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SUMMARY
Muscle satellite cells are normally quiescent but are rapidly activated following muscle damage. Here, we investigated whether damaged

myofibers influence the activation of satellite cells. Our findings revealed that satellite cells are directly activated by damaged-myofiber-

derived factors (DMDFs). DMDFs induced satellite cells to enter the cell cycle; however, the cells stayed at the G1 phase and did not un-

dergo S phase, and these cells were reversible to the quiescent-like state. Proteome analysis identified metabolic enzymes, including

GAPDH, as DMDFs, whose recombinant proteins stimulated the activation of satellite cells. Satellite cells pre-exposed to the DMDFs

demonstrated accelerated proliferation ex vivo. Treatment with recombinant GAPDH prior to muscle injury promoted expansion of

the satellite cell population in vivo. Thus, our results indicate that DMDFs are not only a set of biomarkers for muscle damage, but also

act as moonlighting proteins involved in satellite cell activation at the initial step of muscle regeneration.
INTRODUCTION

Resident muscle stem cells (also known as satellite cells),

located between the plasmalemma of myofiber and the

basal lamina (Mauro, 1961), possess a remarkable poten-

tial for regeneration after muscle damage. Following mus-

cle damage, the satellite cells are rapidly activated from

their quiescent state and become myoblasts to proliferate

and fuse with one another and/or with existing myofibers

in order to regenerate muscle. A subpopulation of these

activated cells reverts to the quiescent state to self-renew

and maintain the stem cell pool (Brack and Rando, 2012;

Kuang and Rudnicki, 2008; Relaix and Zammit, 2012). In

adult muscle, quiescent satellite cells express the paired

box protein-7 (PAX7), while the activated cells upregulate

themyogenic regulatory factorMYOD and undergo prolif-

eration. In myogenic differentiation, most satellite cells

downregulate PAX7 and maintain MYOD expression to

initiate myogenesis through upregulation of myogenin

(Halevy et al., 2004; Zammit et al., 2004). MyoD-null

mice exhibit reduced regeneration ability after muscle

injury due to defects in population expansion and differ-

entiation, indicating that MYOD plays an important role

in the activation of satellite cells at the initial stages of

regeneration (Cornelison et al., 2000; Megeney et al.,

1996; Yablonka-Reuveni et al., 1999; Yamamoto et al.,

2018).

The mechanism of regulation underlying the activation

of satellite cells is one of the fundamental questions in

the field of muscle biology (Baghdadi et al., 2018; Bjornson

et al., 2012; Chakkalakal et al., 2012; Cheung et al., 2012;
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Crist et al., 2012; Fujimaki et al., 2018; Fukada et al.,

2007; Mourikis et al., 2012; Rodgers et al., 2014; Verma

et al., 2018; Yamaguchi et al., 2015). In the later years of

the 20th century, researchers found that muscle extracts

can stimulate activation and proliferation of cultured mus-

cle cells (Haugk et al., 1995; Kardami et al., 1985; Mezzo-

giorno et al., 1993; Vandenburgh and Lent, 1984), which

prompted them to explore factors in extracts from intact

or crushed muscle tissues that contribute to muscle regen-

eration. Consequently, several growth factors, including

hepatocyte growth factor (HGF), that promote activation

and proliferation of satellite cells were identified in muscle

tissues (Li, 2003; Tatsumi et al., 1998; Zeng et al., 2010). Sat-

ellite cell activity is also modulated through growth factors

secreted from a variety of cells in interstitial spaces, such as

macrophages (Du et al., 2017; Lescaudron et al., 1999; Se-

gawa et al., 2008), fibroblasts (Mackey et al., 2017; Murphy

et al., 2011), and mesenchymal progenitors (Joe et al.,

2010; Uezumi et al., 2010). Recent findings have demon-

strated that the regulatory mechanisms underlying the

activation of satellite cells are rather complicated. For

instance, in muscle injury in mice, the satellite cells are

stimulated in the contralateral intact muscles and transi-

tion into the GAlert stage, which is a primed cellular state

preceding activation and entrance into the S phase of the

cell cycle (Rodgers et al., 2014, 2017). These findings sug-

gest that satellite cells are stimulated by damaged-muscle-

tissue-derived factors. However, it is impossible to track

the exact source of these factors, as whole muscle tissues

contain not only myofibers but also interstitial cells

capable of influencing satellite cells.
Author(s).
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In the present study, we investigated how satellite cell

activation is regulated, using isolated individual myofibers

in a floating culture model. This strategy has allowed us to

analyze both purified myofiber extracts and quiescent

satellite cells associated with myofibers without contami-

nation by interstitial cells. Our study has revealed that

damaged-myofiber-derived factors (DMDFs) stimulate sat-

ellite cells to transition from theG0 to theG1 stage. In addi-

tion, we have identified metabolic enzymes as DMDFs that

promote satellite cell activation ex vivo and facilitate popu-

lation expansion of satellite cells during muscle regenera-

tion in vivo. Our findings, thus, indicate that damaged

myofibers provide a direct signal to resident stem cells to

accelerate the initial step of tissue regeneration.
RESULTS

Muscle Extracts Promote Activation of Satellite Cells

Although extracts from muscle tissues stimulate prolifera-

tion of myoblasts (Bischoff, 1986; Haugk et al., 1995; Kar-

dami et al., 1985), the effect of these extracts on quiescent

satellite cells remains unclear. In combination with appro-

priate markers, the isolated myofiber model allows us to

investigate the satellite cell fate decision, ranging from

quiescence to activation, proliferation, differentiation,

and self-renewal on the myofibers (Ono et al., 2011; Zam-

mit et al., 2004). Accordingly, we examined how muscle

extracts influence the satellite cells, using the isolated

myofiber culture model.

To examine the effect of extracts on satellite cell activa-

tion, we treated the satellite cells associated withmyofibers

with tibialis anterior (TA)muscle extracts (Figure 1A). PAX7

is uniformly expressed in quiescent to proliferative state

satellite cells, whereas MYOD is a marker for satellite cell

activation. Ki67 marks the cells that enter the cell cycle

(G1, S, G2, and M phases), while incorporation of EdU

into genomic DNA is detected in S phase of the cell cycle.

The immunofluorescence studies revealed that the propor-

tions of PAX7+MYOD+, PAX7+Ki67+, and PAX7+EdU+ satel-

lite cells increase after adding muscle extracts for 24 h in

the floating culture condition compared with the control

myofibers maintained in Dulbecco’s modified Eagle me-

dium (DMEM) alone (Figures 1B–1G). Thus, these results

suggest that muscle extracts accelerate the activation and

progression into S phase of satellite cells.
DMDFs Induce Activation, but Not Proliferation, of

Satellite Cells

Because skeletal muscle tissues comprise not only myofib-

ers but also various types of other cells, such as endothelial

cells and interstitial mesenchymal cells (Evano and Taj-

bakhsh, 2018), there exists a possibility that suchnon-mus-
cle-cell-derived factors may influence the activation of sat-

ellite cells, as shown in Figure 1. To exclude this possibility,

we evaluated satellite cell activation using isolated healthy

intact and damaged individual myofibers (Figures 2A and

S1A). This co-culture of intactmyofibers with damagedmy-

ofibers allowed us to examine whether DMDFs directly

stimulate the activation and proliferation of satellite cells

associated with the healthy intact myofibers.

To obtain mechanically damaged myofibers, healthy

intact myofibers freshly isolated from extensor digitorum

longus (EDL) muscles were mechanically damaged with a

Pasteur pipette in a culture dish (Figure 2A) and the damage

was confirmed based on shrunken morphology. Immuno-

fluorescence analysis revealed the presence of a higher pro-

portion of MYOD+ satellite cells on intact myofibers when

they were co-cultured with damaged myofibers at both 48

(Figures 2B and 2C) and 72 h (Figures 2D and 2E) of culture

compared with control conditions, although the total

number of satellite cells per myofiber remained unaltered

(Figures 2B–2E). Interestingly, the proportion of Ki67+ sat-

ellite cells was increased (Figures 2F and 2G), but that of

cells positive for EdU, an S-phase cell-cycle entry marker,

was unchanged under the co-culture conditions (Figures

2H and 2I). These results, therefore, imply that DMDFs

induce satellite cells to enter the cell cycle; however, the

cells stay in the G1 phase of the cell cycle and do not un-

dergo the S phase.

To exclude the possibility that intact myofibers them-

selves were responding to DMDFs and then indirectly stim-

ulating their associated satellite cells, we tested whether

DMDFs activate satellite cells on damaged (shrunken/

dying) myofibers, whose myonuclei are disappearing and

so are unable to respond toDMDFs and induce gene expres-

sion. We confirmed that satellite cells associated with

damaged myofibers enter into the G1 phase (Figures S1B–

S1D) as well as satellite cells on healthy intact myofibers,

indicating that satellite cells can be directly activated by

DMDFs but not through their associated intact myofibers.

Satellite Cells in the G1 Phase Are Reversible to the

Quiescent-like State

Following activation, satellite cells asymmetrically

generate both self-renewed cells that maintain the satellite

cell pool for future requirement and myogenic cells that

undergo transient amplification followed by terminal dif-

ferentiation to form new myofibers (Dhawan and Rando,

2005; Kuang and Rudnicki, 2008; Zammit et al., 2006).

Interestingly, we noticed that approximately 10% of the

cells wereMYOD+ or Ki67+ satellite cells under DMEM con-

trol conditions at 24 h (Figure 1), but these populations

were decreased to only �2% at 48–72 h (Figure 2) after

isolation. These results indicate that activated cells may

revert to the quiescent-like state without cell division. To
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Figure 1. Muscle Extracts Accelerate Satellite Cell Activation
(A) A schematic illustrating the experimental procedure. TA muscle homogenates were filtered and used as muscle extracts.
(B–G) Individual myofibers associated with satellite cells were freshly isolated from EDL and cultured in DMEM with or without muscle
extracts for 24 h and then immunostained for (B) PAX7 and MYOD (quantified in C), (D) PAX7 and Ki67 (quantified in E), or (F) PAX7 and
EdU (quantified in G). Data represent means ± SEM. (C) Control n = 3 mice, extract n = 5 mice; (E) n = 3 mice per condition; (G) control n = 3
mice, extract n = 4 mice; >15 individual myofibers per mouse were counted. *p < 0.05. Scale bars, 50 mm.
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(legend continued on next page)
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validate this hypothesis, we tested whether the activated

satellite cells in the G1 phase return to a quiescent state

in the co-culture model as shown in Figure 2. Conse-

quently, isolated satellite cells associated with intact

myofibers were stimulated by co-culturing with damaged

myofibers. The damaged myofibers and the culture media

containing DMDFs were then washed out and replaced

with fresh DMEM and cultured for an additional 24 h (Fig-

ure 3A). Further immunofluorescence analysis showed that

the proportion of PAX7+MYOD� quiescent satellite cells

per myofiber was decreased upon co-culture of damaged

myofibers, whereas this population was increased when

the damaged myofibers and culture media were washed

out (Figures 3B and 3C). Recent studies on muscle injury

mouse models have reported that satellite cells could be

slightly activated even in contralateral intact muscles and

undergo transition into GAlert stage (Rodgers et al., 2014,

2017). Hallmarks of GAlert stage include increased cell size

concomitant with upregulation of mtDNA and intracel-

lular ATP contents (Rodgers et al., 2014, 2017). In the pre-

sent study, we therefore evaluated cell size of satellite cells

stimulated by damagedmyofibers. The transverse diameter

of satellite cells associated with intact myofibers was

evidently increased upon co-culture with damagedmyofib-

ers and became smaller when the damaged myofibers and

culture media were washed out (Figures 3D and 3E). Taken

together, our findings indicate that DMDFs stimulate acti-

vation but not the proliferation of satellite cells, while

the activated cells may remain biochemically andmorpho-

logically reversible to quiescent-like cells.

Metabolic Enzymes Identified as DMDFs by Proteome

Analysis

To identify DMDFs that stimulate activation of satellite

cells, proteome analysis was performed with biological rep-

licates (Figure 4A). Proteins ranging from 10 to 50 kDa were

screened on SDS-PAGE gels because they exhibited

apparent differences in the supernatant between intact

and damaged myofiber conditions (Figure 4A). Conse-

quently, five protein candidates were identified as DMDFs:

adenylate kinase-1 (AK-1), creatine kinase (CK), glyceralde-

hyde-3-phosphate dehydrogenase (GAPDH), phospho-

glycerate mutase-2 (PGAM-2), and triose phosphate isom-

erase (TPI) (Figure 4B). AK-1 is one of the major AK
medium: PM) condition was used for a positive control. Intact (u
(co-cultured, intact myofibers:damaged myofibers = 1:1).
(B–E) Individual myofibers associated with satellite cells were cultured
and then immunostained for PAX7 and MYOD (quantified in C or E, res
mouse were counted.) *p < 0.05. Scale bars, 50 mm.
(F–I) Individual myofibers associated with satellite cells were cultur
immunostained for PAX7 and Ki67 or PAX7 and EdU (quantified in G or
per mouse were counted.) *p < 0.05. Scale bars, 50 mm.
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isoforms expressed in the cytoplasmof skeletalmuscles (Ta-

nabe et al., 1993). CK is composed of two isoforms, namely

CK-MB and CK-MM, of which CK-MM is predominantly

expressed in skeletal muscle (Fredericks et al., 2001).

PGAM is composed of muscle-specific (M) and non-mus-

cle-specific (B) subunits, existing as a dimer. Skeletal mus-

cles express M-type isozymes of PGAM-2 (Uchida et al.,

1995). TPI is a glycolytic enzyme that is abundantly ex-

pressed in skeletal muscles (Puigjaner et al., 1997). These

proteins are known as metabolic enzymes for ATP produc-

tion except parvalbumin (Maughan et al., 2005)

(Figure 4C).

Extracellular Treatment with Metabolic Enzymes

Stimulates the Entry of Satellite Cells into theG1Phase

Recent studies have reported that metabolic enzymes such

asGAPDHhave a variety of roles in addition to, in this case,

its function in glycolysis (and the phenomenon is termed

as protein moonlighting, where a single protein has more

than one distinct function) (Henderson and Martin,

2014; Sirover, 2018). The phenomenon of protein moon-

lighting prompted us to further investigate if extracellular

metabolic enzymes leaked from damaged myofibers act as

moonlighting proteins that stimulate satellite cell activa-

tion using a mechanism that is independent of glucose

metabolism. To test this likelihood, isolatedmyofibers asso-

ciated with satellite cells were treated with recombinant

proteins of AK-1, CK, GAPDH, PGAM-2, and TPI in a

floating culture condition for 72 h and immunostained

for MYOD and PAX7. PBS and BSA were used as a negative

control and a non-specific protein control, respectively

(Figures 5A and 5B). The recombinant protein of urease

that is expressed in prokaryotes but not in mammals (Car-

lini and Ligabue-Braun, 2016) was used as a non-muscle

enzymatic control (Figures 5A–5C). In our preliminary

experiments, the optimal concentrations of recombinant

DMDF proteins, putative physiological concentrations of

AK-1, CK, GAPDH, PGAM-2, and TPI in the floating culture

model, were determined by taking into reference the

enzymatic activity (U) levels in the mammalian skeletal

muscle tissues as follows: AK-1, 1.25–12.5 U/mL; CK,

0.2–10 mU/mL; GAPDH, 15–300 mU/mL; PGAM-2,

0.2–10 U/mL; and TPI, 1–10 U/mL (Beisswenger et al.,

2003; Durany and Carreras, 1996; Eber and Krietsch,
ndamaged) myofibers were co-cultured with damaged myofibers

in DMEM with or without damaged myofibers for (B) 48 h or (D) 72 h
pectively). (n = 4 mice per condition; >15 individual myofibers per

ed in DMEM with or without damaged myofibers for 72 h and then
I, respectively). (n = 4 mice per condition; >15 individual myofibers
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(A) A schematic illustrating the experimental procedure. To determine whether activated satellite cells are reversible to the quiescent-like
state without cell division, individual myofibers were freshly isolated from EDL muscles and cultured in DMEM with or without damaged
myofibers for 48 h, as shown in Figure 2. Damaged myofibers and culture media were then removed and intact myofibers were maintained in
fresh DMEM for a further 24 h.
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either D, Dam or DamD; D and Dam; or Dam and DamD, respectively (p < 0.05).
1980; Ge et al., 2003; Kaczor et al., 2005). Each concentra-

tion of recombinant proteins for satellite cell activation

was determined by a dose-ranging study (data not shown).
We showed that the number of PAX7+MYOD+ satellite

cells is increased by extracellular treatment with

metabolic enzyme proteins compared with PBS, BSA, or
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urease-treated conditions (Figure 5A). We confirmed that

the number of PAX7+Ki67+ satellite cells is significantly

increased by treatment with recombinant GAPDH

compared with urease-treated conditions, although treat-

ment with AK-1 or CK proteins did not statistically signifi-

cantly increase the number of PAX7+Ki67+ cells (Figures

S2A and S2B). Consistent with the co-culture conditions

(Figures 2H and 2I), the number of PAX7+EdU+ satellite

cells was also unchanged in the DMDF-treated conditions

(Figures S2C and S2D).

As most of the DMDFs identified in our proteome anal-

ysis are involved in glucose metabolism, we anticipated

that glucose-rich media might influence metabolites in
932 Stem Cell Reports j Vol. 15 j 926–940 j October 13, 2020
the media, resulting in satellite cell activation. To exclude

this possibility, we treated satellite cells associatedwithmy-

ofibers with metabolic enzymes in a non-glucose medium.

The proportion of PAX7+MYOD+ activated satellite cells per

myofiber was increased even in non-glucose DMEM in the

presence of AK-1, CK, or GAPDH (Figure 5B).

HGF was the first growth factor identified in muscle ex-

tracts, that stimulates activation and proliferation of

cultured satellite cells via its receptor c-MET (Anderson,

2016; Li, 2003; Tatsumi et al., 1998; Zeng et al., 2010).

Since HGF is a potent activator of satellite cells in muscle

extracts and is also shown to stimulate the transition of sat-

ellite cells to GAlert via the c-MET/mTORC1 pathway in
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(C) To examine whether the HGF signaling pathway is involved in the DMDF-induced satellite cell activation, satellite cells associated with
individual myofibers were treated with recombinant metabolic enzyme proteins in the presence of PHA-665752 (c-MET inhibitor) in DMEM
for 72 h. Immunostaining for PAX7 and MYOD was performed (left, absolute numbers of positive cells; right, relative ratio of positive cells).
Values are means ± SE (n = 4 mice per condition). Asterisk (*) and pound sign (#) indicate differences compared with urease control
(p < 0.05).
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contralateral intactmuscles (Rodgers et al., 2017), we deter-

mined whether HGF signaling is necessary for satellite cell

activation induced by DMDFs. We showed that PHA-

665752, a c-MET inhibitor, does not attenuate the activa-

tion induced by recombinant DMDFs (Figure 5C). We

next investigated whether more major signaling pathways

controlling the satellite cell fate (Dumont et al., 2015) are

involved in the DMDF-induced entry of satellite cells into

the G1 phase. To this end, several concentrations of chem-

ical compounds were tested in the floating culture model

and the optimal concentrations were determined in our

preliminary experiments: Rapamycin (mTOR inhibitor,

100 nM to 1 mM), SU5402 (FGFR tyrosine kinase inhibitor,

1–10 mM), Wortmannin (PI3K inhibitor, 100 nM to 1 mM),

PD98059 (MEK inhibitor, 1–10 mM), and Dorsomorphin

(BMP-R inhibitor, 100 nM to 1 mM). We showed that the

upregulation of MYOD in GAPDH-treated cells is sup-

pressed by Dorsomorphin, concomitant with downregula-

tion of the protein levels of p-SMAD1/5 (Figures S2E–S2H),

which are the BMP signaling downstream targets. Taken

together, these results suggest that damaged myofiber-

derived metabolic enzymes act as moonlighting proteins

that stimulate the satellite cell transition into theG1 phase,

probably through the BMP signaling pathway.

Pre-treatmentwithDMDFsAccelerates Proliferation of

Satellite Cells Ex Vivo

Having shown that extracellularmetabolic enzymes identi-

fied as DMDFs stimulated the entry of satellite cells into the

G1 phase, we next investigated whether these metabolic

enzymes promotemitosis andmyogenic progression under

growth-factor-rich conditions. Satellite cells associated

with myofibers were pre-exposed to the recombinant

enzyme proteins for 48 h under floating culture conditions

and then stimulated with growth-factor-rich medium

(GM) for a further 24 h (Figure 6A). The total numbers of

satellite cells were increased upon pre-treatment with AK-

1, CK, GAPDH, and TPI, but not in the case of PGAM-2,

compared with the urease pre-treated condition (Figures

6B and 6C). We also confirmed that pre-treatment with

GAPDH as a DMDF increases both the total number of

PAX7+ cells and the number of EdU+ satellite cells per my-

ofiber in the GM condition (Figures 6D–6F). These data

indicate that satellite cells are activated by DMDFs to enter

into the G1 phase, where an additional mitogen stimula-

tion permits a prompt population expansion of satellite

cells.

GAPDH as a DMDF Accelerates Activation and

Proliferation of Satellite Cells In Vivo

Finally, we sought to examine whether DMDFs accelerate

satellite cell activation and population expansion in vivo.

GAPDH recombinant protein was selected as a DMDF for
934 Stem Cell Reports j Vol. 15 j 926–940 j October 13, 2020
this experiment because it efficiently stimulated popula-

tion expansion of cells, as shown in Figures 5 and 6. The re-

combinant protein was administered into TA muscles at

24 h prior to injection of BaCl2 to induce muscle regenera-

tion (Figure 7A). PBS was used as a control. Both the body

and the TA muscle weights remained unchanged among

groups (Figures 7B and 7C), whereas the number of PAX7+

MYOD+ activated satellite cells was slightly, but not statis-

tically significantly, increased 48 h following treatment

with GAPDH protein compared with PBS control (Figures

7D and 7E). Correspondingly, qPCR analysis demonstrated

that the expression of Pax7 and MyoD genes in GAPDH-

pre-treated mice is significantly higher than that of PBS

controls (Figure 7F). Further, immunohistochemistry

revealed that pre-treatment with GAPDH remarkably in-

creases the number of PAX7+EdU+ proliferative satellite

cells in regenerating muscles (Figures 7G and 7H). These

results suggest that GAPDH acts as a DMDF, promoting

activation and proliferation of satellite cells during muscle

regeneration in vivo.
DISCUSSION

In the present study, we revealed that quiescent satellite

cells associatedwithmyofibers could be activated by factors

leaked from damaged myofibers (i.e., DMDFs) that pro-

mote activation and proliferation in coordination withmi-

togens during muscle regeneration. Of note, DMDFs did

not induce satellite cells to enter the S phase of the cell cy-

cle even with the increased expression of MYOD and Ki67.

More interestingly, satellite cells activated with DMDFs

were reversible to the quiescent-like state without mitosis.

A study has reported that endurance exercise training

does not always result in improvement of myofiber size

and satellite cell pool (Snijders et al., 2011), and even

non-hypertrophic exercise can stimulate satellite cell acti-

vation without mitosis (Joanisse et al., 2015). Thus, our ob-

servations suggest that satellite cells activated by upregula-

tion of Ki67 and MYOD are not necessarily expected to

undergo S phase of the cell cycle and subsequent mitosis.

In other words, inappropriate proliferation could be pre-

vented by a multi-step process, which is probably much

more complex than assumed previously (Arora et al.,

2017; Dumont et al., 2015; Evano and Tajbakhsh, 2018;

Sousa-Victor et al., 2018).

Our ex vivo culture study revealed that growth-factor-en-

riched media accelerate proliferation of satellite cells post

treatment with DMDFs. Treatment with recombinant

GAPDH, which is one of the DMDFs, prior to muscle

injury also promoted satellite cell proliferation during

muscle regeneration in vivo. Accumulating evidence has

revealed that, while GAPDH is well known to play an
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important role in glycolysis, it also has moonlighting

roles (Garcin, 2019). For instance, GAPDH acts to mediate

the immune reaction in lymphocytes and peripheral

blood leukocytes (Sirover, 2018). It is possible to speculate

that GAPDH as a DMDF not only activates satellite cells

but also recruits inflammatory immune cells during mus-

cle regeneration. Based on our findings, we propose a

cascade model from muscle damage to regeneration as fol-
lows: theoretically, damaged myofibers first leak their

intracellular contents (DMDFs), including metabolic en-

zymes, out to the interstitial spaces, which in turn triggers

immediate activation of satellite cells as well as migration

and infiltration of inflammatory cells such as neutrophils

and macrophages. Subsequently, these inflammatory cells

produce a variety of growth factors and cytokines such as

FGF, EGF, IGF-1, and Wnts in the regenerating niche,
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further prompting activated satellite cells to undergo pop-

ulation expansion for efficient tissue regeneration after

injury. Collectively, our results indicate that DMDFs in

the blood not only are biomarkers of muscle damage

but also play an important role in the initial step of mus-

cle regeneration, and are therefore suited to be also

defined as damaged-myofiber-derived myokines (Pedersen

and Febbraio, 2012).

In response to muscle damage, satellite cells can be

stimulated even in the contralateral intact muscles (Rodg-

ers et al., 2014). A subsequent study elucidated the injury-

induced regulation of the HGF activator that stimulates

the transition of satellite cells and mesenchymal progeni-

tors to GAlert in contralateral intact muscles (Rodgers et al.,

2017). In the present study, we have also identified that

metabolic enzymes leaked extracellularly act as activators

of satellite cells. However, it is unlikely that HGF signaling

is involved in this mechanism, because metabolic-

enzyme-induced activation of satellite cells was not

blocked by treatment with the c-MET inhibitor. We previ-

ously reported that BMP signaling is important to main-

tain the proliferative state of activated satellite cells by

preventing premature differentiation (Ono et al., 2011).

In the present study, we showed that inhibition of the

BMP signaling pathway blocked the GAPDH-induced up-

regulation of MYOD, suggesting that BMP signaling is, in

part, involved in the DMDF-induced activation of satellite

cells.

In conclusion, our study has revealed that quiescent sat-

ellite cells can be directly induced into the G1 phase by

DMDFs, including GAPDH, which supports muscle regen-

eration by accelerating population expansion of the satel-

lite cells. However, it remains unclear how extracellular

metabolic enzymes activate the satellite cells. It is also

unknown why not all satellite cells could be activated by

co-culture with damaged myofibers or treatment with

metabolic enzyme proteins. Presumably, some cells are

more sensitive to the extracellular stimuli than others,

which indicates a functional heterogeneity in the satellite
(B and C) (B) Body weight and (C) TA muscle weight of mice at 48 an
(D and E) (D) Immunohistochemistry of TA cross sections for yellow fl
indicate YFP (PAX7)+/MYOD+ nuclei. Scale bars, 50 mm. Values are me
(F) qPCR analysis for the expression of Pax7, Myf5, MyoD, and Myog
(n = 3–5 mice per condition). Asterisk (*) indicates differences comp
(G and H) (G) Immunohistochemistry of TA cross sections for YFP (P
nuclei. Scale bars, 50 mm. Values are means ± SE (n = 5 mice per cond
(p < 0.05).
(I) Postulated roles of DMDFs in muscle damage and regeneration. Skel
Theoretically, these metabolic enzymes leak from damaged myofibers
phase. The satellite cells are then able to proliferate extensively whe
Meanwhile, activated satellite cells also return to a quiescent-like s
mechanism that avoids unnecessary cell division of satellite cells.
cell population (Chakkalakal et al., 2012; Der Vartanian

et al., 2019; Kuang et al., 2007; Ono, 2014; Ono et al.,

2010, 2012; Rocheteau et al., 2012; Scaramozza et al.,

2019). Further investigations are necessary to elucidate

the mechanisms and functional significance of DMDFs in

muscle regeneration. This study has the potential of ex-

tending the window of opportunity for developing effi-

cient regeneration therapies for muscle diseases as well as

for establishing a strategy for rapid recovery from severe

muscle injury in elderly patients or athletes.
EXPERIMENTAL PROCEDURES

Animals
All experiments were performed using 10- to 16-week-old male

C57BL/6 wild-type mice and Pax7-yellow fluorescent protein

(Pax7-YFP) knock-in mice (Kitajima and Ono, 2018). Individual

myofibers were isolated from EDL muscle of wild-type mice and

plated in a floating culture ex vivo. Pax7-YFP knock-in mice

were used for muscle damage experiments in vivo. The Ethical

Committee for Animal Care andUse (no. 1203190970) of Nagasaki

University and Kumamoto University (A30-098) approved all

experimental procedures.
Cell Culture
To assay satellite cells associated withmyofibers, we used a floating

culture method using individual myofibers (Ono et al., 2015) that

allowed determination of satellite cell fate from the quiescent to

the activation state. Individual myofibers associated with satellite

cells were isolated from EDLmuscles using 0.2% type I collagenase

(Worthington Biochemical, Lakewood, NJ) in DMEM (Thermo

Fisher Scientific, MA) for 90 min at 37�C and 5% CO2. Following

purification of myofibers, isolated myofibers were further incu-

bated in DMEM for 3 h at 37�C under 5% CO2 to eliminate dying

contracted myofibers during isolation (Figure S1). For a co-culture

assay, equal numbers of isolated myofibers were cultured with or

without damagedmyofibers under floating conditions (Figure 2A).

DMEM and non-glucose DMEM (Wako, Osaka, Japan) were used.

The volume of medium was determined by a ratio of 50 myofib-

ers/mL volume. GM (DMEM supplemented with 30% fetal bovine
d 72 h after treatment with GAPDH recombinant protein.
uorescent protein (YFP) (PAX7) and MYOD (quantified in E). Arrows
ans ± SE (n = 3–5 mice per condition).
enin (MyoG) mRNAs in TA muscle tissues. Values are means ± SE
ared with PBS control (p < 0.05).
AX7) and EdU (quantified in H). Arrows indicate YFP (PAX7+)/EdU+

ition). Asterisk (*) indicates differences compared with PBS control

etal muscles abundantly contain metabolic enzymes such as GAPDH.
and immediately stimulate the entry of satellite cells into the G1
n subsequently stimulated by mitogens in the regenerating niche.
tate in the absence of mitogens, which is a multi-step protective

Stem Cell Reports j Vol. 15 j 926–940 j October 13, 2020 937



serum, 1% chicken-embryo extract, 10 ng/mL basic fibroblast

growth factor, and 1% penicillin-streptomycin) and plating me-

dium (DMEM supplemented with 10% horse serum, 0.5%

chicken-embryo extract, and 1% penicillin-streptomycin) were

used for satellite cell activation (Figure 6) and as a positive control

(Figures 2 and 3), respectively.

To obtain muscle tissue extracts, TA muscle tissues of adult mice

were isolated and crushed in a bead crusher. Tissue homogenates

were then filtered with a 0.45 mm filter before use as muscle ex-

tracts. Isolatedmyofibers associatedwith satellite cells were treated

withmuscle tissue extracts in DMEMunder floating culture condi-

tions (Figure 1A). To obtain mechanically damaged myofibers,

healthy intact myofibers were directly damaged with a Pasteur

pipette in the culture dish. The damaged myofibers were detected

by shrunken morphology (Figure 2A). The ratio of intact to

damaged myofibers was 1:1 in the co-culture condition and the

total numbers of myofibers were equivalent between conditions

(Figures 2 and 3). Cells were labeled with EdU (Thermo Fisher

Scientific) in the culturemedium for 6 h prior to fixation. Reagents

were obtained from the following sources: PHA-665752, Cayman

Chemical, MI; Rapamycin, LC Laboratories, MA; SU5402, Merck

Millipore, MA; Wortmannin, AdipoGen, CA; PD98059, ALEXIS

Biochemicals, CA; Dorsomorphin, FUJIFILMWako Pure Chemical

Corp., Osaka, Japan; and SB216763, Merck Millipore, MA.
Statistical Analysis
All experimental data are shown asmean ± SE. The comparison be-

tween two conditions was done by unpaired t test. A one-way

repeated-measures ANOVA was applied to identify significant dif-

ferences among conditions or groups. When a significant differ-

ence was observed, the data were subjected to post hoc analysis.

A p < 0.05 was considered significant.
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