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Abstract

Summary: Single amino acid variations (SAVs) are a primary contributor to variations in the human genome.
Identifying pathogenic SAVs can provide insights to the genetic architecture of complex diseases. Most approaches
for predicting the functional effects or pathogenicity of SAVs rely on either sequence or structural information. This
study presents hLai Yang Rubenstein Uzun Sarkari (LYRUS), a machine learning method that uses an XGBoost clas-
sifier to predict the pathogenicity of SAVs. LYRUS incorporates five sequence-based, six structure-based and four
dynamics-based features. Uniquely, LYRUS includes a newly proposed sequence co-evolution feature called the
variation number. LYRUS was trained using a dataset that contains 4363 protein structures corresponding to 22 639
SAVs from the ClinVar database, and tested using the VariBench testing dataset. Performance analysis showed that
LYRUS achieved comparable performance to current variant effect predictors. LYRUS’s performance was also
benchmarked against six Deep Mutational Scanning datasets for PTEN and TP53.

Availability and implementation: LYRUS is freely available and the source code can be found at https://github.com/
jiaying2508/LYRUS.

Contact: neil_sarkar@brown.edu and brenda_rubenstein@brown.edu

Supplementary information: Supplementary data are available at Bioinformatics Advances online.

1 Introduction

Recent technological advances, such as high-throughput screening
methods, have made an abundance of sequencing data that have trans-
formed our understanding of human genetic variation readily available.
Since the determination of the first human genome sequence, more than
one million human genomes have been collectively sequenced across the
academic, clinical and private sectors (Fowler and Fields, 2014;
Shendure et al., 2017). This increase in genomic data is revealing a
growing number of rare variants, for which there is insufficient data to
decipher whether they are pathogenic. Rationalizing the functional and
clinical implications of these millions of observed sequence variants
remains a formidable undertaking.

In the post-genomic era, understanding the relationship among
genetic and phenotypic variations represents a major challenge
(Ormond et al., 2010). A single amino acid variant (SAV) is an

alteration in the protein sequence, which is a result of a missense sin-
gle nucleotide variant (SNV). Among the known disease variants,
roughly 45% are missense variants that encode a single amino acid
change in the affected protein (Marinko et al., 2019), which are tied
to human diseases, such as Parkinson’s disease, Alzheimer’s disease
and cancer (Niu et al., 2016; Yip et al., 2008). Differentiating patho-
genic SAVs from neutral SAVs is thus of great importance in the
post-genomic era, as it can enhance our understanding of the correl-
ation between genotype and phenotype, facilitating the development
of novel treatment strategies for complex diseases.

The accurate classification of effects of genetic variants on vari-
ous disorders remains a difficult goal to achieve, despite the abun-
dance of genomic data collected over the last decade and the
multiple efforts to elucidate their links to phenotypic traits. Most
existing software for predicting the functional effects of amino acid
variations are based on the assumption that protein sequences
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observed among living organisms have survived natural selection.
As a result, evolutionarily conserved amino acid positions across
multiple species are assumed to be functionally important, and
amino acid variations observed at conserved positions are assumed
to be pathogenic (Yue et al., 2005).

Previous analyses have shown that methods incorporating only
sequence-related information may suffer from reduced accuracy
(Saunders and Baker, 2002). Furthermore, Sunyaev et al. (2000)
have shown that pathogenic mutations often affect the intrinsic
structural features of proteins, including sites involved in disulfide
bonds. Wang and Moult (2001) have demonstrated that most patho-
genic mutations appear to affect protein stability. It is therefore evi-
dent that knowing the impact of mutations on protein stability is
essential for clarifying the relationships among the structure, func-
tion and dynamics of a given protein. Structure-based modeling
approaches have lagged behind sequence-based approaches in evalu-
ating the effects of SAVs, even though first-generation classifiers
that can take 3D structures into account have shown considerable
success (Adzhubei et al., 2010; Ancien et al., 2018; Capriotti and
Altman, 2011). Additionally, most computational methods focus on
reaching the highest variant classification accuracy rather than
understanding the modifications that occur at the molecular scale,
which might be crucial for the design of drugs or treatments.

Changes in folding free energies (DDGfold) are the standard
thermodynamic measures to probe the effects of mutations on pro-
tein stability and have already been demonstrated to characterize se-
quence and structural patterns among human pathogenic amino
acid variants (Joerger and Fersht, 2007; Peng and Alexov, 2016;
Petukh et al., 2015; Yang et al., 2020). Several computational
approaches have been developed to predict DDGfold as a means to
link it to the pathogenicity of mutations (Blanco et al., 2018; Cang
and Wei, 2017; Getov et al., 2016; Li et al., 2014; Zhang et al.,
2012). Besides changes in folding free energies, solvent accessibility
has been known to be associated with the pathogenicity of SAVs.
SAVs located on the protein surface are more likely to be neutral,
whereas those buried in the protein core are more likely to be patho-
genic (Yue et al., 2005). Accordingly, various approaches for pre-
dicting pathogenicity that rely on structural features are available,
such as Bongo, which uses graph theoretic measures to evaluate the
structural impacts of single point mutations (Bao and Cui, 2005;
Capriotti and Altman, 2011; Cheng et al., 2008). Other studies have
shown that structural information can provide results of comparable
quality to those that use sequence and evolutionary information in
predicting pathogenic SAVs (Jacobs et al., 2001; Kannan and
Vishveshwara, 1999; Vendruscolo et al., 2002).

In addition to sequence conservation and protein structure,
protein dynamics have also been proven to be useful for predict-
ing SAV functional impacts. Ponzoni and Bahar (2018) evaluated
a set of features generated by elastic network models of proteins
to efficiently screen protein dynamics. Their study shows the util-
ity of considering the equilibrium dynamics of the protein as a
means of improving the predictive ability of current pathogenicity
predictors. Other dynamic features, such as stiffness, effectiveness
and sensitivity, have also been shown to be important in patho-
genicity prediction (Smith et al., 2019). Tools that use dynamics-
based features (e.g. Rhapsody) demonstrate that predictions are
improved when dynamics-based and sequence-based features are
combined (Ponzoni et al., 2020).

Picking the most suitable machine learning (ML) algorithm that
can learn the most salient of these many possible features for predic-
tion can be challenging. The Tree-based Pipeline Optimization Tool
(TPOT) is an evolutionary algorithm-based automated machine
learning (autoML) system that uses genetic programming to opti-
mize a series of feature selectors, pre-processors and ML models to
maximize classification/regression accuracy and recommend an opti-
mal pipeline (Banzhaf et al., 1998). TPOT has been shown to fre-
quently outperform standard ML analyses given no a priori
knowledge about the problem. We utilized TPOT to search for the
best ML pipeline for our dataset.

We introduce LYRUS, an ML-based approach that incorporates
the essential properties of structural information, evolutionary

conservation and protein dynamics, to predict the pathogenicity
of SAVs. We included a recently developed sequence-evolution-
ary-based concept, called variation number, which has been
shown to vary significantly among pathogenic and neutral var-
iants in BRCA1 and BRCA2 SNVs (Lai and Sarkar, 2020). The in-
clusion of variation number distinguishes LYRUS from tools
currently used in the field. LYRUS was trained on a large set of
human protein variations obtained from ClinVar, which is a pub-
licly accessible database (Landrum et al., 2018). The performance
of LYRUS was assessed on the ClinVar training dataset as well as
an independent VariBench dataset (Nair and Vihinen, 2013), and
compared to that of PolyPhen2, PROVEAN, SIFT, Rhapsody,
EVMutation, MutationAssessor, SuSPect, FATHMM, MVP,
PrimateAI, UNEECON, M-CAP and REVEL (Adzhubei et al.,
2010; Choi et al., 2012; Hopf et al., 2017; Huang, 2020;
Ioannidis et al., 2016; Jagadeesh et al., 2016; Kumar et al., 2009;
Ponzoni et al., 2020; Qi et al., 2021a; Reva et al., 2011; Shihab
et al., 2013; Sundaram et al., 2018; Yates et al., 2014). To truly
exam the predictive power of LYRUS in an unbiased fashion, we
also performed an independent assessment by benchmarking
LYRUS and other variant effect predictors (VEPs) against three
phosphatase and tensin homolog deleted on chromosome 10
(PTEN) and three tumor protein 53 (TP53) Deep Mutational
Scanning (DMS) datasets.

2 Methods

2.1 Training dataset
The training dataset for the ML pipeline was generated using ClinVar
(Landrum et al., 2018). Each entry in ClinVar is associated with a re-
view score: the larger the number of review stars an entry receives up
to a maximum of four, the more verified that entry has been. All of the
SAVs in ClinVar with at least one review star were obtained. The SAVs
in the resulting dataset were further categorized as having a pathogen-
icity of benign, benign/likely benign, likely benign, likely pathogenic,
pathogenic/likely pathogenic or pathogenic. Benign, benign/likely be-
nign and likely benign SAVs were assigned a pathogenicity score of 0,
while all other SAVs were assigned a score of 1. The number of
ClinVar SAVs is listed in Supplementary Table S1 and Figure S1.

2.2 Feature selection for SAV pathogenicity prediction
The three categories of features widely used in SAV pathogenicity
prediction are sequence-based features, structure-based features
and dynamics-based features. We picked 15 features in total from
these three categories in our prediction pipeline (Table 1 and
Supplementary Table S2). The variation number is a recently devel-
oped phylogenetic measure that quantifies sequence conservation
using sequence orthologs from different species (Lai and Sarkar,
2020). The pipeline for calculating variation numbers is depicted
in Supplementary Figure S2. The orthologous sequences required
by the variation number and EVMutation were obtained from the
NCBI Orthologs Database (accessed in October, 2020) (NCBI,
2018). In addition to the sequence and variant information, all of
the structural and dynamic features also require protein structure
files from the Protein Data Bank (PDB). The PDB files were down-
loaded from SWISS-MODEL (Kiefer et al., 2009).

Principal component analysis (PCA) is a way of identifying pat-
terns in data that highlights their similarities and differences. The
target dataset can be compressed by performing a PCA that reduces
its number of dimensions if the data’s cumulative variance does not
drop below a desired threshold, i.e. if there is not too much loss of
information. Redundancy was analyzed for the 15 selected model
features using PCA.

2.3 ML model selection and evaluation
TPOT was used in this study to determine the ML pipeline with the
highest accuracy for our training dataset (Le et al., 2020). About
80% of the dataset was used for training and 20% was used for test-
ing. For TPOT parameters, both the number of generations and
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population size were set to 100, the cross-validation size was set to 5
and the verbosity was set to 2. TPOT suggested an XGBoost classi-
fier to be the most suitable for our training dataset. The XGBoost al-
gorithm, originally created by Chen and Guestrin, is a scalable tree
boosting system that has been widely used by researchers (Chen and
Guestrin, 2016).

Ten-fold cross-validation was performed to assess the perform-
ance of LYRUS using the ClinVar dataset. The accuracy, sensitivity,
specificity, F-measure and Matthews correlation coefficient (MCC)
were calculated, as defined below:

Accuracy ¼ TPþ TN

TPþ TN þ FPþ FN

Sensitivity ¼ TP

TPþ FN

Specificity ¼ TN

TN þ FP

F1 ¼
TP

TPþ 1

2
FPþ FNð Þ

MCC ¼ TP� TN � FP� FN
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPþ FNð Þ � TPþ FPð Þ � TN þ FNð Þ � TN þ FPð Þ

p :

The performance of the chosen ML pipeline was compared to
that of PolyPhen-2 (Adzhubei et al., 2010), PROVEAN (Choi et al.,
2012), SIFT (Kumar et al., 2009), Rhapsody (Ponzoni et al., 2020),
EVMutation (Hopf et al., 2017), MutationAssessor (Reva et al.,
2011), SuSPect (Yates et al., 2014), FATHMM (Shihab et al., 2013),
MVP (Qi et al., 2021a), PrimateAI (Sundaram et al., 2018),
UNEECON (Huang, 2020), M-CAP (Jagadeesh et al., 2016) and
REVEL (Ioannidis et al., 2016). PolyPhen-2, PROVEAN, SIFT,

Rhapsody, EVMutation, MutationAssessor, SuSPect, FATHMM
and MVP were accessed in October 2020, and PrimateAI,
UNEECON, M-CAP and REVEL were accessed in June 2021 for
the ClinVar dataset. The source of each method is available in
Supplementary Table S3 and the thresholds for classifying pathogen-
ic and benign SAVs used by each method are available in
Supplementary Table S4. Not all VEPs were able to predict all of the
SAVs in ClinVar, thus the missing predictions (if there were any)
were imputed for each VEP to benefit VEPs with few missing values.

In addition to the ClinVar dataset, the performance of LYRUS
was also evaluated against other VEPs using the VariBench testing
dataset (Supplementary Table S1, accessed in July, 2021) (Nair and
Vihinen, 2013). Two datasets from VariBench were obtained for
performance testing, VariBench_selected and VariBench_limited.
The VariBench_selected dataset contains all SAVs whose protein
structure is not present in the ClinVar dataset. This was done to pre-
vent the Type I and II data circularity issues described in Grimm
et al. (2015). The VariBench_limited dataset is selected from the
VariBench_selected dataset, and further filtered such that all the
VEP predictions are available, except for those from EVMutation.
EVMutation predictions were excluded from the VariBench_limited
dataset because too many predictions were missing. Rhapsody was
excluded from both VariBench datasets because Rhapsody was
trained using the VariBench dataset. All of the VEPs were accessed
as of July 2021.

2.4 DMS dataset selection for correlation analysis
PTEN and TP53 are noteworthy proteins as they both have a num-
ber of different DMS datasets. We pulled three PTEN DMS datasets
from two different studies and three TP53 datasets from one study;
namely, pten(a) (Matreyek et al., 2018), pten(b) (Mighell et al.,
2018), pten(highqual_b) (Mighell et al., 2018), p53(wt_nutlin)

Table 1. Features used for SAV pathogenicity prediction

Feature name Description Type

Variation number Sequence position conservation score calculated using orthologs SEQ

Variation numbers employed in the model are scaled using min. to max. normalization for each amino acid sequence

DE epistatic score Change in evolutionary statistical energy computed by EVmutation (Hopf et al., 2017) SEQ

Functional impact score (FIS)Predicted magnitude of the effects of amino acid substitutions SEQ

weighted by the relative frequency of disease-causing and neutral

amino acid substitutions computed by FATHMM (Shihab et al., 2013)

DPSIC Difference of PSIC scores for two amino acid residue variants SEQ

computed by PolyPhen-2 (Adzhubei et al., 2010)

Wild-type PSIC PSIC score for wild-type amino acid residue computed by PolyPhen-2 (Adzhubei et al., 2010) SEQ

DDGfold Folding free energy difference computed by FoldX (Schymkowitz et al., 2005) STR

SASA Solvent accessible surface area computed by FreeSASA (Mitternacht, 2016) STR

Mutant SSF Knowledge-based potential for mutant amino acid variants STR

computed by MAESTRO (Laimer et al., 2015)

Active site value Calibrated probability of being a ligand-binding residue STR

Assigned 1 if the probability is >0.5

computed by P2Rank (Krivák and Hoksza, 2018)

Mutant reference energy Unfolded-state reference energies for mutant amino acid variants STR

computed by PyRosetta (Alford et al., 2017)

DReference energy Difference between unfolded-state reference energies for two amino acid variants STR

computed by PyRosetta (Alford et al., 2017)

MSD Mean squared displacements of Ca atoms derived from the anisotropic network model DYN

computed by ProDy (Bakan et al., 2011)

Mechanical stiffness Measurement of the mechanical resistance of residues to external pulling forces DYN

computed by ProDy (Bakan et al., 2011)

Effectiveness The ability of a residue to transmit mechanical deformation signals DYN

when subjected to a unit perturbation computed by ProDy (General et al., 2014)

Sensitivity The ability of a residue to sense mechanical deformation signals DYN

when subjected to a unit perturbation computed by ProDy (General et al., 2014)

Note: Fifteen features belonging to three different categories are used. Each feature calculation requires either an amino acid sequence or PDB file, or both.

SEQ, sequence-based feature; STR, structure-based feature; DYN, dynamics-based feature.
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(Giacomelli et al., 2018), p53(null_nutlin) (Giacomelli et al., 2018)
and p53(null_etoposide) (Giacomelli et al., 2018). The screen for
the pten(b) dataset assessed the disruption of an artificial gene cir-
cuit in yeast, which probed phosphatase activity. The pten(high-
qual_b) dataset was created by the same group, which obtained high
confidence data based on low standard error or replicate concord-
ance. The phenotypic screen for pten(a) measured protein abun-
dance in the cell by fluorescence of EGFP bound to the protein. We
also selected three TP53 datasets from one study done by
Giacromelli et al. p53(wt_nutlin) dataset was generated by first cre-
ating isogenic WT TP53 A549 human lung carcinoma cell popula-
tions using CRISPR-Cas9-mediated gene editing. Then, the
differential responses of these isogenic cells were capitalized to a
p53-activating agent, nutlin-3 and pooled positive selection screens
were subsequently performed. p53(null_nutlin) dataset was gener-
ated by creating isogenic null TP53 A549 human lung carcinoma
cell populations using CRISPR-Cas9-mediated gene editing. Then,
the differential responses of isogenic cells were capitalized to the
same p53-activating agent, nutlin-3 and pooled positive selection
screens were performed. p53(null_etoposide) dataset differs from
p53(null_nutlin) in that the responses of those isogenic cells were
capitalized to another p53-activating agent, etoposide (Giacomelli
et al., 2018).

3 Results

3.1 Feature validation
Figure 1a shows the histograms of variation numbers for the patho-
genic and neutral SAVs. Variation numbers range from 0 to 1, where
0 means high conservation and 1 means low conservation. The
mean variation numbers for the pathogenic SAVs is 0.12, while the
mean variation number for the neutral SAVs is 0.32. The variance of
the variation numbers for the pathogenic SAVs is 0.017, and the
variance of the variation numbers for the neutral SAVs is 0.04. A t-
test was performed using variation numbers for pathogenic and neu-
tral SAVs (Virtanen et al., 2020). The resulting t-statistic is �80.33,
with a P-value of 0.0. The t-test results suggest that variation num-
bers for pathogenic and neutral SAVs are significantly different:
pathogenic SAVs have smaller variation numbers than neutral
SAVs, which suggests that pathogenic SAVs are more conserved
than neutral SAVs.

The calculation of variation number for each amino acid se-
quence depends on its orthologous sequences. Different amino acid
sequences do not have equal numbers of orthologous sequences. To
test whether the power of our model is affected by the number of
orthologous sequences, we did a stratifying test by training and test-
ing the model accuracy based on the number of orthologous sequen-
ces. We were able to download the orthologous sequences for 4354
proteins through the NCBI Orthologs database (NCBI, 2018).
Among all of the proteins, 95%, 92%, 86%, 79%, 56% and 42%
have at least 50, 100, 150, 200, 250 and 300 orthologous sequences,
correspondingly. We trained our model using SAVs with at least 50,
100, 150, 200, 250 or 300 orthologous sequences. We then applied
each model to the whole dataset and calculated the accuracy using
10-fold cross-validation. The accuracies for each model were simi-
lar, as shown in Supplementary Figure S3. Furthermore, more than
95% of the proteins have more than 50 orthologs, so the impact of
proteins with <50 orthologs would be minimal. Thus, the number
of orthologs used to compute the variation number had minimal im-
pact on our model.

PCA was applied to our feature dataset with the objective of
cross-validating our feature selections and checking redundancy
among our 15 features. Supplementary Figure S4 shows the correl-
ation between the cumulative variance (i.e. the sum of the variances
of the individual principal components) and the number of principal
components. The plot shows that 12 components are needed to de-
scribe 90% of the variance in the calculated results of all SAVs’ 15
features. Because most of the population variance cannot be attrib-
uted to the first few components, they cannot replace the original
variables without loss of information. This analysis validates that
there is minimal redundancy in our dataset and further supports the
use of the selected features in the subsequently chosen ML model.

In addition to the PCA, Pearson correlations were calculated be-
tween all pairs of features, as depicted in Supplementary Figure S5.
The top features that have the highest correlation with clinical
scores are the wild-type PSIC, D PSIC, functional impact score and
variation number, which are all sequence-based features. Four pairs
of features have a (negative) correlation >0.5. The wild-type PSIC
and DPSIC have a correlation of 0.66, the wild-type PSIC and vari-
ation number have a negative correlation of �0.59, the solvent ac-
cessible surface area (SASA) and mechanical stiffness have a
negative correlation of �0.53 and the mutant reference energy and
mutant statistical scoring function (SSF) have a negative correlation

Variation Number Histogram XGBoost Model Performance Upon Excluding Certain
Features

(a) (b)

Fig. 1. Feature validations. (a) A comparison of variation number histograms for the pathogenic and neutral SAVs. Among the 22 639 selected SAVs, 9743 SAVs were neutral

and 10 564 SAVs were pathogenic. The mean variation number for the pathogenic SAVs was 0.12 while the mean variation number for the neutral SAVs was 0.32. (b) The

XGBoost model was trained 15 times, each time excluding one feature from training. The results are shown with the accuracy, balanced accuracy and F1 scores calculated

using the best model plotted on the y-axis
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of �0.52. All other pairs of features have (negative) correlations
smaller than 0.5. The correlation heatmap of the raw data suggests
that sequence features have a larger correlation with pathogenicity
than the structural and dynamic features. It also shows that all of
the features are largely independent of one another, and thus the in-
clusion of all of the features in our model is necessary.

To illustrate the necessity of incorporating the variation number
into our model, we trained our model 15 times, each time excluding
one feature from training. After training 15 times, we obtained 15
models, and each model corresponds to the best predictive model
with one specific feature excluded. We subsequently calculated the
corresponding accuracy, balanced accuracy and F1 scores associated
with each model, and the results are shown in Figure 1b. When vari-
ation number was excluded from the predictive pipeline, accuracy,
balanced accuracy and F1 score dropped �3%, the second-biggest
drop observed when compared with the drops that accompanied
excluding other features. Thus, the inclusion of variation number as
a feature is necessary.

3.2 ML pipeline
A classification model is intended for predicting whether an SAV is
pathogenic (Score 1) or non-pathogenic (Score 0). TPOT recom-
mended the XGBoost Classifier, which achieved the highest accur-
acy of 0.859, as the most suitable ML method for our dataset (Chen
and Guestrin, 2016; Le et al., 2020). The optimized XGBoost
classifier has a learning rate of 0.1. Feature importance scores
(Supplementary Fig. S6) showed that DPSIC has the highest weight,
followed by FIS, wild-type PSIC and variation number, which are all
sequence-based features. This is all in accordance with the feature
correlation heatmap (Supplementary Fig. S5). All of the other fea-
tures had smaller, but similar importance values.

3.3 Predictive power of the model
A total of 22 639 SAVs were extracted from ClinVar. The perform-
ance of LYRUS was tested using 10-fold cross-validation with the
ClinVar dataset. Figure 2 shows the receiver operating characteristic
(ROC) curve and the precision–recall (PR) curve for the 10-fold
cross-validation for LYRUS. The mean area under the receiver oper-
ating characteristic (AUROC) is 0.932 and the mean area under the
precision–recall (AUPR) is 0.935. We also plotted both the ROC
and PR curves for the other 13 VEPs (Supplementary Fig. S7).
REVEL had a slightly higher AUROC of 0.937 than LYRUS.
REVEL, M-CAP and Rhapsody also had a higher AUPR than
LYRUS. Supplementary Table S5 and Figure S8 present the

accuracy, sensitivity, specificity, F-measure (F1) and MCC for the 14
VEPs. LYRUS achieved the second highest accuracy, specificity, F-
measure and MCC. The sensitivity of LYRUS is lower than that of
PolyPhen2, PROVEAN, SIFT, MVP, M-CAP and REVEL.
Statistical analysis demonstrates that LYRUS performs comparably
to other VEPs.

In addition to the ClinVar dataset, performance analysis was
also done using the VariBench dataset. The VariBench_selected
dataset contains 8223 SAVs, which includes 3466 pathogenic SAVs
(42%) (Supplementary Table S1). Figure 3a shows the ROC curve,
and Figure 3b shows the PR curve for the VariBench_selected
dataset. LYRUS has an AUROC of 0.897, and an AUPR of 0.871.
M-CAP, MVP, FATHMM and SuSPect have higher AUROC and
AUPR than LYRUS. The accuracy, sensitivity, specificity, F-measure
(F1) and MCC are shown in Supplementary Table S6 and Figure S9.
LYRUS had lower accuracy than SuSPect, FATHMM and MVP.
The performance of LYRUS on the VariBench_limited dataset was
similar to that of the VariBench_selected dataset (Supplementary
Figs S10 and S11 and Table S7). Although LYRUS did not achieve
the best performance among all VEPs, LYRUS’s performance is
close to that of other VEPs in the field. LYRUS achieved lower ac-
curacy than SusPect, FATHMM, MVP and M-CAP. However, it is
worth noting that MVP and M-CAP are meta-predictors (Jagadeesh
et al., 2016; Qi et al., 2021b). SuSPect included 77 features (Yates
et al., 2014), which is far more than the 15 features incorporated in
LYRUS. Furthermore, we did not exclude those SAVs that have
been used as training data in the other VEPs from both the ClinVar
and VariBench datasets, thus all the other VEPs might have an ad-
vantage over LYRUS by having overlapping SAVs between the train-
ing and testing dataset.

3.4 Illustrative applications
To illustrate the effectiveness of LYRUS for identifying pathogen-
icity from neutral variants, we present a case study of two proteins,
PTEN and tumor protein 53 (TP53). Before being applied to PTEN
and TP53, LYRUS was retrained on datasets that excluded the SAVs
of these two proteins.

3.5 Pathogenicity of PTEN mutants
PTEN is associated with advanced-stage or metastatic cancers (Li
et al., 1997; Liaw et al., 1997; Li and Sun, 1997). LYRUS was
applied to a dataset of 7657 (403�19) SAVs of PTEN. PTEN
(UNIPROT: P60484) has 403 amino acids. However, the complete
X-ray crystal structure for PTEN is unavailable. The PDB 1D5R

Area under the ROC Curve (AUC) Area under the PR Curve (AUPR)

(a) (b)

Fig. 2. Comparison of the ROC and PR curves of LYRUS using 10-fold cross-validation with the ClinVar dataset. (a) ROC curves for each fold of the 10-fold cross-validation,

the mean and the standard deviation. (b) PR curves for each fold of the 10-fold cross-validation, the mean and the standard deviation
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structure was used as a template to simulate PTEN using the
Robetta server (Song et al., 2013). Simulated structures were used
for the PTEN amino acids 1–13, 282–312 and 352–403, which are
missing from the crystal structure. The prediction results for PTEN
are shown in Supplementary Figure S12. Most SAVs in PTEN are
predicted to be pathogenic, but all possible 342 mutants from
Thr286 to Ser305 except Asn292 and Gly293 were predicted to be
neutral. These positions are all located on the surface of the protein
(Supplementary Fig. S13a), and the neutral predictions are due to
their low DPSIC scores, negative or small positive DDGfold values,
large SASA values, low stiffness values and large MSD values.

There are 110 PTEN SAVs with a ‘review star’ of at least one in
ClinVar (Landrum et al., 2018). The 14 VEPs were evaluated on
these 110 SAVs. The results are listed in Supplementary Table S8
and Figure S14. All the VEPs have similar performance, which may
be caused by an imbalance of the dataset, as 108 out of 110 SAVs
are pathogenic. We further examine the SAVs whose pathogenicity
is incorrectly predicted by LYRUS. There are four false negative
SAVs: R15K, Y16H, P246L and R335Q (Supplementary Fig. S13b).
R15K is predicted to be neutral given its low DPSIC and WT PSIC
values. DPSIC scores indicate the difference between the profile
scores [obtained from computing the profile matrix (Sunyaev et al.,
1999)] of the two allelic variants in the polymorphic position
(Adzhubei et al., 2010). Large positive values of this difference sug-
gest that the studied substitution is rarely or never observed in the
protein family. R15K’s small positive DPSIC value implies that this
specific substitution is frequently observed in the protein family and
hence less likely to be pathogenic (Sunyaev et al., 1999). The same
rationale can be used to explain the remaining three false negative
predictions (i.e. Y16H, P246L and R335Q) even though their posi-
tive DDGfold values would suggest that they are destabilizing muta-
tions. Interestingly, variation numbers of all four SAVs are relatively
low, indicating that these four sites are highly conserved. This find-
ing also demonstrates the efficacy of variation number in pathogen-
icity prediction.

3.6 Pathogenicity of TP53 mutants
LYRUS was also applied to TP53, which encodes a multifunction
transcription factor whose loss promotes tumor formation (Vousden
and Lu, 2002). The predicted probabilities of pathogenicity of the
TP53 variants are presented in Supplementary Figure S15. The re-
gion spanning codons 100–290 is predicted to be highly pathogenic.
This region contains the core domain of the TP53 protein, and
mutations in the core domain can result in the loss of DNA binding
activity (Cho et al., 1994). In addition, more than 80% of somatic

TP53 mutations in human cancers occur in this region (Cho et al.,
1994; Olivier et al., 2010). These findings validate our predictions.
The performance of LYRUS was also compared with that of 13
other VEPs using 142 ClinVar entries (Supplementary Table S9 and
Fig. S16). LYRUS’s performance is comparable to other VEPs.
Furthermore, FATHMM, MVP and M-CAP achieved a sensitivity
of 1.0 but also a specificity of 0, which can be a concern. There are
six false positive predictions by LYRUS: N263S, Y107H, R235S,
R110H, G293W and H296Y. These SAVs are located on the surface
of the protein and are hence solvent-exposed (Supplementary Fig.
S17a). They are all predicted to be pathogenic due to their high
DPSIC and SASA values and low DE and FIS values. Additionally,
R337H, a variant located on an a-helix, was falsely predicted to be
benign (Supplementary Fig. S17b).

3.7 Assessment of VEPs using DMS data
Missense variant databases curated from the literature rely on man-
ual curation for data extraction and entry; the curation process of
VariBench could also introduce systematic biases (Qi et al., 2021b).
To assess the performance of LYRUS in an unbiased fashion, we
evaluated its predictive power on six independent DMS datasets
that were not used for the development of LYRUS (Supplementary
Table S10). Benchmarking DMS datasets to serve as performance
estimators is backed up by two rationales: first, DMS experiments
yield large-scale datasets that can directly reveal damaging muta-
tions, and second, these datasets are entirely independent of any
training and testing data used by the VEPs [except Envision (Gray
et al., 2018)]. Some VEPs failed to generate prediction results for
some proteins or some SAVs. This can occur due to insufficiently
deep multiple sequence alignments, mapping errors, lacking experi-
mental PDB structural files or insufficient structural file coverage.
To obtain a measure of relative performance for each predictor, we
calculated Spearman’s correlation coefficient between independent
DMS scores for PTEN and TP53 and the predictions of LYRUS and
14 other VEPs (Figs 4 and 5). LYRUS was the overall top-
performing method for predicting PTEN and TP53 DMS results,
showing the overall highest correlations out of all VEPs. It ranked
within the top five predictors for all three PTEN DMS datasets and
within the top three for all three TP53 DMS datasets. In addition, it
consistently exhibited a strong correlation with every DMS dataset
(Supplementary Fig. S18). Mighell et al. provided both their full fit-
ness scores [pten(b)] and a filter for high-quality results [pten(high-
qual_b)] for PTEN (Mighell et al., 2018). In cases with lower- and
higher-quality data, we found that the filtered high-quality results

(a) (b)

Area under the ROC Curve (AUC) Area under the PR Curve (AUPR)

Fig. 3. Comparison of ROC and PR curves of LYRUS and 12 other VEPs using VariBench_selected dataset. (a) ROC curves for the 13 VEPs. LYRUS has an AUROC of 0.891,

which is the fifth highest among all the VEPs. (b) PR curves for the 13 VEPs
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have a slightly higher average correlation with the VEPs (Fig. 4b and
c).

Of all VEPs, FATHMM produced the most divergent results,
generating predictions with by far the highest correlation with TP53
DMS datasets but having unexpectedly low correlations for PTEN
(Figs 4 and 5). This may result from overfitting the predictor to spe-
cific proteins, given the enrichment of TP53 mutations in the human
disease databases (Shihab et al., 2013) compared to other proteins
in the studies. Despite using the FATHMM score as a feature in
training our model, LYRUS did not exhibit inflated performance
(Supplementary Fig. S18). The Spearman’s correlations between
FATHMM’s predictions and the experimental results of three PTEN
DMS datasets were 0.046, 0.219 and 0.242 (Fig. 4). On the other
hand, Spearman’s correlations between FATHMM’s predictions
and the experimental results of three TP53 DMS datasets were
0.731, 0.460 and 0.481 (Fig. 5). Undoubtedly, there is a drastic dif-
ference in prediction accuracy between PTEN and TP53 DMS data-
sets against which FATHMM were benchmarked. However, the
Spearman’s correlations between LYRUS and six DMS measure-
ments were 0.422, 0.434, 0.467, 0.568, 0.451 and 0.476

(Supplementary Fig. S18). The results exhibited both consistency and
accuracy. Some VEPs, such as UNEECON and REVEL, despite
achieving notable correlations with the PTEN and TP53 experimental
DMS scores, could not generate predictions for SAVs that could not
be produced via single nucleotide changes, thereby reducing predic-
tion coverage by 70% (Supplementary Figs S19 and S20). Among six
independent DMS performance assessments, the two most widely
used VEPs, PolyPhen-2 and SIFT, did not show exceptional perform-
ance against the PTEN and TP53 DMS datasets. However, it is inter-
esting that one of the VEPs we assessed, Envision (Gray et al., 2018),
was trained with a supervised learning approach using DMS data ra-
ther than labeled pathogenic and benign variants from any human
mutation databases. Despite this advantage, Envision only had a
moderate performance on the PTEN and TP53 DMS datasets, con-
sistent with the results in Livesey et al. However, when evaluating
methods by the numerical difference between experimental and pre-
dicted variant effect scores [mean squared error (MSE)], Envision per-
formed best, immediately followed by PROVEAN (Supplementary
Figs S21–S26). Envision’s low MSE was primarily attributed to the
overall distribution of prediction scores resembling the distribution of

Correlations between VEPs and
pten(a) DMS measurements

Correlations between VEPs and
pten(b) DMS measurements

Correlations between VEPs and
pten(highqual b) DMS measurements

(a) (b) (c)

Fig. 4. VEPs benchmarked against three PTEN DMS datasets (a) Spearman’s correlation (absolute value) between pten(a) DMS results, and 15 VEPs. The top three performing

predictors are: PROVEAN, REVEL and SuSPect. (b) Spearman’s correlation (absolute value) between pten(b) DMS results, and 15 VEPs. The top three performing predictors

are: SuSPect, PROVEAN and LYRUS. (c) Spearman’s correlation (absolute value) between pten(highqual_b) DMS results, and 15 VEPs variants. The top three performing pre-

dictors are: SuSPect, PROVEAN and MutationAssessor

Correlations between VEPs and
p53(wt nutlin) DMS measurements

Correlations between VEPs and
p53(null nutlin) DMS measurements

Correlations between VEPs
and p53(null etoposide) DMS
measurements

(a) (b) (c)

Fig. 5. VEPs benchmarked against three TP53 DMS datasets (a) Spearman’s correlation (absolute value) between p53(wt_nutlin) DMS results and 12 VEPs. The top three

performing predictors are: FATHMM, LYRUS and M-CAP. (b) Spearman’s correlation (absolute value) between p53(null_nutlin) DMS results and 12 VEPs. The top three

performing predictors are: FATHMM, LYRUS and MVP. (c) Spearman’s correlation (absolute value) between p53(null_etoposide) DMS results and 12 VEPs variants. The top

three performing predictors are: MVP, FATHMM and LYRUS
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DMS experimental scores (Supplementary Figs S21–S26). LYRUS
and other ML VEPs exhibited distributions skewed toward the high
effect, indicating better recognition of high effect SAVs. LYRUS was
trained on binary classification data (benign or pathogenic); neverthe-
less, these comparisons have shown that its predictions correlate
strongly with effect strength. To a degree, the DMS data replicated
this finding, highlighting that even methods trained for classification
capture aspects of effect strength.

4 Discussion

This study introduces LYRUS, an ML approach with the optimal
pipeline selected by TPOT for predicting the pathogenicity of human
SAVs. We aimed to develop an algorithm for predicting the clinical
pathogenicity of human SAVs, thus, the ClinVar database was used
to generate the training dataset. Most methods in the field, such as
PolyPhen2 and FATHMM, were designed to predict the effects of
SAVs on protein function rather than their clinical significance
(Adzhubei et al., 2010; Shihab et al., 2013). Functional effects and
clinical significance are not one and the same. However, in order to
compare the predictions across a wider range of methods, we pur-
posefully disregarded this subtlety. Databases, such as ClinVar, may
involve potential bias from human curators, thus, we added the
VariBench dataset as well as six additional DMS datasets to test the
performance of the model in an unbiased manner.

Four pairs of features used by LYRUS have correlation coeffi-
cients higher than 0.5. The wild-type PSIC and DPSIC have a correl-
ation of 0.66, which is expected since the model of sequence family
evolution that computes the scores was constructed with the as-
sumption that substitution probabilities are position-dependent
(Sunyaev et al., 1999). The wild-type PSIC and variation number
have a negative correlation of �0.59, which is intuitively reasonable
considering that the lower the variation number, the more conserved
a given amino acid is at a particular position, and the higher the
PSIC score, the more likely this particular amino acid occurs at this
position. SASA and mechanical stiffness have a negative correlation
of �0.53, because buried residues with less SASA are more resistant
to external pulling forces, thus exhibiting high mechanical stiffness.

The XGBoost classifier was picked by TPOT as the best model
for our dataset. The XGBoost classifier minimizes data-overfitting
issues (Chen and Guestrin, 2016). A large number of false positives
are often a consequence of overfitting, and by using the XGBoost
classifier, this issue was minimized in LYRUS, as we observed simi-
lar classification rates in both the ClinVar and the VariBench data-
set. To prevent the Type I and II data circularity issues mentioned in
Grimm et al. (2015), we removed the SAVs present in the ClinVar
training dataset from the VariBench dataset. We also removed those
SAVs whose protein structure was present in the ClinVar dataset
from the VariBench dataset to minimize data leakage issues. LYRUS
achieved the second highest accuracy, specificity, F-measure and
MCC using the ClinVar dataset. It also has comparable performance
to that of other VEPs using the VariBench dataset, as it has the
fourth highest accuracy in the VariBench_selected, and fifth highest
accuracy in the VariBench_limited datasets. We wanted to point out
that there might be overlaps between the VariBench dataset and the
training dataset used by other VEPs. Thus, for the VariBench data-
set, other VEPs might have an advantage over LYRUS. M-CAP,
MVP and SuSPect exhibited better performances than LYRUS
benchmarked against the VariBench_selected and Vari
Bench_limited datasets. However, M-CAP and MVP are meta-
predictors, which incorporate the prediction scores from many dif-
ferent VEPs and are designed to outperform other supervised and
unsupervised learning methods. Meta-predictors, as evaluated by
Grimm et al., may show better performance due to the Type I circu-
larity issue, which occurs when the data from the training set are re-
used for assessing predictor performance. These predictors may
amplify this issue as the various methods they are built from often
use different overlapping training sets. Moreover, they both may
suffer from overfitting, as illustrated in their inconsistent predictive
performances when benchmarked against six DMS datasets.
Furthermore, SuSPect may also suffer from overfitting issues as it

was trained using 77 predictive features. If too many features were
used when training a method without enough training data, the
learned hypothesis might fit the training dataset well but fail to gen-
eralize to new examples (Ying, 2019). This can be seen in SuSPect’s
strong correlation between its predictions and PTEN DMS experi-
mental values but weak correlations between its predictions and
TP53 DMS experimental values. Additionally, FATHMM may suf-
fer from label leakage issues shown in its divergent prediction accur-
acy benchmarked against PTEN DMS datasets compared to against
TP53 datasets. This finding was consistent with the results presented
in Grimm et al. (2015).

The most predictive features in LYRUS are sequence-based fea-
tures. Studies have shown the importance of using amino acid con-
servation for pathogenicity prediction, which explains the high
impact of sequence-based features in LYRUS (Adzhubei et al., 2010;
Bromberg et al., 2008; Choi et al., 2012). The high impact score of
the variation number also suggests the effectiveness of this novel fea-
ture for categorizing pathogenic and non-pathogenic SAVs.
Although structural and dynamics-based features have lower
weights in LYRUS, these features are still valuable to include.
Existing studies have shown that combining information gained
from multiple sequence alignment and 3D protein structures
increases prediction performance (Bromberg et al., 2008; Saunders
and Baker, 2002). Among the structural and dynamic features,
changes in folding free energies and the location of binding sites
have the highest weights in LYRUS. In fact, several computational
approaches have been developed to predict DDGfold in order to link
it to the pathogenicity of mutations, which suggests the importance
of incorporating DDGfold into LYRUS (Peng and Alexov, 2016;
Petukh et al., 2015). Catalytic residues, which comprise drug bind-
ing sites, are often conserved during evolution, and mutations of
these residues can be detrimental (Porter et al., 2004). This suggests
the importance of incorporating information regarding the location
of binding sites into pathogenicity predictors.

Although studies have demonstrated the utility of considering
the equilibrium dynamics of proteins as a mean of improving the
predictive ability of pathogenicity predictors, our study reveals that
dynamics-based features did not significantly contribute to the pre-
dictive power of LYRUS. One reason that dynamics-based features
have a low impact score in LYRUS might be the limitations imposed
by the models we used to calculate them. For example, the main dis-
advantage of the anisotropic network model is its inability to ac-
count for anharmonic motions or multimeric transitions driven by a
protein’s slowest collective modes (Doruker et al., 2000). The use of
more sophisticated dynamics models may better capture the protein
dynamics and further improve the prediction accuracy. The inclu-
sion of other dynamic models is of future interest.

Another area for future improvement is the incorporation of
structural changes caused by mutations into the model. LYRUS pre-
dicts the pathogenicity of SAVs based on the original protein struc-
ture instead of the mutated one. It has been proven that mutations
promoting protein misfolding contribute to a variety of human dis-
eases. Incorporating information related to structural changes, such
as protein root mean square deviations, which reflect structural
changes, may facilitate pathogenicity prediction (Doss and Zayed,
2017; Mishra et al., 2017; Studer et al., 2013). Other thermodynam-
ic information, such as changes in binding free energies, may also
enhance the accuracy of the model. The prediction method may add-
itionally be extended to other types of DNA mutations, such as
insertions and deletions, which may result in frameshifts.

In this study, a small part of the PTEN structure was simulated.
However, because our method relies heavily on the PDB structure of
the protein, we would not recommend applying LYRUS to a protein
whose experimental PDB structure is unavailable. Thus, our method
cannot be applied to proteins, such as BRCA1, which is a limitation
of our approach. The inability to predict some variants are due to
the lack of the experimental structures. With advances in protein
folding algorithms, such as AlphaFold, it may become possible to
predict the pathogenicity of SAVs using predicted structures (Senior
et al., 2020). Future work is needed to generate a pipeline, which
can be applied to simulated structures. LYRUS is built upon existing
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software (Supplementary Table S2), and the most computationally
expensive part of the method is the calculation of DDGfold using
FoldX.

Many DMS experiments included SAVs that are not accessible
via single nucleotide changes. Some VEPs, such as UNEECON,
REVEL, M-CAP, MVP, MutationAssessor and PrimateAI, do not
produce predictions for these variants. Some VEPs incorporate fea-
tures derived from experimentally determined protein structures
into their predictions. Rhapsody, for instance, requires a PDB struc-
ture to make its predictions and uses features representing the 3D
environment of the mutation. In the event that a PDB structural file
is lacking or the structure does not span the entire protein, the soft-
ware will either fail to generate results or generate incomplete results
(i.e. no prediction will be yielded for certain SAVs). As inferred by
Grimm et al., FATHMM’s apparently exceptional performance
observed when benchmarked using Grimm et al.’s VariBench was
likely due to Type 2 circularity-associated inflation (Grimm et al.,
2015). Despite incorporating the FATHMM score as a feature in
training our model, LYRUS did not suffer from the same issue. One
noticeable challenge for DMS is the development of an assay to
measure the functional impact (Starita et al., 2017). Evaluating pro-
teins with multiple functions requires multiple assays. Even for the
same assay, specific experimental conditions might influence meas-
urements (Melnikov et al., 2014). In addition, variants that could af-
fect molecular function as assayed by DMS are sometimes clinically
classified as benign. Considering all of the above and the fact that
LYRUS was benchmarked against pathogenic human mutation
datasets, LYRUS still consistently produced excellent performance
for a total of six PTEN and TP53 DMS datasets.

5 Conclusion

This study presents an ML pipeline (LYRUS) for predicting human
SAV pathogenicity that incorporates variation number along with
14 other features. LYRUS attained an accuracy of 0.859 using an
autoML-selected (TPOT) XGBoost classifier. The XGBoost model
suggests that sequence-based features have larger weights than struc-
tural and dynamic features in SAV pathogenicity prediction. The
variation number, a unique feature, we employed, is negatively cor-
related with clinical pathogenicity, and has the fourth highest weight
among all of the features studied here. Performance analysis using
both the ClinVar and VariBench datasets showed that LYRUS per-
formed comparably to the best of 13 other VEPs that were bench-
marked in this work. Performance analysis using PTEN and TP53
DMS datasets showed that LYRUS consistently exhibited strong
predictive power. The scripts for LYRUS are available at https://
github.com/jiaying2508/LYRUS.
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