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Abstract: The effects of modified atmosphere packaging (MAP) on the growth and spoilage charac-
teristics of Pseudomonas lundensis LD1 and Shewanella putrefaciens SP1 in chilled chicken at 0–10 ◦C
were studied. MAP inhibited microbial growth, TVB-N synthesis, and lipid oxidation. The inhibitory
effect of MAP became more significant as the temperature decreased. The kinetic models to describe
the growth of P. lundensis LD1 and S. putrefaciens SP1 at 0–10 ◦C were also established to fit the
primary model Gompertz and the secondary model Ratkowsky. The models had a high degree of fit
to describe the growth of dominant spoilage bacteria in chilled chicken. The observed numbers of P.
lundensis LD1 and S. putrefaciens SP1 at 2 ◦C were compared with the predicted numbers, and the
accuracy factor and bias factor ranged from 0.93 to 1.14. These results indicated that the two models
could help predict the growth of P. lundensis and S. putrefaciens in chilled chicken at 0–10 ◦C. The
analyzed models provide fast and cost-effective alternatives to replace traditional culturing methods
to assess the influence of temperature and MAP on the shelf life of meat.

Keywords: chilled chicken; Pseudomonas lundensis; Shewanella putrefaciens; modified atmosphere
packaging; Gompertz; Ratkowsky

1. Introduction

Chilling chicken can ensure its freshness to the greatest extent. Chilled chicken is
highly popular because of its good tenderness and taste. However, the preservation of
chilled chicken still faces many challenges [1]. High water activity and the high protein char-
acteristics of chilled chicken provide favorable conditions for the growth of microorganisms,
which can easily spoil chilled chicken. Among them, Pseudomonas and Shewanella are the
most common dominant spoilage bacteria during the later stage of storage because they
can tolerate low storage temperatures and rapidly grow during storage [2]. Pseudomonas is
a psychotrophic aerobic bacterium with a strong metabolic capacity, which can hydrolyze
the protein and lipolysis of chilled chicken to produce harmful volatiles and can grow
under modified atmosphere packaging (MAP) [3]. Shewanella is another major spoilage
bacterium in chilled chicken. It belongs to the typical psychrophilic facultative anaerobe,
which can produce hydrogen sulfide, hydrolyze extracellular enzymes, and accelerate the
spoilage of high-protein chilled chicken, thereby shortening its shelf life.

Modified atmosphere packaging (MAP) has been increasingly utilized in the storage
and preservation of meat and meat products [4]. Currently, modified atmosphere packaging
(MAP) combined with refrigeration is increasingly used for the storage and preservation of

Foods 2022, 11, 2824. https://doi.org/10.3390/foods11182824 https://www.mdpi.com/journal/foods

https://doi.org/10.3390/foods11182824
https://doi.org/10.3390/foods11182824
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/foods
https://www.mdpi.com
https://doi.org/10.3390/foods11182824
https://www.mdpi.com/journal/foods
https://www.mdpi.com/article/10.3390/foods11182824?type=check_update&version=1


Foods 2022, 11, 2824 2 of 13

meat and meat products. The optimum gas environment for chilled chicken preservation is
80% N2 and 20% CO2. CO2 inhibits the respiration of aerobic bacteria and reduces their
growth in meat by inhibiting their metabolism and cell division, thereby preventing meat
spoilage [5]. However, modified atmosphere packaging has also obvious shortcomings.
Excess carbon dioxide can cause the package to collapse. However, a less amount of CO2
such as 20% CO2/80% N2 does not completely inhibit the growth of microorganisms.
Studies have reported that despite the high carbon dioxide levels and no residual oxygen
measured in modified atmosphere packaging (MAP), vigorous growth of Pseudomonas
can still be found in meat [3].

MAP combined with low temperatures is a more common way to preserve chilled
meat [6]. The commonly used storage temperature is 0–4 ◦C. According to Guerra Monteiro
et al., MAP with a gas composition of 60% N2 and 40% CO2 could prolong the freshness of
tilapia fillets by 9 days at 4 ◦C. MAP is a very promising technology [7]. Jiménez et al. found
that, in samples stored at 4 ◦C, MAP extended shelf life to 21 days, compared with 5 days for
NP [8]. However, temperature fluctuations often occur at different stages of the food supply
chain, including storage, transportation, and sale. Especially during the transportation
and sale stage, it is difficult to keep the storage temperature at 0–4 ◦C all the time due to
defective refrigeration equipment. It will frequently fluctuate within a certain temperature
range (0–10 ◦C), which will cause the storage of chilled chicken to deviate from the standard
or recommended temperature, and have a cumulative adverse effect on the quality of stored
food, thereby accelerating the deterioration of chilled chicken [9]. Compared with MAP,
storage temperature fluctuations have the greatest impact on microbial growth kinetics.
Studies have found that a sharp decrease in shelf life can be observed in foods stored at
variable temperatures compared with those stored at constant temperatures, which is a
major cause of food damage.

However, it is not unrealistic to perform a specific analysis of the microbial counts of
each batch of chilled chicken during transportation and sale. Understanding the dynamics
of microbial populations within a certain temperature range during storage is important to
maintain the quality and safety of frozen chicken. To this end, a dynamic model should be
developed to elucidate the effect of variable temperature on major spoilage bacteria and
predict the shelf life of chilled chicken [10–12]. At present, the modified Gompertz model
has shown great potential for the dynamic prediction of microorganisms in food. It has
the advantages of fast detection speed, high efficiency, and economic convenience. Li et al.
successfully confirmed its superior performance in the growth of Pseudomonas [13].

This study first evaluated the potential of MAP and low temperature to control
the growth of two dominant spoilage bacteria (Pseudomonas lundensis LD1 and Shewanella
putrefaciens SP1). The growth kinetics of the two analyzed strains were established under NP
and MAP at 0–10 ◦C. Gompertz was selected to analyze the growth data of the two strains
at 0 ◦C, 4 ◦C, and 10 ◦C under NP and MAP. The effects of environmental factors on the
parameters of the first-order model were described using the Ratkowsky model as a second-
order model. The growth data (Af and Bf) at 2 ◦C were used to validate the established
model. The purpose of this study was to predict the shelf life of chilled chicken under NP
and MAP in the range of 0–10 ◦C.

2. Materials and Methods
2.1. Preparation of Bacterial Suspension

P. lundensis LD1 and S. putrefaciens SP1 were preserved in the laboratory. These
two strains were inoculated into BHI broth and incubated at 30 ◦C in a shaker (200 rpm)
overnight. The cultures were transferred to fresh media for further culture until OD600
reached 1.0. Subsequently, 5 mL bacterial cultures were collected via centrifugation
(8000× g, 3 min), washed with physiological saline (PS), and resuspended in 5 mL of
PS. The bacterial cultures were diluted to the correct concentration for later use.
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2.2. Sample Preparation and Inoculation

Common fresh chicken breasts were harvested from a supermarket in Nanjing, China.
The minced chicken breasts were divided into small portions of 20 g. All the samples were
sterilized via cobalt-60r radiation treatment (18 kGy). The above-activated bacteria were
inoculated into sterilized samples at a final concentration of 3–4 lg CFU/g. NP (air) and
MAP (N2/CO2, 80%/20%) were then prepared. Both MAP and NP are encapsulated using
polypropylene films. The samples were kept at 0 ◦C, 2 ◦C, 4 ◦C, 8 ◦C, and 10 ◦C for different
lengths of time, depending on their storage temperature. The samples were analyzed every
2 days at 8 ◦C and 10 ◦C, followed by every 3 days at 0 ◦C, 2 ◦C, and 4 ◦C. At least three
samples in NP and MAP were randomly selected from subsequent microbial spoilage in
chicken meat.

2.3. Microbiological Analysis

About 20 g of minced chicken meat was homogenized in sterile blender bags with
180 mL of PS for 1 min to detach the microorganisms from the chicken breast. The buffer was
transferred from each of the bags into sterile 10 mL centrifuge tubes for 10 times gradient
dilution. The viable counts of P. lundensis LD1 and S. putrefaciens SP1 were determined
using appropriate dilutions on LB agar.

2.4. Detection of Corruption Characteristics
2.4.1. Total Volatile Basic Nitrogen (TVB-N) Assay

The chicken breast samples were mixed with distilled water and homogenized to
uniformly disperse the sample solution. The samples were then filtered for further mea-
surement. The TNB-N was analyzed according to the national GB micro-diffusion method
standard (GB 5009.228-2016).

2.4.2. Lipid Oxidation

The chicken breast was divided into the corresponding number of samples with 5 g as
the standard. Thiobarbituric acid-reactive substances (TBARS) were selected to determine
lipid oxidation through the procedures used in national standards (GB 5009.181-2016).

2.5. Growth Kinetics and Mathematical Modeling
2.5.1. Primary Models

In this study, a modified Gompertz model was selected to match the initial data of
the growth of P. lundensis LD1 and S. putrefaciens SP1 in chicken meat under the storage
conditions of 0–10 ◦C.

This sigmoid function model can accurately describe the relationship between time
and the growth of microorganisms under constant environmental conditions, and the
parameters of the modified Gompertz model are physiologically meaningful.

The modified Gompertz model equation is as follows:

P (t) = p0 + (pmax − p0)× exp {− exp [
µmaxe

pmax−p0

(λ− t) + 1]}

In the above formula, λ is the lag time (h); µmax represents the maximum specific
growth rate of microbial growth (lg CFU/g/h); P (t) is the number of viable bacteria at
a certain time t (lg CFU/g); p0 and pmax are the initial and maximum numbers of viable
bacteria (lg CFU/g), respectively.

The performance of the primary model used in this study was evaluated by obtaining
the MSE using the following equation:

MSE = ∑n
i=1

(obs− pred)2

n− q
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where obs is the observed value, pred is the predicted value, q is the number of model
parameters, and n is the number of observations.

2.5.2. Secondary Models

The Ratkowsky model was used to visually describe the effect of the temperature
on the growth kinetic parameters of P. lundensis LD1 and S. putrefaciens SP1 in the first-
level model.

The Ratkowsky model equation is as follows:

√
µmax= bµmax × (T− T0)

1√
λ
= b 1√

λ

× (T− T1)

In the above formula, T is the storage temperature; T0 and T1 are the theoretical
minimum growth temperatures of dominant spoilage bacteria, that is, µmax at these tem-
peratures is 0; bµmax and b 1√

λ

are the parameters of the equation.

2.5.3. Validation of the Predictive Models

This study used the accuracy factor (Af) and the bias factor (Bf) to estimate the per-
formance of the predictive model. Af is an index used to evaluate the prediction accuracy
of the prediction model, and Bf is an index used to evaluate the difference between the
predicted value and the measured value. The equations for Af and Bf are as follows:

Af = 10[∑ |pred−obs|]/n

Bf = 10[∑ (pred−obs)]/n

where pred, obs, and n are the predicted value, the observed value, and the number of
repetitions of the observed data, respectively.

2.6. Curve Fitting and Statistical Analysis

SPSS 11.0 (IBM, Armonk, NY, USA) was used for statistical analysis. The viable
counts were determined using the natural logarithm (lg) of dominant spoilage bacteria.
MATLAB2019B (fitting toolbox) and Origin 8.5 were used for modeling and simulation.
This method could quickly and accurately predict the growth of dominant spoilage bacteria
in chilled chicken at different temperatures through a combination of data and charts.
The goodness of fit was assessed using the coefficient of determination (R2), whereas the
performance of the model was analyzed using the mean squared error (MSE).

3. Results and Discussion
3.1. Microbiological Analyses of Chilled Chicken

As dominant spoilage bacteria, the numbers of P. lundensis LD1 and S. putrefaciens
SP1 are important indicators to determine the quality of chilled chicken. As shown in
Figure 1, the initial count of P. lundensis LD1 inoculated into the chilled chicken samples
was 3.86 lg CFU/g. After 6 days of storage at 0 ◦C, the viable counts in the NP group
reached 7.28 lg CFU/g, which exceeded the national limit of microorganisms in chilled
meat (7 lg CFU/g) [1]. However, the number in the MAP group was only 4.69 lg CFU/g,
which still met the edible standard. In addition, changes in the number of S. putrefaciens
SP1 in the chilled chicken samples at 0 ◦C were monitored. On the 9th day, the number of
S. putrefaciens SP2 in the NP group reached 7.12 lg CFU/g. In the MAP group, similar to P.
lundensis LD1, a final concentration of S. putrefaciens SP1 reached 6.37 lg CFU/g after 9 days
of storage. Thus, the growth of S. putrefaciens SP2 was slower than that of P. lundensis LD1.
This might be due to the fact that P. lundensis LD1 is a psychotrophic bacterium that can
adapt to a low-temperature environment.



Foods 2022, 11, 2824 5 of 13Foods 2022, 11, x FOR PEER REVIEW 6 of 15 
 

 

 
Figure 1. Growth of P. lundensis and S. putrefaciens in chilled chicken at 0 °C, 4 °C, and 10 °C. Low-
ercase letters: significance of dominant spoilage bacteria at different storage times. 

3.2. Analysis of Spoilage Characteristics 
3.2.1. TVB-N during Storage 

Chilled chicken contains a large amount of protein. Due to the microbial and endog-
enous enzyme activity, protein is degraded, resulting in the production of TVB-N. The 
accumulation of TVB-N can make the surface of chilled chicken moist and sticky, inelastic, 
and emit a bad smell. Thus, TVB-N is one of the evaluation indexes of meat corruption 
[16]. Figure 2 displays the TVB-N value in the different packaging methods. After 9 days 
of storage at 0 °C, the TVB-N values in the chicken samples of the NP and MAP groups 
inoculated with P. lundensis LD1 were 42 and 33.25 mg/100 g, respectively. Compared 
with the NP group, the TVB-N value of the MAP group decreased by 8.75 mg/100 g (p < 
0.05). the TVB-N of the NP group inoculated with S. putrefaciens SP1 was 40 mg/100 g, 
which was 9.7 mg/100 g higher than that of the MAP group (p < 0.05). 

Previous studies reported that MAP with high concentrations of carbon dioxide helps 
inhibit the growth of microorganisms that produce volatile compounds, such as Gram-
negative aerobic bacterium Pseudomonas [17]. At different storage temperatures, the TVB-
N of the MAP group was lower than that of the NP group. On the basis of the acceptability 
of human senses (taste) and the analysis of chicken spoilage and freshness, for the chicken 
samples stored in the air, a TVB-N value of 40 mg/100 g has been recommended as the 
upper limit of chilled chicken spoilage and shelf life indicators [18]. The results of this 
study revealed that MAP and low temperatures had a particularly remarkable effect on 
the TVB-N value. For example, the TVB-N of the chilled chicken samples inoculated with 
P. lundensis LD1 reached 33.8 mg/100 g when stored at 10 °C for 4 days. It took 6 days to 
reach the same TVB-N value at 0 °C, possibly because a higher storage temperature facil-
itates the enhancement of enzyme activity and microbial metabolism. However, this rapid 
accumulation of TVB-N was less affected by MAP with the increase in temperature. Mi-
crobial growth is also affected by low temperatures; low microbial metabolism leads to 
reduced protein and fat degradation. Endogenous enzyme activity is also inhibited at low 
temperatures, reducing protein breakdown. The observation of low-temperature bacteri-
ostasis was consistent with the results reported in the literature [19]. MAP could also re-
duce TVB-N production, which might be mainly achieved by reducing microbial growth. 

Figure 1. Growth of P. lundensis and S. putrefaciens in chilled chicken at 0 ◦C, 4 ◦C, and 10 ◦C. Lowercase
letters: significance of dominant spoilage bacteria at different storage times.

At 4 ◦C, the viable count of P. lundensis LD1 in the NP group was observed to be 8.5 lg
CFU/g on day 4, which far exceeded the acceptable level of 7 lg CFU/g [1]. At the end of
storage on day 8, the maximum viable count of P. lundensis LD1 in the MAP group was
7.83 lg CFU/g. The growth rate of P. lundensis LD1 in the MAP group was slower than
that in the NP group. This result indicated that MAP inhibited the growth of P. lundensis
LD1. Over the 8-day storage time, the bacterial concentration of S. putrefaciens SP1 in the
NP group gradually but significantly increased. The final concentration of S. putrefaciens
SP1 was observed to be close to 8 lg CFU/g after storage of up to 8 days. For the MAP
group, the viable count was found to be only 6.49 lg CFU/g. Thus, MAP treatment at 4 ◦C
had a positive effect on preventing the growth of S. putrefaciens SP1. The growth of the
two dominant spoilage bacteria at 10 ◦C was different from that at low temperatures. With
the increase in storage temperature, the two strains in the NP group grew rapidly, and they
were more than 7 lg CFU/g after 2 days of storage in all the samples, which exceeded an
acceptable upper limit for fresh meat. They were no longer edible, and the final population
of the two strains was close to 10 lg CFU/g. MAP had little effect on the number of the
two dominant bacteria at 10 ◦C. The higher the temperature, the faster the respiration rate
of P. lundensis LD1 and S. putrefaciens SP1, and the weaker the antibacterial effect of MAP.

Research on reducing meat spoilage remains a formidable challenge. Controlling
the storage temperature and MAP are the two most important fresh-keeping methods
for chilled meat. The temperature is a key factor affecting the quality of meat. Appro-
priately lowering the temperature can slow down the rate of chemical reactions caused
by microorganisms and inhibit the activity of metabolic enzymes, thereby prolonging
the shelf life. Therefore, low-temperature storage [14] is the most commonly used and
most effective means of preservation. Near-freezing temperature storage (−2 ◦C) has been
proposed and verified in recent years to have a better preservation effect on chilled meat
compared with traditional chilling at 4 ◦C. In Asia, the shelf-life extension of frozen yellow
feather meat often relies on near-freezing storage (−2 ◦C) [15]. Studies have found that
this technology has a significant effect on maintaining the nutritional, textural, and sensory
qualities of meat, thereby inhibiting microbial growth and hindering harmful chemical
changes. Although low-temperature fresh-keeping technology has greatly advanced the
development of fresh-keeping methods, some of its defects cannot be ignored. Given
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the shortcomings of a single low-temperature preservation method, the current research
focused on several innovative and effectively combined technologies. For example, the
combination of low temperature and MAP technology has been explored and successfully
applied to chilled meat.

3.2. Analysis of Spoilage Characteristics
3.2.1. TVB-N during Storage

Chilled chicken contains a large amount of protein. Due to the microbial and en-
dogenous enzyme activity, protein is degraded, resulting in the production of TVB-N. The
accumulation of TVB-N can make the surface of chilled chicken moist and sticky, inelastic,
and emit a bad smell. Thus, TVB-N is one of the evaluation indexes of meat corruption [16].
Figure 2 displays the TVB-N value in the different packaging methods. After 9 days of
storage at 0 ◦C, the TVB-N values in the chicken samples of the NP and MAP groups
inoculated with P. lundensis LD1 were 42 and 33.25 mg/100 g, respectively. Compared with
the NP group, the TVB-N value of the MAP group decreased by 8.75 mg/100 g (p < 0.05).
the TVB-N of the NP group inoculated with S. putrefaciens SP1 was 40 mg/100 g, which
was 9.7 mg/100 g higher than that of the MAP group (p < 0.05).
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Previous studies reported that MAP with high concentrations of carbon dioxide helps
inhibit the growth of microorganisms that produce volatile compounds, such as Gram-
negative aerobic bacterium Pseudomonas [17]. At different storage temperatures, the TVB-N
of the MAP group was lower than that of the NP group. On the basis of the acceptability of
human senses (taste) and the analysis of chicken spoilage and freshness, for the chicken
samples stored in the air, a TVB-N value of 40 mg/100 g has been recommended as the
upper limit of chilled chicken spoilage and shelf life indicators [18]. The results of this
study revealed that MAP and low temperatures had a particularly remarkable effect on
the TVB-N value. For example, the TVB-N of the chilled chicken samples inoculated with
P. lundensis LD1 reached 33.8 mg/100 g when stored at 10 ◦C for 4 days. It took 6 days
to reach the same TVB-N value at 0 ◦C, possibly because a higher storage temperature
facilitates the enhancement of enzyme activity and microbial metabolism. However, this
rapid accumulation of TVB-N was less affected by MAP with the increase in temperature.
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Microbial growth is also affected by low temperatures; low microbial metabolism leads
to reduced protein and fat degradation. Endogenous enzyme activity is also inhibited
at low temperatures, reducing protein breakdown. The observation of low-temperature
bacteriostasis was consistent with the results reported in the literature [19]. MAP could also
reduce TVB-N production, which might be mainly achieved by reducing microbial growth.
At high temperatures, microbial growth was accelerated, and MAP had less inhibitory
effect on microorganisms.

3.2.2. Lipid Oxidation

Lipid oxidation is one of the key factors in the deterioration of meat and meat products.
Lipid oxidation is mainly a chemical reaction that occurs under aerobic conditions and is
affected by factors such as lipoxygenase, oxygen, temperature, and light in chilled chicken.
A series of oxidation reactions can occur during storage, the most important of which is
the potential response of polyunsaturated fats to oxygen, and the reaction can lead to the
accumulation of malondialdehyde (MDA) [20,21].

As shown in Figure 3, after 6 days of storage at 0 ◦C, the TBARS content of the NP
group inoculated with P. lundensis LD1 was 0.66 mg MDA/kg. After 4 days of storage at
10 ◦C, 0.76 mg MDA/kg was detected. When the temperature increased, the absorption
of oxygen by free radicals was enhanced, and the enzyme activity improved, thereby
accelerating lipid oxidation. At 0 ◦C, 4 ◦C, and 10 ◦C, the MAP group inoculated with
P. lundensis LD1 had 0.6, 0.39, and 0.45 mg MDA/kg on days 6, 4, and 2, respectively.
The TBARS content slowly increased in the MAP group. The absence of oxygen in the
MAP group reduced the oxygen uptake by meat and inhibited the activity of endogenous
enzymes. Therefore, these factors slowed down the oxidation of highly unsaturated fatty
acids to a certain extent. Similar to P. lundensis LD1, MAP also reduced the TBARS value
in the NP group inoculated with S. putrefaciens SP1. Similar conclusions were drawn
by Pongsetkul et al., who used dry fermented catfish as raw material and found that
indicators such as oxidation products (PV and TBARS values) and sensory acceptability
vary slowly under MAP and VP conditions. Shelf life was extended from 1–2 months at
room temperature to 90 days [22]. Demirhan et al. also found that MAP inhibits microbial
growth and delayed lipid and protein oxidation [23]. Thomas et al. proved that MAP
protects the quality of chicken and extends its shelf life [24]. Chilled chicken contains a
large amount of unsaturated fatty acids, which are highly sensitive to oxygen, thereby
causing a reaction to generate free radicals and lipid peroxyl radicals. Lipid oxidation
produces off-flavors and leads to rancid meat by breaking down lipid hydroperoxides into
volatile aldehydes and ketones [25]. Chilled chicken can be protected from oxidation by
the use of MAP technology and low-temperature storage conditions.

3.3. Mathematical Modeling
3.3.1. Primary Models

The growth data for P. lundensis LD1 and S. putrefaciens SP1 were obtained for the
chilled chicken samples stored at 0–10 ◦C, equipped with a modified Gompertz model
(Figure 4). With the increase in culture temperature, the retention period of dominant
spoilage bacteria was shortened, and the maximum specific growth rate was accelerated.
All models exhibited typical sigmoid shapes. As shown in Table 1, the lag period of the
NP group inoculated with P. lundensis LD1 at 10 ◦C was 7.56, which was much lower
than 39.28 at 0 ◦C. Notably, the changing rule of µmax showed the opposite trend. The
µmax value of 0.14 at 10 ◦C was much higher than 0.035 at 0 ◦C. However, the NP groups
inoculated with S. putrefaciens SP1 at 10 ◦C and 0 ◦C were fitted with the λ values of 8.99 and
45.93, respectively. At 0 ◦C, the maximum specific growth rate was 0.022, which meant that
the microorganisms grew extremely slowly. Once raised to 10 ◦C, µmax was as high as 0.1,
which was almost five times higher than at 0 ◦C. The enzyme activity increased at 10 ◦C,
thereby accelerating the growth of microorganisms. When the storage temperature was
constant, the lag period of the NP group of the two dominant spoilage bacteria was shorter
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than that of the MAP group, and the specific growth rate of the NP group was much greater
than that of the MAP group. For example, at 4 ◦C, the lag phase of the NP group inoculated
with P. lundensis LD1 was 19.35, and the maximum specific growth rate was 0.08. However,
the lag period of the MAP group was prolonged by 7.67, and the specific growth rate was
slowed down by 0.05. Similar trends were observed at other temperatures. These results on
µmax and λ at different storage temperatures were consistent with the previous work [26].
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At 10 ◦C, the chilled chicken samples inoculated with P. lundensis LD1 or S. putrefaciens
SP1 had a shelf life of only one day in NP. With the decrease in storage temperature, the
shelf life was prolonged to varying degrees. The shelf life of the NP samples inoculated
with P. lundensis LD1 at 0 ◦C was 5 days, while that of S. putrefaciens SP1 was extended from
1 day to 9 days. For the chilled chicken samples packaged in MAP, the samples containing
P. lundensis LD1 or S. putrefaciens SP1 had a shelf life of 2 days at 10 ◦C. With the decrease
in storage temperature, the storage effect of samples using the MAP method was obvious.
The shelf life of the samples inoculated with P. lundensis LD1 or S. putrefaciens SP1 were
12 and 25 days, respectively, which were 7 and 16 days longer than that of the samples
stored using NP, respectively.

In this study, the MSE for fitting the Gompertz model ranged from 0.000451 to 0.0897,
with R2 values above 0.984. MSE determines the error size of the model; the closer it is
to 0, the more accurate the model is. By analyzing the corresponding MSE and R2 values
at different temperatures, the Gompertz model had high goodness of fit for the number
of the two dominant spoilage bacteria at all storage temperatures. The coefficients of
determination were all greater than 0.985. In particular, the growth of P. lundensis LD1
and S. putrefaciens SP1 in the MAP group had a low MSE and high R2; R2 was greater
than 0.99, and the maximum value of MSE was only 0.073. Thus, the modified Gompertz
model was suitable for simulating the growth of dominant spoilage bacteria in the chilled
chicken samples. The modified Gompertz model has been successfully used to predict the
growth of Pseudomonas in pork, and a small MSE of 0.33 and a large R2 of 0.98300.0041
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were obtained [13]. Gholllasi-Mood et al. used the Gompertz model to predict the growth
of a specific spoilage organism Pseudomonas in air-packed chicken stored at different
temperatures with satisfactory results. The R2 value was greater than 0.98, and the MSE
value was less than 0.18 [27].
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Figure 4. Growth kinetic model curves of two dominant spoilage bacteria in chilled chicken at 0 ◦C,
4 ◦C, 8 ◦C, and 10 ◦C using the modified Gompertz equation.

Table 1. Fitting parameters of the primary growth models.

Temperature
(◦C)

P0
(lg CFU/g)

Pmax
(lg CFU/g)

µmax
(h−1) λ (h) MSE Pseudo-R2

P. lundensis
(NP)

0 ◦C 3.86 9 0.0351 39.28 0.0653 0.999
4 ◦C 4.5 8.72 0.0796 19.35 0.0653 0.996
8 ◦C 4.04 9.08 0.1115 13.06 0.0673 0.996

10 ◦C 3.58 9.68 0.1381 7.56 0.0616 0.984

P. lundensis
(MAP)

0 ◦C 3.83 7.94 0.0171 82.07 0.00824 0.999
4 ◦C 4.4 7.44 0.03 27.02 0.00833 0.986
8 ◦C 4.02 8.5 0.0519 17.85 0.00712 0.996

10 ◦C 3.65 10.77 0.0693 12.04 0.073 0.995

S. putrefaciens
(NP)

0 ◦C 3.52 7.82 0.022 46.1 0.00091 0.999
4 ◦C 4 7.89 0.0379 23.13 0.00357 0.996
8 ◦C 4.11 9.63 0.0866 15.72 0.0467 0.985

10 ◦C 3.74 10.05 0.1045 8.99 0.054 0.999

S. putrefaciens
(MAP)

0 ◦C 3.55 6.97 0.0166 86.72 0.00045 0.999
4 ◦C 4.05 7.69 0.0296 39.86 0.00324 0.998
8 ◦C 3.96 8.99 0.0449 21.17 0.0146 0.999

10 ◦C 3.74 9.08 0.0663 12.31 0.0897 0.99
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3.3.2. Secondary Model

The above-modified Gompertz model could predict the growth of dominant spoilage
bacteria at 0–10 ◦C, but it could not describe the effect of temperature on the number
of dominant spoilage bacteria. The fresh-keeping temperature of chilled chicken during
storage could only be maintained within a temperature range. Therefore, a second model
was necessary. The Ratkowsky model was used to fit µmax and λ derived from the
Gompertz model [28,29]. As shown in Figure 5, a good linear relationship was found
between the temperature and the square root of µmax and the inverse of the square root
of λ. The R2 values of

√
µmax and

√
1/λ of P. lundensis LD1 were 0.943 and 0.983 under

NP, corresponding to the MSE values of 0.01883 and 0.02089. Under MAP, they were
0.98 and 0.99, respectively, while the MSE values were 0.01018 and 0.0167. The R2 values
corresponding to S. putrefaciens SP1 were all above 0.96, and the MSE values were all less
than 0.01988. The lag phase and exponential growth phase play extremely important roles
in microbial growth. Microorganisms generally do not grow immediately in the lag period.
They live in a state of equilibrium, in which the number of cells maintains a dynamic
balance; thus, the chilled chicken samples did not deteriorate during this period. The
microorganisms in the exponential growth period have a strong metabolic capacity, which
has a great impact on the quality of chilled chicken. µmax and λ can show the changes in
dominant spoilage bacteria and have guiding roles in ensuring food safety. The µmax and λ

of dominant spoilage bacteria in chilled chicken meat are most affected by temperature [30].
As shown in Figure 5, µmax increased with the temperature, whereas λ decreased with the
increasing temperature. At 8–10 ◦C, significant growth was observed in terms of µmax and
λ. When the temperature rose to the optimum growth temperature range of the dominant
spoilage bacteria, the intracellular enzymes became active, and the metabolic rate increased,
indicating rapid multiplication.
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Gompertz model fitted to Ratkowsky.

µmax in the NP group was greater than that in the MAP group, whereas the λ value in
the NP group was smaller than that in the MAP group. CO2 in the MAP group possibly
inhibited the growth of P. lundensis LD1 and S. putrefaciens SP1. However, the inhibitory
effect of MAP on P. lundensis LD1 and S. putrefaciens SP1 was less effective when the
temperature increased. In the MAP group for the two dominant spoilage bacteria, the lower
the temperature, the smaller the changes in λ and µmax. When stored at low temperatures,
the temperature was the most important factor to inhibit the growth of the strain. When the
temperature increased, the growth of microorganisms was accelerated, and MAP became
the main factor to inhibit the growth of the strains.
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3.4. Model Validation

The applicability of the modified Gompertz model was verified through indepen-
dent experiments. The observed values were compared with the predicted values in the
experiments, and the models were mathematically evaluated using Bf, Af, and MSE [10].

The bacterial concentrations of P. lundensis LD1 and S. putrefaciens SP1 in the chilled
chicken samples were measured at 2 ◦C with a temperature range of 0–10 ◦C to test and
validate the performance of the predictive model. The obtained data were compared with
the predicted data of P. lundensis LD1 and S. putrefaciens SP1 (Figure 6). No significant
difference was observed. The model could roughly determine the total number of colonies
at a range of 0–10 ◦C.
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Figure 6. Comparison of the observed and predicted numbers of dominant spoilage bacteria in
chilled chicken samples stored at 2 ◦C under different packaging methods.

4. Conclusions

In our study, the effects of temperature and MAP on the microorganisms, TVB-N, and
lipid oxidation of chilled chicken were analyzed. Results showed that low temperature and
MAP inhibited microbial growth, decreased TVB-N synthesis, and inhibited lipid oxidation.
To a certain extent, the quality of the product was protected. Compared with NP, MAP
had a longer microbial retention period and a lower growth rate. At the end of storage, the
number of dominant spoilage bacteria detected in MAP was less than that in NP. However,
it could not completely inhibit the growth of dominant spoilage bacteria. After the above
analysis, a model could be established to reasonably grasp the effect of MAP on the quality
of chilled chicken.

The improved Gompertz and Ratkowsky models were selected to analyze the primary
and secondary models of the two strains. MSE and R2 confirmed that the models were
reliable. According to λ and µmax, the temperature was the most important factor to inhibit
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the growth of the strains. The model predicted the growth of P. lundensis LD1 and S.
putrefaciens SP1 at 2 ◦C, and Af and Bf showed strong fitting ability. We constructed this
model to predict the growth of P. lundensis LD1 and S. putrefaciens SP1 in chilled chicken at
0–10 ◦C. This study provides valuable information on the growth kinetics of P. lundensis
LD1 and S. putrefaciens SP1. It also lays the foundation for the growth prediction of natural
microflora in chilled chicken.
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