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ABSTRACT

Protein structures are necessary for understanding
protein function at a molecular level. Dynamics and
flexibility of protein structures are also key elements
of protein function. So, we have proposed to look at
protein flexibility using novel methods: (i) using a
structural alphabet and (ii) combining classical
X-ray B-factor data and molecular dynamics simu-
lations. First, we established a library composed of
structural prototypes (LSPs) to describe protein
structure by a limited set of recurring local struc-
tures. We developed a prediction method that
proposes structural candidates in terms of LSPs
and predict protein flexibility along a given se-
quence. Second, we examine flexibility according
to two different descriptors: X-ray B-factors con-
sidered as good indicators of flexibility and the
root mean square fluctuations, based on molecular
dynamics simulations. We then define three flexibil-
ity classes and propose a method based on the LSP
prediction method for predicting flexibility along the
sequence. This method does not resort to sophisti-
cate learning of flexibility but predicts flexibility
from average flexibility of predicted local structures.
The method is implemented in PredyFlexy web
server. Results are similar to those obtained with
the most recent, cutting-edge methods based
on direct learning of flexibility data conducted
with sophisticated algorithms. PredyFlexy can be
accessed at http://www.dsimb.inserm.fr/dsimb_
tools/predyflexy/.

INTRODUCTION

X-ray experiments have been valuable tools to understand
the intimate relation between protein structures and bio-
logical functions. They have revealed a large diversity of
well-defined folds, each being adopted by members of a
given functional family. However, recent studies have
shown that conformational changes are required by
numerous proteins in their folded state to accomplish
their function [e.g. enzyme catalysis, activity modulation,
macromolecular interactions, ligand binding and cell
motility (1–4)]. This has led to revisit the importance of
dynamics and to focus on regions with peculiar flexibility
properties, supposed to participate in conformational
changes. Hence, determining those regions would be
extremely useful to decipher and eventually control biolo-
gical function. Actually, few studies have focused on
flexible regions in folded ordered proteins. Studies have
mainly focused on (i) the analysis of specific protein struc-
tures to catch and/or simulate the flexible and rigid regions
and (ii) the sole information of the sequence to predict
flexibility.
In the first case, 3D structures are required all along.

B-factors available with X-ray structures were first used
as the main criteria to define protein rigidity and flexi-
bility. Nowadays, the distinction between flexible and
rigid regions takes advantage of dedicated approaches
for exploring dynamics. The most popular approaches
consist in atomistic molecular dynamics simulations which
are available through different packages, such as Gromacs
(5), Amber (6), NAMD (7) or Charmm (8). Principal com-
ponent analyses of the resulting data allow identifying
regions involved in the different type of motions and
provide relevant information about the visited conform-
ational space. Less time-consuming methods are also
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available, e.g. FlexServ (9), ElNemo (10) or Nomad (11),
which perform normal mode analysis (NMA) of elastic
network models. Data can also be gained with Brownian
dynamics and discrete molecular dynamics (9) or more
specialized approaches, e.g. to define hinges between
domains, as StoneHinge (12), HingeProt (13) and
tCONCOORD (14), which predict conformational flexi-
bility based on geometrical considerations. All these
methods give a large amount of data that bring quantita-
tive information enabling precise ranking of flexible and
rigid regions by highlighting local deformation as large
domain motions.
In the second case, the prediction is based on the sole

amino acid sequence. Historically, the flexibility was first
predicted as Boolean, i.e. rigid or flexible, using simple
statistical analyses of B-factor values (15,16). In the
same spirit, Schlessinger et al. (17) developed more re-
cently PROFBval, a method that improved the two-state
flexibility prediction by using Artificial Neural Networks
(ANNs) combined with evolutionary information. Instead
of ANNs, Pan and Shen (18) used support vector regres-
sion coupled with random forest. Chen et al. (19)
proposed an innovative development of logistic regres-
sions and colocation-based representation with multiple
features to predict flexible and rigid region. Nuclear mag-
netic resonance (NMR) data are alternative sources of
information for protein dynamics. Zhang et al. (20) and
Trott et al. (21) chose to exploit these data rather than
X-ray B-factors. Zhang’s group used variation of
backbone torsion angles from NMR structural models,
whereas Trott et al. preferred order parameters to define
the protein flexibility. Both groups performed prediction
with neural networks. Galzitskaya et al. (22) extend the
FoldUnfold methodology, which was originally designed
to predict disorder, to the prediction of flexibility (23).
Interesting works related to protein flexibility prediction

have focussed on more specific question. Hence, Hirose
et al. used NMA to define specific motions in proteins.
These motions were predicted using a random forest algo-
rithm and were further used to explore protein–protein
interaction (24). Hwang et al. (25) focused on prediction
of flexible loops and combined B-factors, dihedral angles
and accessibility. Kuznetsov et al. proposed a web server
for predicting residue involved in conformational switches
in proteins. Interestingly, it can use either protein
sequence or structure. The prediction from the sequence
is done with support vector machines (SVMs) (26,27).
We take advantage of the method we previously

elaborated to predict local protein structures. We have
described global protein structures using a limited set of
recurring local structures named long structural proto-
types (LSPs) (28). These LSPs encompass all known
local protein structures and ensure good quality 3D
local approximation. We have proposed a prediction
method based on evolutionary information coupled with
SVMs. This method provides with a list of five possible
structural candidates for a target sequence. The prediction
rate reaches 63.1%, a rather high value given the high
number of structural classes (29). We use the output of
this structural prediction as the input for our prediction
method of flexibility.

The originality of our method lies (i) in the use of a
combination of two descriptors for quantifying protein
dynamics, i.e. the X-ray B-factors and the root mean
square fluctuation (RMSF) computed from molecular
dynamics, (ii) in the prediction of flexibility through struc-
tural prediction of LSPs (see above) and (iii) by consider-
ing three classes of flexibility defined by the chosen
descriptors and in which LSPs were distributed. This
method turns out to be rather efficient compared to the
most commonly used ones. The prediction rate is slightly
better than the one of PROFbval (17) that was optimized
for two classes. Importantly, we also propose a confidence
index (CI) for assessing the quality of the prediction rate.
The method is implemented in a useful web server
PredyFlexy (http://www.dsimb.inserm.fr/dsimb_tools/
predyflexy/) which is able to give different type of predic-
tions as well a CI with outputs and flat file.

METHODS

The server can be used to predict protein flexibility as well
as to predict local protein structure defined by LSPs.
Figure 1 explains the two main steps of the prediction
methodology. At first, LSPs are predicted and then
using this prediction, protein flexibility is predicted.
Prediction is defined using classical normalized B-factors
(B-factorNorm) and normalized RMSF (RMSFNorm) from
molecular dynamics.

LSP prediction

We have proposed a library consisting of 120 overlapping
structural classes of 11-residue long fragments (28). This
library was constructed with an original unsupervised
structural clustering method called the Hybrid Protein
Model (HPM) (30). The hybrid protein principle is
similar to a self-organizing neural network (31,32). It
was constructed as a ring of N neurons (here N=120),
each representing a cluster of structurally similar 3D frag-
ments encoded into series of Protein Blocks (PBs). PBs are
a structural alphabet (33), i.e. a set of local protein frag-
ments, able to provide correct approximation of protein
structure. Its training strategy consisted in learning the
similarities between protein structural fragments deduced
from the alignment of their series of PBs (34,35). Once the
HPM was trained, each neuron or cluster was associated
with a set of fragments representing a structural class
using root mean square deviation (RMSD) (28). For
each class, a mean representative fragment, or a ‘local
structure prototype’ (LSP), was chosen. The 120 LSPs
correctly approximated the local structure ensembles.
The major advantage of this library is its capacity to cap-
ture the continuity between the identified recurrent local
structures (29). Relevant sequence–structure relationships
were also observed and further used for prediction.
Briefly, LSP prediction is based on SVM training. With
the LSP prediction, a CI that is based on the discrimina-
tive power of the SVMs is provided. The higher the CI, the
better the prediction rate. For more details on LSPs and
their prediction, please see (36).
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Protein structure datasets

A dataset of 172 X-ray high-resolution (�1.5 Å) globular
protein structures was extracted from the Protein Data
Bank (PDB) using the PDB-REPREDB database web
service (37) that provides the user with different choices
of thresholds for selecting chains of given sequence and
structural similarity. The method is detailed in (38). We
chose chains sharing <10% sequence identity and for
which the Ca RMSD between aligned residues differ by
at least 10 Å. Proteins composed of a single domain, not
involved in a protein complex, and that did not have ex-
tensive number of contacts with ligands were only con-
sidered. A final dataset of 43 protein structures was
obtained. This dataset 1 was used to calibrate thresholds
for RMSF computed from molecular dynamics simula-
tions using Gromacs (5). Parameters and conditions
defined in (39) were used for the simulations. A larger,
non-redundant databank composed of 1421 X-ray struc-
tures with resolution higher than 1.5 Å, sequence identity
smaller than 30% and Ca RMSDs larger than 10 Å
[selected using PDB-REPRDB (37)] was used for the pre-
diction itself (data set 2).

Definition of protein structure flexibility classes

We extracted Ca B-factors from the PDB files of the
protein structures dataset 1. For comparison purposes,
the raw values were normalized for each protein using
the method in (40). After removing outliers detected
statistically with a median-based approach, the
normalized B-factors were calculated as B-factorNorm=
(B-factorRaw�m)/�, where m and � stand for the mean and
the standard deviation of the Ca B-factor, respectively.

Flexibility of each 11-residue long overlapping fragment
in the dataset was characterized by the B-factorNorm

associated with its central Ca.
Similarly, we extracted flexibility measurements from

molecular dynamics simulations. Ca RMSF was calculat-
ed using g_rmsf GROMACS tool (5) after superimposing
each snapshot structure on the initial conformation. Ca
RMSF gives the mean amplitude of each Ca movement
compared to a mean reference position:

RMSFi
Norm ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T

XT
t¼0

~Ri
t �

~Ri
ave

� �2
vuut

where T is the production time expressed in snapshot
number, ~Ri

t the coordinates of Ca atom i of structure at
time t and ~Ri

ave the average coordinates of Ca atom i over
production time. Raw RMSF values were normalized for
each protein. The RMSFNorm associated with the central
Ca of each 11-residue fragment characterized the flexibil-
ity using molecular dynamics.
Hence, to each fragment is associated a couple of values

B-factorNorm and RMSFNorm. The three flexibility classes,
rigid, intermediate and flexible, were then defined from a
fine calibration of thresholds combining Ca RMSF (noted
tF) and B-factors (noted tB). The calibration was based on
a backward–forward procedure targeting the optimal
flexibility prediction rate. Fragments for which the
couple (Ca B-factors, Ca RMSF) is (i) smaller than tB1,
tF1 are rigid, (ii) larger than tB1, tF1 but smaller tB2, tF2
are intermediate and (iii) larger tB2, tF2 are flexible.
Finally, a detailed analysis of RMSF and Ca B-factors

couples for each LSP allowed attributing a well-defined

Figure 1. The framework of PredyFlexy and underlying methods. User must give a single sequence as input (a), a PSSM is computed using
PSI-BLAST (b) and split into fragments of 11 residues. Prediction of LSPs is done using trained SVMs (c); scores are ranked and the best five
are kept (d). Using these LSPs, prediction of flexibility is done in three states (rigid, intermediate and flexible) (e); predicted B-factorNorm, RMSFNorm

and a confidence index are also provided (f).
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flexibility class to each of them as well as a mean
B-factorNorm and a mean RMSFNorm. This was obtained
by (i) computing the propensity of fragments belonging
to a LSP to be associated with a given flexibility class
and (ii) selecting as the unique assigned class for each
LSP, the class that maximizes the propensity (see (39)
for details).

Flexibility prediction

For a target sequence, the local structure prediction is
first performed and yields the five best LSP candidates.
Then, the predicted flexibility class is obtained by simply
calculating the rounded average of the flexibility classes
of the five candidates. In the same way, the B-factorNorm

and RMSFNorm are predicted by averaging the
mean B-factorNorm and RMSFNorm of the five struc-
tural candidates. At this stage, no training on the
data was performed. The prediction reflects the infor-
mativity of structural prediction from sequence for
flexibility.

DISCUSSION

The PredyFlexy method is based on the flexibility analysis
of local protein structures through an appropriate
combination of the B-factor of X-ray experiment and
the fluctuation of residues during molecular dynamics
simulations. A correlation (r2=0.68) was obtained
between Ca-B-factorNorm and Ca-RMSFNorm. This value
confirms that even though related, both descriptors bring
different information justifying the interest to combine
both measures of the flexibility. The PredyFlexy method
led to an average, well-balanced prediction rate of 49.4%
for the three defined flexibility classes, a value consider-
ably higher than a random prediction rate. The correlation
r2 between observed and predicted values for B-factorNorm

and RMSFNorm reached 0.71 and 0.69, respectively. When
outliers (5% of the values), detected by the median-based
approach proposed by Smith et al. (40), were excluded,
correlations r2 climbed to 0.94 and 0.96, respectively.
This correlation is slightly better than the best correl-
ation value obtained by the PONDR VSL1 prediction
methods (41).
For comparison purpose, we regrouped our three flexi-

bility classes into two classes to assess a two-class predic-
tion. Depending on the grouping, we obtained prediction
rates comparable and even better than the current
methods available (17,18). Details are given in Table IV
of (39). This confirms that LSP description is truly useful
for addressing flexibility prediction.

Web server

PredyFlexy provides a user-friendly web interface that
combines predictions for local structure and flexibility.
The homepage contains a short summary of the two
aspects of the method. In this page, the sole input, the
protein sequence, must be provided. Two possibilities
are offered: the sequence, in FASTA format, may be
pasted in a first window frame or downloaded from a
file, the filename being given in a second window frame.

This page contains additional links: ‘Contacts’ which
refers to authors’ homepage, ‘About Method’ which
details the methodology and its flowchart, ‘Download’
which allows to obtain a local version of the program by
sending an email for registration, ‘Example’ which illus-
trates with a concrete case, the input and output of the
server (see below) and ‘DSIMB’ which connects to team’s
homepage. In Figure 1, the different steps that led from a
protein sequence to the output results of the prediction are
described.

Input

A single FASTA sequence must be provided (Figure 1A).
A check is performed to ensure that only natural amino
acids are used.

Background step: ‘PredyFlexy running’

For the given sequence, a Position Substitution Sequence
Matrix (PSSM) is first computed with PSI-BLAST
v. 2.2.09 (42) using default parameters and SWISS-
PROT databank (43) (Figure 1B). The sequence is then
divided into overlapping fragments of 11 residues long
(Figure 1B), corresponding to the LSP size. In a third
step, LSP prediction is done using 120 independent
SVMs (libsvm-2.81) that was previously optimized for
each LSP (36). This method yields for a target sequence
a list of five structural candidates associated with the
highest scores (Figure 1D). The prediction rate reaches
63.1%, a rather high value given the high number of struc-
tural classes (36). From this prediction, the corresponding
flexibility class of the LSP is attributed. Hence, at this
stage, each sequence fragment is characterized by five
flexibility states, one per structural LSP in the list.
Finally, the predicted flexibility state of an 11-residue
sequence is a simple mean of the flexibility states for the
five predicted LSP candidates (Figure 1E). Using a similar
approach, local B-factorNorm and RMSFNorm are pre-
dicted (Figure 1F).

Output

Once the job is finished, a window opens with the results.
Results are given as a text file that can be downloaded.
Results may also be visualized through different graphical
outputs. The first graphs represent the values, along the
sequence, of the B-factorNorm (green), the RMSFNorm

(yellow) on the left y-axis and on the right y-axis and
the CI (gray line). For clarity, the results are represented
by blocks of 50 residues. The sequence is reported in the
same graph above the x-axis. These combined representa-
tions allow the user to focus on the regions with a high CI,
i.e. larger than 15 (representing >25% of residues), fre-
quently associated with regions with low flexibility. In the
second part of the page, a table summarizes the results of
the local structure prediction, the CI and the flexibility
class. The lines correspond to each position along the se-
quence. In the two first columns, the position and the
corresponding amino acid (one letter) are indicated. The
five following columns contain the five best LSP candi-
dates represented by their 3D structure and their corres-
ponding number in the HPM (for details, see (36)).
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The two last columns correspond to the CI value and the
predicted flexibility class (0 for rigid, 1 for intermediate
and 2 for flexible). The CI is represented by 19 discrete
values ranked from 1 to 19, with the prediction confidence
increasing. For a rapid visualization inspection, values for
CI and flexibility classes are also represented with colors.
Note that due to the LSP size, the first 10 and last 10
residues are not predicted.

The text file brings the same information (except the 3D
representation) and two additional columns for the pre-
dicted B-factorNorm and RMSFNorm.

Implementation

Implementation of this tool is done in Python and HTML,
while the graphical plots are done using R software
(44,45). The front-end use is based on html and php.
Perl/cgi programs control the input while python and
other programs carry out the processing behind the
database search and pairwise comparisons.

Figure 2 illustrates the results of the prediction of isom-
erase in a region ranging from residue 100 to 150. As the
CI is higher than 15, the regions from (a) to (d) are very
well predicted, while the region (e) is not reliable with a
very low CI (=3). So, the user can be quite sure of a
succession from flexible (a) to rigid (b) with an intermedi-
ate to flexible zone (c) and then come back to rigid zone
(d). By looking at the distribution of predicted LSPs, the
user can analyze more deeply what could be the local con-
formations adopted by this region, i.e. a succession of
short helical regions alternated by short loops going to
an extended conformation.

CONCLUSION

Very few web servers are dedicated to the prediction of
flexibility from the sole information of the sequence. We
propose an original tool that combines in one run the
prediction of the local structures and the associated flexi-
bility. We also chose to predict flexibility in three classes
compared with two in most studies. We also provide
B-factor and RMSF prediction. In addition, very useful
and important information is provided by the CI. This
value allows the user to assess the predictability of its
sequence or region of interest. We hope that the availabil-
ity of our method through PredyFlexy web server will help
researchers to better understand the properties of their
protein and design new experiments focusing on appropri-
ate regions depending on their goal.
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