, WI). Normalized firefly luciferase activity (firefly luciferase activity/Renilla luciferase
activity) for each construct was compared with that of the pmirGLO vector.

Results

miRNA expression in the anterior pituitary of Bama minipigs and
Landrace pigs
Initially, we examined the miRNA expression of Bama minipigs (YB) and Landrace pigs (YC)
using custom-designed miRNA microarrays; 355 miRNAs were designed and examined by
miRNA array (nine replications per miRNA), and 222 miRNAs were detectable (Fig 1A),
which include 172 annotated miRNAs and 50 miRNAs designed by us (probes labelled with
the prefix ‘Y-’) (S3 Table). Correlation analysis indicated that global miRNA expressions in the
two breeds is quite similar (Pearson’s correlation coefficient, r = 0.979 in Bama minipigs and
Landrace pigs) (Fig 1B). Of these, 40 miRNAs are minimally expressed (0< average
signals� 100; p� 0.01), 77 miRNAs are modestly expressed 100< average signals� 1,000;
p� 0.01), 85 miRNAs were highly expressed (1,000< average signals� 10,000), and, in par-
ticular, 20 miRNAs were extremely highly expressed in the anterior pituitary (average
signals� 10,000; p� 0.01), including ssc-miR-7, Y-90, ssc-miR-26a, ssc-miR-125b, Y-1, ssc-
miR-125a, Y-77, ssc-let-7g, ssc-miR-29a, ssc-let-7i, ssc-let-7a, ssc-let-7f, ssc-miR-148a, ssc-
miR-21, ssc-miR-335, ssc-miR-30b-5p, ssc-miR-191, ssc-miR-29c, ssc-miR-23b, and ssc-miR-
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Fig 1. miRNA expression and distribution. (A) miRNA numbers of two pig breeds; YB and YC indicate Bamaminipigs and Landrace pigs, respectively. (B)
Scatter plots of miRNA expression; r represents correlation between Bamaminipigs and Landrace pigs and the solid dots represent significantly changed
miRNAs. (C) The average expression levels of miRNAs and their corresponding proportion in the anterior pituitary. (D) The miRNA numbers of the two pig
breeds at different expression levels. (E) Cluster analysis of differentially expressed miRNAs between YB and YC. YB and YC indicate Bamaminipigs and
Landrace pigs, respectively.

doi:10.1371/journal.pone.0131987.g001
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23a (Fig 1C). There were no obvious differences in the miRNA numbers between the two
breeds in terms of the signal value range (Fig 1D).

Differentially expressed miRNAs between Bama minipigs and Landrace
pigs
Filtering by |fold-change|� 2 and p� 0.01, a total of 41 differentially expressed miRNAs were
identified between Bama minipigs and Landrace pigs (YB versus YC), comprising 32 up-
regulated miRNAs and 9 down-regulated miRNAs (Table 1 and cluster analysis was shown in
Fig 1E). Interestingly, some miRNA families were differentially expressed in Bama minipigs
and Landrace pigs. For example, the miR-133 family (ssc-miR-133b, ssc-miR-133a-3p) as well
as the let-7 family (ssc-miR-98, ssc-let-7e) was up-regulated in Bama minipigs; in the miR-1/
206 family, ssc-miR-1 was up-regulated whilst ssc-miR-206 was down-regulated in Bama mini-
pigs. To validate these differentially expressed miRNAs obtained through the miRNA arrays,
eight miRNAs (miR-199b, miR-187, miR-143-3p, Y-82, miR-376a, Y-31, miR-4334-5p, and
miR-101) were selected for quantitative reverse transcription–PCR (qRT–PCR) analysis. As
shown in Fig 2A, the miRNA expression patterns in the two breeds correspond to the results
revealed by miRNA microarray.

Table 1. Differentially expressedmiRNAs between Bamaminipigs (YB) and Landrace (YC).

Reporter Name Log2(YB/YC) p-value Reporter Name Log2(YB/YC) p-value

Up-regulated miRNAs

ssc-miR-1 4.08 3.30E-03 ssc-miR-338 1.41 1.78E-06

ssc-miR-325 3.21 4.53E-03 ssc-miR-101 1.36 5.77E-15

Y-33 2.94 5.72E-03 ssc-miR-19b 1.34 0.00E+00

ssc-miR-133b 2.44 1.48E-11 Y-47 1.34 5.03E-04

Y-82 2.32 1.50E-13 Y-69 1.30 1.07E-05

ssc-miR-133a-3p 2.23 1.52E-08 Y-24 1.27 2.89E-15

Y-12 2.10 5.97E-12 ssc-miR-135 1.26 2.45E-06

ssc-miR-193a-3p 2.04 4.15E-07 ssc-miR-628 1.26 4.46E-06

ssc-miR-95 1.87 1.31E-08 Y-31 1.25 4.62E-11

ssc-miR-98 1.83 1.10E-10 Y-44 1.24 8.37E-11

Y-22 1.72 1.27E-03 Y-56 1.21 4.92E-10

ssc-miR-4331 1.70 8.26E-06 ssc-miR-149 1.15 3.18E-11

ssc-miR-4334-5p 1.64 8.86E-10 ssc-miR-365-3p 1.15 2.34E-04

Y-23 1.59 4.24E-14 ssc-let-7e 1.09 6.40E-09

ssc-miR-376a 1.50 1.73E-09 ssc-miR-28-5p 1.02 1.72E-03

Y-30 1.48 6.77E-09 Y-67 1.01 8.65E-11

Down-regulated miRNAs

ssc-miR-224 -3.30 1.82E-11 ssc-miR-183 -1.25 4.08E-11

ssc-miR-202 -2.18 3.40E-06 ssc-miR-206 -1.25 4.16E-10

ssc-miR-296 -1.77 1.80E-08 ssc-miR-199a* -1.04 6.22E-15

ssc-miR-187 -1.30 4.38E-04 ssc-miR-143-3p -1.01 2.18E-12

ssc-miR-199b -1.28 2.44E-15

YB, YC represent Bama minipigs and Landrace pigs, respectively. miRNAs underlined represents this differential miRNAs is p � 0.01 and the higher

signal�500.
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Gene-expression analysis
In this study, the anterior pituitary mRNA expressions was analysed using mRNA-seq, taking
into account only those genes with average RPKM greater than zero; 12,909 porcine transcripts
were detected in the two pig breeds (Fig 3A). Correlation analysis of the overall gene-
expression levels among the two breeds indicated that the anterior pituitary transcriptomes of
the two breeds was quite similar (Pearson’s correlation coefficient, r = 0.984 in Bama minipigs
and Landrace pigs) (Fig 3B); 10,610 transcripts were commonly expressed among the breeds,
and 482 and 1,817 were breed-specific in Bama minipigs and Landrace pigs respectively (S4
Table). Interestingly, most were expressed at a low number of reads, suggesting that these

Fig 2. qRT–PCR validations of miRNAs andmRNAs (transcripts). (A) Eight differentially expressed
miRNAs. (B) Five differentially expressed and three important transcripts in the pituitary. Data in columns are
means ± SD. The expression abundance of Landrace (YC) was normalized to 1. Statistical significance was
determined by Student's t test, p<0.05 was considered significant.; the panels with different letters were
considered statistically significant (p < 0.05).

doi:10.1371/journal.pone.0131987.g002
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transcripts are generally expressed at a low level in the anterior pituitary and are hard to detect.
Such transcripts were often filtered out and excluded from further differentially expressed tran-
script analysis.

Gene-expression distribution (average RPKM) revealed that 58.66% of transcripts were
expressed at less than 10 RPKM, 36.07% at 10–100 RPKM, around 4.76% were from 100 to
1,000 RPKM, and only 0.50% transcripts were more than 1,000 RPKM (Fig 3C). Interestingly,
a large difference was also observed in that 5,156 and 3,705 transcripts expressed at 10–100
RPKM in Landrace and Bama minipigs, respectively (Fig 3D).

Of these transcripts, GH1mRNA was the most abundant transcript of the pig anterior pitui-
tary, which accounted for 30.09% (average RPKM/total RPKM) of all porcine transcript
expression in this organ (31.17% and 29.05% in Bama minipigs and Landrace pigs, respec-
tively). Furthermore, pituitary-specific hormone transcripts (i.e. PRL, CGA, LHB, FSHB, and
POMC) as well as other endocrine-related transcripts (i.e. CHGB, CLU, CALML4, CALR,
GABARAP, NNAT, and SCG5) are highly expressed in anterior pituitary, which are listed on
the top100 transcripts, which is quite similar with a previous study[17]. KEGG analysis showed
that the top100 transcripts enriched in the ribosome, Parkinson's disease, and oxidative phos-
phorylation pathway, suggesting that these transcripts may be critical for maintaining the basic
function of the pituitary.

Fig 3. mRNA (transcripts) expression and distribution. (A) mRNA numbers of the two pig breeds. (B) Scatter plots of mRNA expression; r represents the
correlation between Bamaminipigs and Landrace pigs and the red dot GH1 was the most abundant transcript in both pig breeds. (C) The average expression
level and proportion of mRNAs in the anterior pituitary. (D) The mRNA numbers of the two pig breeds at different expression levels. YB and YC indicate Bama
minipigs and Landrace pigs, respectively.

doi:10.1371/journal.pone.0131987.g003
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Differential gene-expression analysis
By filtering data by |fold-change|� 2 and FDR corrected p-value� 0.001, we identified 2,254
transcripts that were differentially expressed in YB versus YC, which include 446 up-regulated
and 1,808 down-regulated transcripts (S5 Table) and the expression of GH, PRL,TSHB,FSHB,
NR5A1,JUN,GNRHR,NOTCH2 was selected for validation by qRT-PCR(see Fig 2B).

To further understand the possible biological pathways affected by differentially expressed
genes, we analysed the potential KEGG pathways enriched in differentially expressed transcript
between two breeds; 32 KEGG pathways (p< 0.05) were identified (Table 2 and S6 Table) as
being involved in metabolism, disease, cell communication, and endocrine regulation, all of
which may contribute to the difference between Bama minipigs and Landrace pigs. It is worth-
while to note that eight pathways were closely related to pituitary endocrine functions, includ-
ing the neurotrophin signalling pathway, the phosphatidylinositol signalling system, the GnRH
signalling pathway, inositol phosphate metabolism, the VEGF signalling pathway, the mTOR

Table 2. KEGG pathways analysis of differentially expressedmRNAs.

No. Pathway observed P-value

1 ssc04141:Protein processing in endoplasmic reticulum 69 6.83E-09

2 ssc04510:Focal adhesion 90 2.17E-06

3 ssc04530:Tight junction 78 3.76E-05

4 ssc04722:Neurotrophin signaling pathway 50 3.21E-04

5 ssc04512:ECM-receptor interaction 44 3.83E-04

6 ssc04670:Leukocyte transendothelial migration 51 5.67E-04

7 ssc05222:Small cell lung cancer 32 3.78E-03

8 ssc04070:Phosphatidylinositol signaling system 35 4.90E-03

9 ssc04912:GnRH signaling pathway 34 6.50E-03

10 ssc04962:Vasopressin-regulated water reabsorption 16 7.54E-03

11 ssc04062:Chemokine signaling pathway 49 8.87E-03

12 ssc04720:Long-term potentiation 28 9.68E-03

13 ssc05200:Pathways in cancer 88 9.89E-03

14 ssc04144:Endocytosis 71 9.94E-03

15 ssc04810:Regulation of actin cytoskeleton 78 1.02E-02

16 ssc05130:Pathogenic Escherichia coli infection 36 1.62E-02

17 ssc00562:Inositol phosphate metabolism 22 2.01E-02

18 ssc05412:Arrhythmogenic right ventricular cardiomyopathy (ARVC) 29 2.06E-02

19 ssc05110:Vibrio cholerae infection 24 2.07E-02

20 ssc04520:Adherens junction 33 2.20E-02

21 ssc04370:VEGF signaling pathway 27 2.58E-02

22 ssc00780:Biotin metabolism 2 2.70E-02

23 ssc04150:mTOR signaling pathway 20 2.87E-02

24 ssc03060:Protein export 8 3.02E-02

25 ssc00512:Mucin type O-Glycan biosynthesis 7 3.12E-02

26 ssc00510:N-Glycan biosynthesis 15 3.36E-02

27 ssc05131:Shigellosis 29 3.57E-02

28 ssc05211:Renal cell carcinoma 20 3.58E-02

29 ssc00030:Pentose phosphate pathway 9 4.26E-02

30 ssc04360:Axon guidance 44 4.33E-02

31 ssc00310:Lysine degradation 20 4.68E-02

32 ssc05100:Bacterial invasion of epithelial cells 30 4.88E-02

doi:10.1371/journal.pone.0131987.t002

Comparative Pituitary miRNAs and mRNAs Expression Profiles

PLOS ONE | DOI:10.1371/journal.pone.0131987 July 2, 2015 10 / 19



signalling pathway, axon guidance, and long-term potentiation. In particular, the phosphatidy-
linositol signalling system and inositol phosphate metabolism are two pathways responsible for
intracellular inositol 1,4,5-triphosphate (IP3) metabolism and signal transduction that directly
participated in the anterior pituitary GH secretion[7]. Interestingly, the majority of transcripts
(29/36) in these two pathways were significantly down-regulated in Bama minipigs, which
might attenuate the pituitary GH-secretion-signalling response to extracellular stimulus (such
as GHRH, SS).

Analysis of GH-regulation-related genes
Due to the importance of GH in animal growth regulation and according to the previous
reviews[6, 7], we focused on genes associated with GH-regulation-related genes. We summa-
rized the genes mediating in the regulation of GH (Table 3). Surprisingly, GH gene GH1 and
the pituitary-specific transcript factor POU1F1 (Pit-1) were not significantly changed, but we
observed that Pit-1, as well as transcription factor SP1, the gene assisting Pit-1 to bind to the
GH promoter[5], showed a down-regulated tendency (over 2-fold) in Bama minipigs (p-values
for Pit-1 and SP1 were 0.17 and 0.005, respectively; see S4 Table). Notably, apart from the IP3
signalling revealed by the KEGG pathway, we also observed that transcripts in cAMP signalling
differed between the two breeds, including G-protein (GNAQ, GNAI3, GNAZ, GNAI1, GNAS),
adenylate cyclase (ADCY6, ADCY8), and CREB family members (CREB3L1, CREB3L2, ATF2,
ATF6) that were all significantly down-regulated in Bama minipigs, which may attenuate the
pituitary GH-secretion-signalling response to extracellular stimulus. In addition, we also

Table 3. Differentially expressed genes associated with growth hormone regulation.

Gene name Description Log2
(YB/YC)

FDR

cAMP signaling (G-proteins, adenylate cyclase and CREB)

GNAQ guanine nucleotide-binding protein G(q) subunit alpha -2.01 5.60E-04

GNAI3 guanine nucleotide binding protein, alpha inhibiting 3 -1.57 1.50E-09

GNAZ guanine nucleotide-binding protein G(z) subunit alpha-like -1.98 2.89E-05

GNAI1 guanine nucleotide binding protein, alpha inhibiting 1 -1.83 1.32E-08

GNAS GNAS complex locus 1.76 1.42E-07

ADCY6 adenylate cyclase 6 -1.99 1.87E-12

ADCY8 adenylate cyclase 8 (brain) -1.22 5.39E-05

CREB3L1 cAMP responsive element binding protein 3-like 1 -2.82 2.68E-23

CREB3L2 cyclic AMP-responsive element-binding protein 3-like protein 2-like -1.19 3.34E-04

ATF2 cyclic AMP-dependent transcription factor ATF-2-like -2.43 1.06E-08

ATF6 cyclic AMP-dependent transcription factor ATF-6 alpha-like -1.91 6.16E-07

Secretion-related genes

GAL galanin/GMAP prepropeptide -4.17 9.16E-05

YKT6 YKT6 v-SNARE homolog (S. cerevisiae) -1.17 6.19E-07

SNAP23 synaptosomal-associated protein, 23kDa -2.18 5.51E-06

SNAP91 synaptosomal-associated protein, 91kDa homolog (mouse) -2.21 4.00E-08

Receptors

RARA retinoic acid receptor alpha isoform 2 -1.93 4.25E-04

THRA Thyroid hormone receptor alpha 1.42 6.26E-06

ACVR1 PREDICTED: activin receptor type-1 -1.88 2.75E-06

YB, YC represent Bama minipigs and Landrace pigs, respectively.

doi:10.1371/journal.pone.0131987.t003
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observed that GH-secretion-related genes GAL, YKT6, SNAP23, and SNAP91 as well as other
GH regulators RARA, THRA, and ACVR1 were significantly changed between Bama minipigs
and Landrace pigs.

miRNA–mRNA interaction analysis
miRNAs regulate gene expression at the post-transcriptional level. Most studies believe that
miRNAs have little influence on mRNA abundance. Interestingly, we observed that more up-
regulated miRNAs (32 up-regulated and 9 down-regulated) in YB versus YC comparison coin-
cided with more down-regulated transcripts (1,832 down-regulated and 498 up-regulated). We
speculated that miRNAs may have a substantial effect on mRNA abundance. To further under-
stand the possible relationship between miRNAs and mRNAs (transcripts), target predictions
were performed for all differentially expressed miRNAs (41 differentially expressed miRNAs)
and differentially expressed transcripts (1,341 of 2,254 transcript 3-UTRs were annotated in
the Ensemble database) by RNAhybrid algorithm. A total of 4,458 possible miRNA–mRNA
interaction pairs were predicted (Fig 4A). Interestingly, the majority of miRNA–mRNA inter-
actions (71.33%) present a negatively correlated expression pattern (Fig 4B), referring to up-
regulated miRNAs and down-regulated transcript targets, or down-regulated miRNAs and up-
regulated transcript targets. Furthermore, these results were also confirmed using the TargetS-
can algorithm (63.94% negatively correlated) (Fig 4C) and the overlapping miRNA–mRNA

Fig 4. miRNA–mRNA interaction analysis by RNAhybrid and TargetScan. (A) The number of predicted miRNA–mRNA pairs by two algorithms. (B)
miRNA–mRNA pair distribution in the RNAhybrid prediction. (C) miRNA–mRNA pair distribution in the TargetScan prediction. (D) The overlapping miRNA–
mRNA pair distributions. The number in each quadrant represents the number of predicted miRNA–mRNA pairs. Dots in the second and fourth quadrants are
negatively correlated miRNA–mRNA interaction pairs.

doi:10.1371/journal.pone.0131987.g004
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pairs between the RNAhybrid algorithm and the TargetScan algorithm (63.68%) (Fig 4D and
S7 Table). Our results suggest that miRNAs might have an important negative regulatory effect
on mRNA abundance.

To further explain the possible mechanism involved in growth differences between Bama
minipigs and Landrace pigs, miRNA–mRNA analysis narrowed down to key genes and pitui-
tary endocrine-related pathways identified by KEGG analysis. Using the RNAhybrid and Tar-
getScan algorithms, we summarized the potential target relationship between anterior pituitary
endocrine-related transcripts and differentially expressed miRNAs, which are more likely to
take part in animal growth regulation, especially the miRNA–mRNA pairs involved in GH syn-
thesis and secretion signalling (cAMP and IP3 signalling). For instance, Y-82 targets ADCY6
that is involved in cAMP signalling; miR-4334-5p, Y-67, and Y-12 potentially target ITPR3 of
IP3 signalling; ssc-miR-365-3p potentially target the GH-secretion-related molecule SNAP23.
These data suggest that miRNA, mRNA, and signalling may form a complicated network regu-
lating animal postnatal growth, as shown in Fig 5.

miRNA-mRNA interaction validated by luciferase assay
To validate the potential network involved in animal growth regulation, two miRNA-mRNA
interactions (Y-47 potentially target FSHB, Fig 6A; ssc-miR-133a-3p potentially target GNAI3,
Fig 6B) were analyzed by luciferase assay. Dual-luciferase reporter recombinant FSHB 30-UTR
plasmid and GNAI3 30-UTR plasmid were constructed, respectively. Recombinant FSHB 30-
UTR plasmid (FSHB construct) and recombinant GNAI3 30-UTR plasmid (GNAI3 construct)
were transfected with their corresponding miRNA mimics, respectively. Luciferase activity
measurement showed Y-47 significantly decreased FSHB construct activity by 31.48%

Fig 5. The potential network of differentially expressedmiRNAs andmRNAs that are involved in
animal growth regulation. Target pairs were predicted by RNAhybrid and TargetScan.

doi:10.1371/journal.pone.0131987.g005
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(p<0.001, Fig 6C), while ssc-miR-133a-3p significantly decreased GNAI3 construct activity by
28.41% (p<0.001, Fig 6D). These data suggest the miRNAs negatively regulate mRNAs and
they may form a complicated miRNA-mRNAs network controlling animal postnatal growth.

Discussion
The anterior pituitary is a small but powerful endocrine organ implicated in animal postnatal
growth via GH. The present study carried out a preliminary investigation of miRNA and
mRNA expression in two breeds of pigs (Bama minipigs and Landrace pigs) that have extreme
growth differences, so that potential regulators of animal postnatal growth from the anterior
pituitary perspective could be identified. In the present study, we simultaneously analyze
miRNA and mRNA expression profiles of normal anterior pituitaries by combined high-
throughput technologies (miRNA microarrays and mRNA-Seq).

mRNA and miRNA expression
In the present study, a total of 222 miRNAs and 12,909 transcripts were detected in Bama
minipig and Landrace pig anterior pituitary; Relative global expression of both miRNAs and
mRNAs were found to be are quite similar in the two breeds (r> 0.97 in both miRNA and
mRNA expressions). Although breed-specific differences in miRNAs/mRNAs occurred, most
of them occurred at a low transcript number in one breed while remained undetectable in the
other breed. It is therefore reasonable to propose that these miRNAs/mRNAs are expressed in
the pig anterior pituitaries, and are filtered out in differential expression comparison.

Fig 6. miRNA-mRNA interaction conformed by luciferase assay. (A) The second structure of Y-47(custom-designed miRNA) and its potential target
FSHB (for seed sequence only). (B) The second structure of ssc-miR-133a-3p and its potential target GNAI3 (for seed sequence only). (C)Y-47 mimics
significantly decreased FSHB construct luciferase activity (relative, firefly luciferase activity/Renilla luciferase activity). (D) ssc-miR-133a-3p mimics
significantly decreased GNAI3 construct luciferase activity (relative, firefly luciferase activity/Renilla luciferase activity). Statistical significance was
determined by ANOVA, followed by Tukey’s multiple comparisons test, the panels with different letter were considered statistically significant (p<0.05).

doi:10.1371/journal.pone.0131987.g006
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A total of 20 miRNAs were highly expressed with a signal value of over 10,000, most of
which have been reported and their functions have been well studied. For example, miR-7 is
the most abundant miRNA in both pig breeds, which was consistent with our previous study
[18] and studies in mouse[24]; it was reported that miR-375 mediated in POMC regulation
by targeting mitogen-activated protein kinase 8[25] and miR-200 mediated in female fertility,
regulating LH secretion by targeting ZEB1[26]. Interestingly, these highly expressed
miRNAs are relatively stable in Bama minipigs and Landrace pigs, suggesting that they may
be crucial in maintaining the normal function of the pituitary; aberrant expression of miR-
NAs will lead to anterior pituitary dysfunction such as pituitary adenoma. It was reported
that anterior pituitary-enriched miR-21 was down-regulated in ACTH-secreting pituitary
tumours[27].

Similarly to previous pituitary transcriptome studies[17], we also observed hormone tran-
scripts (GH1, CGA, PRL, CGA, LHB, FSHB, and POMC) being expressed at extremely high lev-
els (list in top100 transcripts). However, this high level expression is not surprising as these
hormone transcripts are essential for the tissue-specific function of the pituitary gland. Inter-
estingly, upon closer examination of their mRNA abundance, this corresponds perfectly with
their cell proportion in the anterior pituitary; for example, somatotrophs are the most common
cell type (up to 50%) in the anterior pituitary[28] and GH1 were the most abundant transcripts
in our study. In addition, we also detected endocrine-related CHGB, NNAT, CLU, and CALR,
and other non-specific genes (such as RPS family and RPL family) were listed in the top 100
genes. As described in our results, they are involved in the ribosome and oxidative phosphory-
lation pathways, which are necessary for basic pituitary function. However, we observed that
several important endocrine-related transcripts such as SCG5, GABARAP, and CALML4 were
also present in our top100 genes while they were expressed at a relatively low level in the previ-
ous study[17]. One possible reason is that the previous study collected the whole pituitary
(anterior pituitary and posterior pituitary) for analysis whereas we focused only on the anterior
pituitary region.

Potential interaction between miRNAs and mRNAs
It was firmly believed that miRNAs are small RNAs that regulate gene expression at the post-
transcriptional level. But there is still controversy regarding the effect of animal miRNAs on
their target mRNAs’ abundance. miRNAs were thought to repress protein output only by
translation repression, with little or no influence on mRNA levels. However, accumulating
evidence shows that miRNAs eventually down-regulate their target mRNAs’ abundance,
either by mRNA destabilization (such as deadenylation)[29–31]or by miRNA-mediated
Argonaute-catalysed mRNA cleavage[32]. In the present study, miRNA and mRNA expres-
sions were simultaneously analysed; target prediction showed a high proportion (about 70%)
of differentially expressed miRNA–mRNA pairs presented negatively correlated expression
patterns by two different prediction algorithms and most of them are represented by up-regu-
lated miRNAs and down-regulated mRNAs. Our results support the hypothesis that mamma-
lian miRNAs may predominantly act to decrease target mRNA levels[29]. For the remaining
miRNA–mRNA pairs (about 30%) that did not show negatively correlated expression pat-
terns, several explanations are possible: (a) miRNAs may regulate mRNAs by targeting
other regions (such as 50-UTR and CDS)[33, 34]; (b) some targets of miRNAs were repressed
without detectable changes in mRNA levels[35, 36]; (c) miRNAs’ actions resulted in the
increase in target mRNA abundance[37]; and (d) miRNAs alter mRNA abundance indirectly
[38].
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The potential mRNAs/miRNAs/pathways mediating in animal postnatal
growth
Dramatic differences in growth traits were observed in Bama minipigs and Landrace pigs.
Although animal postnatal growth is complicated, and is influenced by many factors across the
whole body, the anterior pituitary remains the most important organ for regulating animal
postnatal growth by synthesizing, storing, and secreting GH, which is controlled by thousands
of molecules at multiple levels (such as transcription, post-transcription, translation); in the
present study, we compared the anterior pituitary miRNA and mRNA expressions at the
whole-genome level.

By comparing mRNA expressions at the whole-genome level, a variety of genes were identi-
fied; unexpectedly, GH1, transcript factors such as POU1F1, SP-1, as well as classical receptors
including GHRHR and SSTRs were not significantly changed between Bama minipigs and
Landrace pigs, but it seemed as if the transcriptional difference between Bama minipigs and
Landrace pigs may be represented by GH-secretion signalling rather than GH synthesis itself,
which was revealed by the signalling pathways and differentially expressed mRNAs. It was well
established that many GH regulators (such as GHRH, SS) can regulate GH through cAMP sig-
nalling and IP3 signalling[7, 39]. The cAMP signalling cascade consists of G-proteins, Adenyl-
ate Cyclase (AC), cAMP, PKA, and CREB, and any change in each step may affect pituitary
GH. The present study shows that differentially expressed genes occurred in almost all steps of
cAMP signalling. In addition, IP3 signalling was also important in GH regulation. KEGG path-
ways showed that IP3 changes are present not only in inositol phosphate metabolism, but also
in the phosphatidylinositol signalling system. More importantly, most differentially expressed
genes in both cAMP signalling and IP3 signalling are significantly down-regulated in Bama
minipigs, which may attenuate the effect of the upstream regulator on GH synthesis and/or
secretion. Notably, our study also showed that GH-secretion-related genes were significantly
down-regulated in Bama minipigs, including GH release regulator Galamin (GAL)[40], as
well as SNARE family members (YKT6, SNAP23, and SNAP91) that play an important role in
transporting hormone-secreting vesicles to other cells or tissues[7, 41]. Taken together, down-
regulation of these genes may lead to a decrease in signal transduction capability and sensitivity
in response to GH regulator stimuli, which may partly explain the lower growth performance
of Bama minipigs, although their exact mechanism needs further investigation.

Differential expression of miRNAs may also contribute to different GH regulation; in our
study, 32 up-regulated miRNAs and 9 down-regulated miRNAs were identified in Bama mini-
pigs versus Landrace pigs. It has been well demonstrated that let-7, miR-193-3p, and miR-195
were down-regulated in GH-secreting pituitary adenomas that accompanied excessive GH
secretion[42, 43] and our previous study demonstrated that over-expression of ssc-let-7c in
porcine pituitary cells leads to a decrease in GH secretion[44]. In the present study, we
observed that two members of the let-7 family (let-7e and ssc-miR-98) as well as miR-193-3p
and miR-195 were significantly up-regulated in Bama minipigs. Therefore, up-regulation of
these miRNAs in Bama minipigs may possibly decrease GH secretion in the pituitary. In addi-
tion, there were other miRNAs such as miR-365, miR-183, miR-149, miR-224, and miR-199b
that were frequently aberrantly expressed in GH-secreting or other pituitary adenomas[45, 46],
although their detailed function is still unknown. They may regulate GH by other pathways or
participate in other functions of the pituitary.

Moreover, the observed differences between Bama minipigs and Landrace pigs may be regu-
lated by a combined effect of miRNAs and mRNAs. miRNA–mRNA interaction prediction
showed a network among miRNAs, mRNAs, and signalling pathways that potentially regulates
GH. According to luciferase assay results, Y-47 target FSHB, and ssc-miR-133a-3p target
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GNAI3, both of which may play important roles in GH regulation. Overall, differentially
expressed miRNAs may exert their effect on the pituitary by a single molecule or multiple regu-
lators/pathways including miRNAs and mRNAs.

Conclusions
In conclusion, using a whole-genome comparison of mRNA and miRNA expression profiles,
41 miRNAs and 2,254 transcripts were differentially expressed in Bama minipigs and Landrace
pigs. Target prediction analysis showed most differentially expressed miRNAs-differentially
expressed mRNAs pairs are negatively correlated. Additionally, a variety of pituitary endo-
crine-related transcripts and pathways were significantly changed, including cAMP and inosi-
tol 1, 4, 5-triphosphate (IP3) signalling. Bioinformatics analysis indicated these transcripts and
differentially expressed miRNAs potentially form a miRNAs-mRNAs network regulating GH
secretion, as validated by luciferase assay (Y-47 target FSHB, and ssc-miR-133a-3p target
GNAI3). The miRNAs and mRNAs revealed in this study will be helpful in understanding the
possible mechanism involved in animal postnatal growth, although more detailed studies
remain to be elucidated in the future.
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