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Abstract. Clear cell renal cell carcinoma (ccRCC) are 
typically situated in a complex inflammatory and immune 
microenvironment, which has been reported to contribute to 
the unfavorable prognosis of patients with ccRCC. There would 
be beneficial clinical implications for elucidating the roles of 
its molecular characteristics in the inflammatory microenvi‑
ronment. This is because it would facilitate the development of 
reliable biomarkers for pre‑stratification prior to the designa‑
tion of individualized treatment strategies. In the present study, 
RNA‑sequencing data from 607 patients were retrospectively 
analyzed to elucidate the profile of inflammatory molecules. 
Based on this, an inflammatory prognostic signature (IPS) was 

developed and further validated using clinical ccRCC samples. 
Subsequently, the associated mechanisms in terms of the 
immune microenvironment and molecular pathways were then 
investigated. This proposed IPS was found to exhibit superior 
accuracy compared with the criterion of a good prognostic 
model for the prediction of patient prognosis from ccRCC [area 
under the receiver operating characteristic curve (AUC)=0.811] 
in addition to being an independent factor for prognostic 
risk stratification [hazard ratio: 11.73 (95% CI, 26.98‑5.10); 
log‑rank test, P<0.001]. Pathologically, ccRCC cells identified 
as high‑risk according to their IPS presented with a more 
malignant tumor structure, including voluminous eosinophilic 
cytoplasm, acinar/lamellar/tubular growth patterns and atypic 
nuclei. High‑risk ccRCC also exhibited higher infiltration 
levels by four types of immune cells, including T regulatory 
cells, but lower infiltration levels by mast cells. Pathways asso‑
ciated with immune‑inflammation interaction, including the 
IL‑17 pathway, were found to be upregulated in IPS‑identified 
high‑risk ccRCC. Furthermore, by combining the IPS with 
clinical factors, an integrated prognostic index was devel‑
oped and validated for increasing the accuracy of patient 
risk‑stratification for ccRCC (AUC=0.911). In conclusion, the 
complex regulatory mechanisms and molecular characteristics 
involved in ccRCC‑inflammation interaction, coupled with 
their prognostic potential, were systematically elucidated in 
the present study. This may have important implications in 
furthering the understanding into the molecular mechanisms 
underlying this ccRCC‑inflammation interaction, which can in 
turn be exploited for identifying high‑risk patients with ccRCC 
prior to designing their clinical treatment strategy.

Introduction

As the most prevalent type solid renal tumors, the prevalence 
of renal cell carcinoma (RCC) has been increasing with a 
prevalence of 2‑4% over recent decades  (1). Among other 
subtypes of renal cancers, clear cell renal cell carcinoma 
(ccRCC) has become of increasing concern due to its high 
rate of occurrence (>90% of all RCC cases) and declining 
overall survival rate (2,3). Effective adjuvant therapy remains 
an urgent unfulfilled requirement for reducing the risk of 
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recurrence whilst improving outcomes. Previous studies 
have explored the possibility of chemotherapy, radiotherapy, 
cytokine therapy, hormonal treatment therapy and tumor cell 
vaccines as potential adjuvant options (4,5). However, all of 
these studies yielded disappointing results (4,5). Therefore, 
tailored treatment strategies are becoming increasingly reliant 
on accurate risk‑stratification approaches (6‑8), which offer 
hope to patients with ccRCC for improving the curative effects 
of implemented interventions and the long‑term survival rate.

For making clinical intervention decisions, recent risk‑strat‑
ification characteristics remain insufficient, since and 20‑30% 
patients who were diagnosed with T1‑2 stages ccRCC suffered 
from metastasis within 1‑2 years following surgery  (6,9). 
Emerging biomarkers have been previously proposed based 
on multi‑gene signatures or clinical features (7‑9). However, 
due to the technological bias across the high‑throughput 
platforms and difference among normalization methods, their 
predictive ability remains limited and will scarcely be used 
for the individualized therapy of patients with ccRCC in the 
foreseeable future  (6‑8). Therefore, novel biomarkers with 
higher prognostic predictive potential are urgently required 
for optimizing the tailored clinical management protocol for 
patients with ccRCC to achieve significant tumor remission.

Biomarkers based on inf lammatory responses or 
signaling pathways are showing promise for survival estima‑
tion and for guiding the design of personalized treatment 
for patients with ccRCC (10‑12). This is mainly due to the 
impact of inflammation on tumor phenotype and efficacy of 
clinical treatment (10‑12). Inflammation has emerged as one 
of the main hallmarks of cancer progression (13,14) and has 
been reported to serve a key role in tumor occurrence and 
outcome (15,16). Tumor‑associated macrophages have been 
indicated to be stimulators of tumor cell proliferation and 
facilitators of angiogenesis, invasion and metastasis (17,18). 
A previous study has shown that inflammatory cytokines and 
chemokines generated by tumor cells and/or tumor‑associated 
white blood cells and platelets may directly lead to malignant 
progression in human cancer, including cervix, and head 
and neck cancers  (19). For ccRCC, IL‑6 is an inflamma‑
tory cytokine with multiple biological effects that has been 
reported to enhance the proliferation of ccRCC cells (20,21). 
These reports support the application of anti‑inflammatory 
therapeutics or agents for ccRCC, which have generally 
demonstrated satisfactory efficacy (10). Simvastatin, which 
is an inhibitor of the AKT, mTOR and ERK signaling 
pathways in addition to being an inhibitor of IL‑6‑induced 
JAK2/STAT3 activation, was shown to be able to inhibit the 
proliferation and migration of ccRCC cells (10,22). However, 
knowledge gaps remain in the field of clinical management 
regarding the ability of an inflammation‑specific prognostic 
signature to predict the long‑term survival rate of patients 
with ccRCC.

In the present study, the prognostic potential of inflam‑
mation‑associated molecules in ccRCC was systematically 
assessed, based on which an inflammation‑associated prog‑
nostic signature (IPS) was developed using a multi‑step 
process. The IPS was confirmed as being a highly effective 
and robust biomarker for the prognostic prediction and risk 
stratification of patients with ccRCC. Of note, the underlying 
immune mechanisms, dysregulated biological functions and 

pathways within the interactive network of identified inflam‑
mation‑associated genes (IGs) were clarified to understand 
the processes that can impact the overall survival time in the 
low‑ and high‑risk groups. To facilitate clinical application, 
a nomogram combining IPS and clinical characteristics was 
developed.

Materials and methods

Data retrieval and processing. RNA expression data obtained 
by RNA sequencing and the clinical records of 607 patients 
with ccRCC were acquired from The Cancer Genome Atlas 
(www.tcga.org). Only patients with complete clinical records 
were included in the study, which resulted in the study's sample 
size being reduced to 522.

In addition, six clinical samples of ccRCC (mean ± SD age, 
51±13.48 years; 5 males and, 1 female) were collected from 
patients at the Renmin Hospital of Wuhan University (Wuhan, 
China) between March 2017 and May 2018. Inclusion criteria: 
Only ccRCC was included. Low‑grade ccRCC: No lymph node 
metastasis and distant metastasis. High‑grade ccRCC: Lymph 
node metastasis or distant metastasis occurred. Exclusion 
criteria: Exclusion papillary carcinoma and chromophobe 
renal carcinoma. Low‑grade ccRCC: Lymph node metastasis 
and distant metastasis occurred. High‑grade ccRCC: No lymph 
node metastasis or distant metastasis. Full informed consent in 
written form was provided by those subjects and the Ethics 
Committee of Renmin Hospital of Wuhan University issued 
the ethical approval (approval no. 2017K‑C015). The clinico‑
pathological data of these 6 patients are presented at Table SI.

RNA expression data were standardized using fragments 
per kilobase of exon model per million mapped fragments 
(FPKM) and then converted using the following formula to 
facilitate further analysis: Gene expression=log2(FPKM +1).

Public data for the present study were acquired in 
October  2020 and analyzed between November and 
December 2020. For further prognostic signature modeling 
and validation, the overall study cohort was randomly divided 
1:1 into the training cohort and validation cohort.

Identification of IGs impacting the prognosis of patients 
with ccRCC. According to the dataset provided by the Gene 
Ontology (GO) database (geneontology.org), genes involved 
in inflammatory responses and pathways considered to be 
IGs were retrieved by filtering terms containing ‘inflamma‑
tory’ or ‘inflammation’ (Table SII). The IG expression profiles 
were extracted from the converted RNA expression profiles 
of patients with ccRCC. Iterative univariate Cox regres‑
sion and log‑rank tests were then performed via R software 
(version 4.0.2) for each extracted IG of a clinical sample of 
ccRCC. IGs with P<0.05 from both Cox regression and 
log‑rank tests were considered to be those that significantly 
impacted the prognosis of patients with ccRCC (IGPs). In the 
present study, prognosis is represented by overall survival 
(OS).

IPS modeling. To minimize the risk of overfitting, least abso‑
lute shrinkage and selection operator (LASSO) regression was 
used to create subsets of candidate IGPs. LASSO regression 
was performed using the 'glmnet' package (version 4.0) in 
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R (23). Upon completion, multicollinear IGPs and IGPs that 
had little influence on ccRCC prognosis were eliminated 
using the stepwise method (24). With this typical method, the 
Akaike information criterion (AIC) approach (24) was used 
for eliminating independent variables that share little associa‑
tion with the dependent variable. The model with the smallest 
AIC during the stepwise process was considered to be the best 
model. Therefore, the IPS was constructed using a multivariate 
Cox proportional‑hazards regression model, which was calcu‑
lated using the following formula (24):

Where n represents the total number of IGPs included in the 
IPS, βi represents the regression coefficient of gene i and Ei 

represents the converted expression level of gene i. For the 
present study, the ‘survival’ package (25) in R software was 
used for constructing the IPS.

Validation of the IPS. A receiver operating characteristic 
(ROC) curve was used to calculate the area under the ROC 
curve (AUC), which was then applied to evaluate the accuracy 
of prognosis prediction by IPS. As previously reported (26), 
an optimal cut‑off value of the IPS score was derived using 
the Youden index in the ROC curve from the training cohort 
for classifying patients with ccRCC into the high‑ or low‑risk 
groups. Kaplan‑Meier curve and log‑rank test were then used to 
detect any potential difference between the high‑ and low‑risk 
groups in the training and validation cohort. To validate whether 
the IPS is able to independently predict the prognosis of patients 
with ccRCC, univariate and multivariate Cox regression anal‑
yses were performed in the training and validation cohort. For 
further investigation of the correlation between the IPS score and 
overall survival time of patients with ccRCC, Pearson's correla‑
tion analysis was performed. The Kaplan‑Meier, log‑rank, ROC 
curve and Cox regression were all performed using the ‘rms’, 
‘survival’ and ‘survminer’ packages in R software, where the 
results of each were visualized in R software.

Functional annotation and analysis. For clarifying the 
biological roles of the IGPs in the development of ccRCC, 
GO and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses were performed in R software to eluci‑
date the biological processes, cellular components, molecular 
functions and pathways regulated by the IGPs; an adjusted 
P‑value of <0.05 was deemed as statistically significant. 
To further determine the interactive networks among the 
IGPs, a protein‑protein interaction (PPI) network analysis 
was performed using the STRING dataset (string‑db.org; 
version 11.5, interaction score >0.4) and visualized using 
Cytoscape software (version 3.0.1).

Differences in immune cell infiltration between risk groups. 
Cell type identification through the estimation of relative 
subsets of RNA transcripts (CIBERSORT) is a deconvolu‑
tion algorithm that was developed by Newman et al (27). It 
was used for the calculation of the abundance of infiltrating 
immune cells for each sample included in the study, based on 
22 sets of data containing the profiles of infiltrating immune 

cell‑associated genes (27). The degree of immune cell infil‑
tration in the low‑ and high‑risk groups was estimated using 
CIBERSORT and its provided gene set LM22 (27). According 
to a previous study  (24), the CIBERSORT algorithm was 
applied with 1,000 simulations and the results were filtered 
with P<0.05.

Reverse transcription‑quantitative PCR (RT‑qPCR). In line 
with the protocol of a previous study (28), reverse transcrip‑
tion and qPCR were performed according to the instructions 
provided by the manufacturer [PrimeScript™ RT reagent 
kit with gDNA Eraser; cat no. RR047A; TB Green Premix 
Ex Taq II (Tli RNase H Plus); cat. no. RR820A; both from 
Takara Bio, Inc.]. In brief, total RNAs were purified from six 
clinical ccRCC samples using TRIzol® agent (cat. no. R0016; 
Beyotime Institute of Biotechnology), and then the purified 
RNAs were incubated with gDNA Eraser for 2 min at 42˚C 
to erase gDNA and then transcribed into cDNA by using 
the PrimeScript™ RT Enzyme Mix I and RT Primer Mix 
(37˚C for 15 min and then 85˚C for 5  sec). Subsequently, 
real‑time fluorescent qPCR was used to measure the relative 
corresponding gene expression relative to GAPDH using the 
following conditions: 40 cycles of 95˚C for 5 sec and 60˚C 
for 35 sec. Quantification was performed using the 2‑ΔΔCq 
method (29). The primers were as follows (30‑41): ADCY1 
forward, 5'‑CAG​CAC​TTC​CTC​ATG​TCC​AA‑3' and reverse, 
5'‑CCA​GTG​CTA​TCC​ATC​CGA​CT‑3'; ADIPOQ forward, 
5'‑TGG​TGA​GAA​GGG​TGA​GAA‑3' and reverse, 5'‑AGA​TCT​
TGG​TAA​AGC​GAA​TG‑3'; ADORA2B forward, 5'‑TGC​
ACT​GAC​TTC​TAC​GGC​TG‑3' and reverse, 5'‑GGT​CCC​CGT​
GAC​CAA​ACT​T‑3'; CCL7 forward, 5'‑GCC​TCT​GCA​GCA​
CTT​CTG​TG‑3' and reverse, 5'‑CAC​TTC​TGT​GTG​GGG​TCA​
GC‑3'; CXCL3 forward, 5'‑GCA​GGG​AAT​TCA​CCT​CAA​
GA‑3' and reverse, 5'‑GGT​GCT​CCC​CTT​GTT​CAG​TA‑3'; 
GPS2 forward, 5'‑AGT​GAC​CTG​ACC​ACC​CTA​ACA‑3' and 
reverse, 5'‑CCT​GGG​CGA​TTG​TGT​CCT​C‑3'; HGF forward, 
5'‑TGG​GAC​AAG​AAC​ATG​GAA​GA‑3' and reverse, 5'‑GCA​
TCA​TCA​TCT​GGA​TTT​CG‑3'; IL1RL2 forward, 5'‑TCT​TAT​
ACC​CCA​AGT​ACC​CG‑3' and reverse, 5'‑ACT​GCT​CTG​TGA​
AGT​CCC​C‑3'; IL4 forward, 5'‑TCT​CAC​CTC​CCA​ACT​GCT​
TCC​CC‑3' and reverse, 5'‑AGA​GGT​TCC​TGT​CGA​GCC​GTT​
TCA‑3'; IL17C forward, 5'‑CAA​CCG​ATC​CAC​CTC​ACC​
TT‑3' and reverse, 5'‑GGC​ACT​TTG​CCT​CCC​AGA​T‑3'; IL22 
forward, 5'‑CAC​TGC​AGG​CTT​GAC​AAG‑3' and reverse, 
5'‑CTT​AGC​CTG​TTG​CTG​AGC‑3'; LIPA forward, 5'‑TCT​
GGA​CCC​TGC​ATT​CTG​AG‑3' and reverse, 5'‑CAC​TAG​GGA​
ATC​CCC​AGT​AAG​AG‑3'; LRRC19 forward, 5'‑ATG​AAA​
GTC​ACA​GGC​ATC​ACA​ATC​C‑3' and reverse, 5'‑'ATT​TTC​
TTC​ACA​TAA​TTC​ATG​GAT​A‑3'; LTB4R2 forward, 5'‑GGG​
TGT​AAA​GGG​ACG​TGC​ACA​G‑3' and reverse, 5'‑GCT​TGT​
GCT​GTT​TCC​TGG​CAAG‑3'; RORA forward, 5'‑AAA​AAC​
ATG​GAG​TCA​GCT​CCG‑3' and reverse, 5'‑AGT​GTT​GGC​
AGC​GGT​TTC​TA‑3'; SOCS3 forward, 5'‑ACA​ATC​TGC​CTC​
AAT​CACT​CTG‑3' and reverse, 5'‑TTG​ACTT​GGA​TTG​GGA​
TTT​TG‑3'; TPSB2 forward, 5'‑GTG​AAG​GTC​CCC​ATA​ATG​
GAA​AA‑3' and reverse, 5'‑CAC​AGC​ATG​TCG​TCA​CGG​A‑3'; 
WNT5A forward, 5'‑CGC​CCA​GGT​TGT​AAT​TGA​AG‑3' and 
reverse, 5'‑GCA​TGT​GGT​CCT​GAT​ACA​AGT‑3'; and GAPDH 
forward, 5'‑GGT​GAA​GGT​CGG​AGT​CAA​CG‑3' and reverse, 
5'‑TGG​GTG​GAA​TCA​TAT​TGG​AAC​A‑3'.
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H&E staining and immunohistochemistry (IHC). H&E 
staining and IHC were performed according to a previous 
study (1). The renal cancer tissue was fixed with 4% parafor‑
maldehyde, embedded in paraffin, and cut into slices (3‑µm 
thick per specimen). The slices were baked at 60˚C for 1 h, 
followed by deparaffinizing; the slices were placed in xylene 
3 times for 10 min each and wash with ethanol gradient for 
5 min. Slices were then stained with hematoxylin for 10 min 
at 25˚C, and rinsed back to blue, before staining with eosin for 
5 min at 25˚C, and then rehydrating (rinse and dehydrate with 
gradient alcohol 3 times for 3 min each, and place in xylene 
3 times for 5 min each). Finally, the slides were sealed with 
neutral gum, and observed and imaged under an orthophoto 
microscope (BX63; Olympus Corporation). For IHC, the 
sections were deparaffinized, hydrated, subjected to heat for 
antigen retrieval in 10 mM sodium citrate (pH, 6.0) for 15 min 
at 95˚C and treated with 3% hydrogen peroxide for 10 min to 
inactivate the endogenous peroxidase. After blocking with 
5% goat serum (Beyotime Institute of Biotechnology) for 
30 min at 25˚C, the sections were incubated overnight with 
primary antibodies against IL22 (1:100; cat. no. ab227033; 
Abcam), IL4 (1:400; cat.  no.  ab62351; Abcam), CCL7 
(1:200; cat.  no.  ab228979; Abcam) and LTB4R2 (1:200; 
cat.  no.  ab84600; Abcam) at 4˚C. The sections were then 
incubated with horseradish peroxidase‑conjugated secondary 
antibody (1:200; cat.  no.  GB23303; Wuhan Servicebio 
Technology Co., Ltd.) for 1 h at 25˚C, washed with PBS for 
10 min and stained with diaminobenzidine (cat. no. A600140; 
Sangon Biotech, Co., Ltd.). Images were obtained under an 
orthophoto microscope (BX63; Olympus Corporation). Next, 
R software (version 4.0.2) was used for visualization. The total 
and positively stained cells of the tissue sections were counted 
at x200 magnification (scale bar, 50 µm), and the percentage 
of positive cells was calculated using ImageJ software 
(version 1.8.0).

Statistical analysis. R software (version 4.0.2; www.R‑project.
org/) was used for bioinformatics and statistical anal‑
yses. For experimental validation,  ≥  three biological 
repetitions were performed. To perform grouped comparisons, 
Kruskal‑Wallis test (H‑test, a pairwise comparison using 
Dwass‑Steel‑Critchlow‑Fligner test and P‑value adjustment 
using the Benjamini and Hochberg method) was applied using 
the ‘ggstatplot’ package in R (42).

Results

Construction and definition of the IPS. A total of 522 cases 
of ccRCC were included in the present study. Their demo‑
graphic data and clinical characteristics are provided in 
Table I, including age (210 patients >61 years and 312 patients 
≤61 years) and sex (369 males and 153 females). Regarding the 
list of genes associated with the inflammatory responses and 
pathways that were provided by the GO dataset, the expres‑
sion profiles of 626 IGs were extracted from the 56,753 genes 
analyzed in each sample. Feature selection and IPS modeling 
were then performed for the training cohort. IGPs were detected 
using iterative univariate Cox regression and the log‑rank test. 
As presented in Table SIII, a total of 43 IGPs were detected and 
used for further IPS modeling. In order to minimize the risk of 

overfitting, LASSO regression was performed, as well as the 
gene selection process, optimal λ calculation and coefficient 
changes (Fig. 1A and B). After screening, 36 IGPs remained 
for final IPS modeling. Cox proportional hazards model was 
trained using the AIC-based stepwise method to generate IPS, 
which contained 18 IGPs (Table II).

Validation of IPS as an independent prognostic factor. For 
the classification of patients with ccRCC, ROC curve analysis 
was used to derive an optimal cut‑off value for the IPS score, 
which was 1.14 in the training cohort. Based on this, patients 
with an IPS score >1.14 were classified as members of the 
high‑risk group, whilst others were classified as low‑risk 
group members (Fig. 2A). The distribution of IPS scores and 
outcomes for each patient in the different risk groups in the 
training cohort are presented in Fig. 2A. It was observed that 
the overall survival time of patients in the high‑risk group was 
shorter compared with that of patients in the low‑risk group 
(Fig. 2A). In addition, the number of events (deaths) in the 
high‑risk group was higher compared with that in the low‑risk 
group (Fig. 2A). Similar trends could also be observed in the 
validation cohort (Fig. 2B). The differential expression profiles 

Table I. Demographic characteristics of the included patients.

Parameter	 Patients, n

Age, years	
  >61	 210
  ≤61	 312
Sex	
  Male	 369
  Female	 153
Neoplasm histological grade	
  G1	 11
  G2	 188
  G3	 179
  G4	 144
Pathologic T‑stage	
  T1	 19
  T1a	 115
  T1b	 95
  T2	 46
  T2a	 10
  T2b	 2
  T3	 4
  T3a	 105
  T3b	 43
  T3c	 1
  T4	 82
Pathological N‑stage	
  N0	 208
  N1	 314
Pathological M‑stage	
  M0	 335
  M1	 187
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of IGPs constituting the IPS in the low‑ and high‑risk groups 
are provided in Fig. 2C. For evaluating the prediction accuracy 
of the IPS, ROC curves and their AUC were calculated in 
the training and validation cohort. As presented in Fig. 2D, 
regarding the reported judgment criteria (AUC >0.7) for the 
predictive ability of the prognostic model (43), IPS achieved 
high accuracy for the prediction of the prognosis of patients with 
ccRCC (AUC=0.811 in the training cohort). A similar trend in 
AUC was also observed in the validation cohort (AUC=0.799), 
suggesting further that this IPS is robust. Kaplan‑Meier curve 
analysis with the log‑rank test was subsequently applied 

for detecting the difference in overall survival probability 
between the low‑ and high‑risk groups. As indicated by the 
results in Fig. 2E, high‑risk patients with ccRCC had a signifi‑
cantly lower overall survival probability compared with that in 
patients in the low‑risk group in the training cohort (P<0.001). 
Similar results were found in the validation cohort (Fig. 2F). 
In terms of progression‑free survival (PFS), high‑risk patients 
according to IPS also demonstrated a lower probability of PFS 
in the training (Fig. S1) and validation cohorts (Fig. S2). The 
resultant data demonstrated the viability of this developed IPS 
for the risk‑stratification of patients with ccRCC. This IPS 

Table II. Coefficients of genes included in the inflammatory prognostic signature.

Genes	 Coefficient	 Hazard ratio	 95% CI	 P‑value

ADCY1	 ‑0.551	 0.576	 0.364‑0.911	 0.018408
ADIPOQ	 0.353	 1.424	 1.033‑1.962	 0.031072
ADORA2B	 0.323	 1.381	 0.995‑1.917	 0.053474
CCL7	 0.993	 2.699	 1.772‑4.112	 3.80x10‑6

CXCL3	 ‑0.657	 0.518	 0.361‑0.744	 0.000368
GPS2	 0.335	 1.399	 0.925‑2.115	 0.112054
HGF	 0.171	 1.186	 1.020‑1.379	 0.026637
IL1RL2	 ‑0.355	 0.701	 0.513‑0.958	 0.025736
IL4	 3.465	 31.968	     5.549‑184.154	 0.000105
IL17C	 ‑5.383	 0.005	 0.000‑0.072	 0.000126
IL22	 8.456	 4705.498	 33.107‑668798.685	 0.000826
LIPA	 ‑0.266	 0.767	 0.601‑0.977	 0.031965
LRRC19	 ‑0.170	 0.844	 0.708‑1.005	 0.057198
LTB4R2	 0.463	 1.589	 0.917‑2.753	 0.098503
RORA	 ‑0.585	 0.557	 0.347‑0.894	 0.015301
SOCS3	 0.257	 1.293	 1.105‑1.513	 0.001324
TPSB2	 ‑0.306	 0.736	 0.626‑0.866	 0.000217
WNT5A	 0.282	 1.326	 0.968‑1.817	 0.079332

Figure 1. Results of feature selection using least absolute shrinkage and selection operator regression. (A) Coefficients and (B) partial likelihood deviance. The 
number of genes are presented at the top of each panel.
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score exhibited a negative correlation with the overall survival 
time in both the training cohort (ρ=‑0.32, P<0.001; Fig. 2G) 
and the validation cohort (ρ=‑0.22, P<0.001; Fig. 2H). These 
data suggest that the overall survival time of patients with 
ccRCC decreased as the IPS score increased.

To assess if this IPS score can serve as an independent 
prognostic factor, univariate and multivariate Cox regres‑
sion analyses were performed on the training cohort and 
validation cohort, respectively. As indicated by the results 
presented in Table III, the P‑values of the IPS scores were 
<0.001 according to both univariate and multivariate Cox 
regression in the training and validation cohort. This suggest 
that the IPS score can be used as an independent prognostic 
factor for patients with ccRCC. In particular, univariate Cox 
regression revealed that the risk of unfavorable prognosis 

(shorter overall survival time or death) in the high‑risk group 
was enhanced by 1,073% in the training cohort [hazard ratio 
(HR)=11.73; 95% CI, 5.10‑26.98; P<0.001]. Additionally, 
this association remained stable even after other covariates 
were included (Table III). Similar trends were observed in 
the validation cohort, where all HRs of the IPS scores were 
higher compared with those of the clinical characteristics in 
the corresponding analyses (Table III). These results suggest 
that the IPS score has high predictive power for the risk of 
poor outcomes and that it associates more closely with prog‑
nosis compared with other common clinical characteristics.

Mechanisms of unfavorable prognosis of high‑risk patients 
with ccRCC. To uncover the roles of these IGPs in the devel‑
opment of ccRCC, GO annotation and KEGG enrichment 

Figure 2. Validation of IPS. Distribution plots for the IPS score, overall survival time and survival status of each patient with clear cell renal cell carcinoma 
in the (A) training cohort and (B) validation cohort. (C) Differential expression profiles of inflammation‑associated genes constituting the IPS between 
IPS‑identified high‑ and low‑risk groups, with dots above indicating outliers. Box plots show the five‑number summary of a set of data, including the minimum 
score, first (lower) quartile, median, third (upper) quartile and maximum score. (D) ROC curves of IPS in the training and validation cohort. Kaplan‑Meier 
curves indicating the difference in survival probability between the IPS‑identified high‑risk and low‑risk groups in (E) the training cohort and (F) validating 
cohort. Correlation analyses attested the association between the IPS score and survival time in (G) the training cohort and (H) validation cohort. IPS, inflam‑
matory prognostic signature; AUC, area under the ROC curve; ROC, receiver operating characteristic. *P<0.05, **P<0.01 and ***P<0.001.
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analysis were performed to elucidate the associated dysregu‑
lated biological functions and pathways. KEGG enrichment 
revealed the dysregulated pathways of IGPs that can promote 
ccRCC progression (Fig. 3A). the majority of the significantly 
dysregulated pathways were involved in the inflammatory 
response or inflammation‑immune interaction, including 
‘cytokine‑cytokine receptor interaction’, ‘IL‑17 signaling 
pathway’ and the ‘TNF signaling pathway’ (Fig. 3B). To further 
elucidate the biological functions of these IGPs in the progres‑
sion of ccRCC, GO annotation was performed. The results of 
the GO annotation provided a molecular regulatory network 
from three aspects (Fig. 3A). For instance, in the GO category 
‘biological process’, the IGPs participated in the ‘Regulation 
of inflammatory response’, ‘Negative regulation of response to 
external stimulus’ and ‘Positive regulation of cytokine produc‑
tion’. In the GO category ‘Cellular component’, the IGPs 
participated in pathways relating to ‘The collagen‑containing 
extracellular matrix’, the ‘Extracellular matrix’ and the 
‘Schaffer collateral-CA1 synapse’. Furthermore, in the GO 
category ‘Molecular function’, the IGPs participated in 
‘Receptor ligand activity’, ‘Receptor regulator activity’ and 
‘Cytokine activity’. To further detect the interactive network 

of IGPs constructing IPS, PPI analysis was performed. As 
presented in Fig. 3C, an interactive network was generated and 
analyzed, where IL4 was confirmed as the molecule with the 
most interactions with other IGPs among other IGPs.

Difference in the immune microenvironment between the 
risk groups. Since the immune microenvironment and 
inflammation‑immunity interactions serve important roles in 
the development of ccRCC (44,45), differences in the immune 
microenvironment between the two risk groups were next 
investigated. CIBERSORT algorithm revealed the immune 
cell infiltration profiles of each ccRCC clinical sample in the 
training (Fig. 4A) and validation cohort (Fig. 4B). A total of 
six immune cell types exhibited significant differences in their 
infiltration profiles between the low‑ and high‑risk groups. 
Infiltration by M0 macrophages, CD4 memory‑activated 
T cells, follicular helper T cells and T regulatory cells (Tregs) 
were significantly increased in the high‑risk ccRCC groups 
in both the training (Fig. 5A and B) and validation cohorts 
(Fig. 5C and D). By contrast, infiltration by M2 macrophages 
and resting mast cells were significantly decreased in the 
high‑risk ccRCC group in both the training and validation 

Table III. Independent analyses using univariate and multivariate Cox regression.

A, Training cohort				  

	 Univariate	 Multivariate
	------------------------------------------------------------------------------	----------------------------------------------------------------------------- 
Variable	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value

IPS (cut‑off 1.14)	 11.735 (5.104‑26.981)	 6.72x10‑9	 11.690 (4.588‑29.788)	 2.57x10‑7

Age, years (cut‑off 61)	 1.020 (0.993‑1.048)	 0.147098	 1.035 (0.994‑1.077)	 0.095488
Sex	 0.728 (0.386‑1.374)	 0.327579	 1.685 (0.771‑3.68)	 0.190771
Neoplasm histological grade	 2.192 (1.408‑3.414)	 0.000514	 2.006 (1.141‑3.529)	 0.015643
Pathologic T‑stage	 6.934 (3.645‑13.191)	 3.60x10‑9	 7.939 (1.653‑38.137)	 0.009668
Pathologic N‑stage	 2.249 (0.795‑6.363)	 0.126733	 2.089 (0.564‑7.743)	 0.270389
Pathologic M‑stage	 1.962 (1.333‑2.887)	 0.000634	 0.855 (0.317‑2.303)	 0.756184
Stage	 2.169 (1.565‑3.006)	 3.29x10‑06	 0.931 (0.331‑2.621)	 0.892045

B, Validation cohort

	 Univariate	 Multivariate
	----------------------------------------------------------------------------	---------------------------------------------------------------------------- 
Variable	 HR (95% CI)	 P‑value	 HR (95% CI)	 P‑value

IPS (cut‑off 1.14)	 4.499 (2.440‑8.295)	 1.45x10‑6	 4.211 (2.131‑8.320)	 3.50x10‑5

Age, years (cut‑off 61)	 1.017 (0.992‑1.043)	 0.186949	 1.031 (1.003‑1.059)	 0.027546
Sex	 1.582 (0.860‑2.911)	 0.139997	 1.555 (0.801‑3.018)	 0.191663
Neoplasm histologic grade	 1.910 (1.295‑2.818)	 0.001094	 0.986 (0.593‑1.637)	 0.955512
Pathologic T‑stage	 2.569 (1.328‑4.971)	 0.005066	 1.38 (0.428‑4.452)	 0.590357
Pathologic N‑stage	 3.768 (1.476‑9.617)	 0.005531	 0.964 (0.31‑3.000)	 0.949146
Pathologic M‑Stage	 1.699 (1.248‑2.315)	 0.000769	 1.045 (0.543‑2.013)	 0.894424
Stage	 1.602 (1.246‑2.060)	 0.000238	 1.415 (0.714‑2.805)	 0.320424

IPS, inflammatory prognostic signature; HR, hazard ratio.
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cohorts. Further correlation analysis found significant positive 
correlations between the IPS score and the degree of infiltration 
by M0 macrophages [ρ=0.18 (training cohort); ρ=0.23 (valida‑
tion cohort)], CD4 memory‑activated T cells [ρ=0.19 (training 

cohort); ρ=0.12 (validation cohort)], follicular T helper cells 
[ρ=0.28 (training cohort); ρ=0.28 (validation cohort)] and 
Tregs [ρ=0.35 (training cohort); ρ=0.32 (validation cohort)]. 
By contrast, negative correlations were found between the IPS 

Figure 3. Molecular mechanisms of inflammation‑associated genes in the progression of clear cell renal cell carcinoma. (A) Enrichment results of the Gene 
Ontology annotation, including the top 10 terms in the categories BP, CC and MF. (B) Dysregulated pathways mainly regulated by the inflammation‑associated 
genes. (C) Protein‑protein interactive network of the inflammation‑associated genes constituting the inflammatory prognostic signature. BP, Biological process; 
CC, Cellular component; MF, Molecular function.
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score and the extent of infiltration by M2 macrophages [ρ=‑0.11 
(training cohort); ρ=‑0.20 (validation cohort)] and mast cells 
[ρ=0.24 (training cohort); ρ=‑0.29 (validation cohort)]. These 
identified immune cells were therefore suggested to be impor‑
tant parameters on the prognosis of patients with ccRCC.

Integrated prognostic index (IPI) after combining the IPS 
with clinicopathological factors. To improve the prediction 
accuracy of the IPS and to facilitate clinical application, the 
IPI was constructed using multivariate Cox regression by 
combining the IPS with the clinicopathological character‑
istics, namely age, sex and TNM stage. Following feature 
selection using a stepwise method, the IPI was developed and 
plotted as a nomogram to calculate the survival probability of 
individual patients with ccRCC (Fig. 6A). IPI distribution and 
risk‑stratification profiles of the training and validation cohorts 
are provided in Fig. 6B and C, respectively. Kaplan‑Meier 
curve analysis also revealed that the IPI was able to accurately 
stratify patients with ccRCC into either low‑ or high‑risk 
groups, with significantly different survival probabilities 
(Fig. 6D and E). As expected, the IPI's predictive accuracy 
in estimating the survival of patients with ccRCC was higher 
compared with that of the IPS (Fig. 6F), which was observed 
in both the training [AUC: 0.911 (IPI) vs. 0.811 (IPS)] and 
validation cohorts [AUC: 0.805 (IPI) vs. 0.799 (IPS)].

Validation in the clinical ccRCC samples. To further vali‑
date the IPS developed in the present study, six patients with 
ccRCC were recruited and their IGP expression was quantified 
to assign an IPS score using pre‑trained IPS model to each 
subject (Fig. 7). A total of three patients were identified as 
high‑risk whereas the others were low‑risk, as determined 
from the heatmap generated from the qPCR data (Fig. 7C). 
H&E staining was performed to compare the cell morphology 
and structure of samples from high‑risk and low‑risk patients 
with ccRCC (Fig. 7A). Histologically, samples from high‑risk 
patients with ccRCC identified based on their IPS exhibited 
more typical malignant findings compared with those of 
the low‑risk cases. In high‑risk ccRCC samples, cells had a 
voluminous, clear and eosinophilic cytoplasm, where their 
growth patterns were tubular, acinar and lamellar (Fig. 7A). 
Furthermore, high‑risk ccRCC samples also had a papillary or 

alveolar nested architecture with an abundant vascular network. 
The tumor cell nuclei exhibited varying degrees of atypia, with 
features such as prominent nucleoli and spindle‑shaped cells. 
These data suggest that the normal renal tubular epithelium 
and renal parenchyma were severely damaged in the high‑risk 
ccRCC cells, as compared to their low‑risk counterparts, which 
presented with a moderately damaged renal microstructure. 
The IHC results further demonstrated that in the high‑risk 
group, the top four risk‑associated IGPs were expressed at 
significantly higher levels compared with those in the low‑risk 
group (Fig. 7B and D), which supported the clinical applica‑
bility of the IPS developed in the present study.

Discussion

To the best of our knowledge, the present study was the first to 
elucidate the prognostic potential of inflammation‑associated 
molecules and develop an IPS for the survival estimation and 
risk‑stratification of patients with ccRCC. The underlying 
mechanism of the unfavorable prognosis of high‑risk patients 
with ccRCC were identified using the IPS in the present 
study, where a dysregulated immune microenvironment, 
signaling pathways and biological functions were revealed. 
Subsequently, the enhanced prognostic tool IPI combined 
this IPS with clinicopathological factors, which exhibited 
greater accuracy for prognosis prediction. With the present 
study's findings, particularly the IPS and IPI, oncologists 
may be able pre‑stratify patients with ccRCC for optimizing 
clinical management protocols whilst also improving their 
understanding into the nature of ccRCC progression in terms 
of inflammatory responses.

The novelty of the present study lies in the construction of 
IPS and IPI. Inspired by the key impact of the inflammatory 
response on the progression of ccRCC (46‑48), the prognostic 
potential of inflammation‑associated molecules was system‑
atically elucidated, following which the IPS was developed 
and validated. This IPS was confirmed to be a viable and 
robust biomarker for prognostic estimation and risk‑strati‑
fication in both the training (AUC=0.811) and validation 
cohorts (AUC=0.799). In addition, IPS was found to be an 
independent prognostic factor of ccRCC outcomes (P<0.001). 
The predictive ability of this IPS was higher compared with 

Figure 4. Comprehensive infiltration profiles of immune cells of clear cell renal cell carcinoma. Immune cell profiles in the (A) the training cohort and 
(B) validation cohort. NK, natural killer.
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Figure 5. Identified differential infiltrated immune cells in the IPS‑identified high‑ and low‑risk ccRCC groups. (A) Infiltration of six types of immune cells 
compared between the IPS‑identified high‑ and low‑risk ccRCC groups in the training cohort. (B) Correlations between those immune cell types and the IPS 
score in the training cohort. A violin plot is a hybrid of a box plot and a kernel density plot, which shows peaks in the data, and dots indicate each data point. 
Bars above and to the right of the plot represent frequency of the corresponding values. (C) Infiltration of six types of immune cells compared between the 
IPS‑identified high‑ and low‑risk ccRCC groups in the validation cohort. (D) Correlations between those immune cells and the IPS score in the validation 
cohort. ccRCC, clear cell renal cell carcinoma; IPS, inflammatory prognostic signature. *P<0.05, **P<0.01 and ***P<0.001.
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that of the other reported biomarkers (immune‑related risk 
signature with AUC of 0.753) (24,49), suggesting that inflam‑
mation‑associated molecules are of high prognostic value for 
ccRCC. This IPS was also discovered to be a high‑risk factor 
for poorer outcomes compared with other clinical character‑
istics [HR=11.73; 95% CI, 26.98‑5.10; P<0.001], yielding the 
largest HR in the present study. Subsequently, the IPI was 
developed by combining the IPS with clinicopathological 
factors to enhance clinical accuracy. In the nomogram of 
the IPI, the score for each feature was calculated to obtain 
the total score, before a vertical line is drawn on the total 
score scale to enable clinicians to estimate the expected 

survival probability of an individual patient with ccRCC. IPI 
displayed higher accuracy compared with IPS for prognostic 
estimation in both the training [AUC: 0.911 (IPI) vs. 0.811 
(IPS)] and validation cohorts [AUC: 0.805 (IPI) vs. 0.799 
(IPS)]. Using this proposed tool, in‑clinic risk‑stratification 
of ccRCC could be improved in terms of both accuracy and 
convenience. In addition, as tumorigenesis and development 
of solid carcinomas in humans are facilitated by a strong 
proinflammatory environment (50‑52), it is hypothesized that 
the IPS score, which was constructed using IGs, can perform 
well when applied for the prognosis estimation of other tumor 
types, such as neuroblastoma or osteosarcoma.

Figure 6. Construction and validation of an IPI. (A) Nomogram of the IPI. IPS score, overall survival time and survival status of each patient with ccRCC in 
(B) the training and (C) validation cohorts. Kaplan‑Meier curves indicating the difference in survival probability between patients with ccRCC in the high‑ and 
low‑risk groups from the (D) training and (E) validation cohorts. (F) ROC curve of the IPI. IPS, inflammatory prognostic signature; IPI, integrated prognostic 
index; ccRCC, clear cell renal cell carcinoma; AUC, area under the ROC curve; ROC, receiver operating characteristic.
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The immune microenvironment serves a significant role 
in tumor development  (17), particularly in ccRCC (53‑55). 
Numerous studies have previously revealed that the interaction 
between inflammation and immune cells can potentially fuel 
the malignant development of ccRCC (44,45). In particular, 
inflammatory signaling pathways [e.g., von Hippel‑Lindau 
tumor suppressor (VHL), hypoxia, TNF‑α, STAT and TGF‑β] 
and inflammatory molecules (e.g., pVHL, TGFβ, IL6 and 
selected chemokines/chemokine receptors) can promote the 
tumor evasion of immune cells (44). As a type of inflamma‑
tory cell death, pyroptosis may also recast a suitable immune 
microenvironment to promote ccRCC growth (45). However, 
only a small number of studies have systematically inves‑
tigated the association between an RNA expression‑based 
inflammatory signature and the immune microenvironment in 
the development of ccRCC (56). In the present study, high‑risk 
ccRCCs were classified based on the IPS, which exhibited 

dysregulated profiles of immune cell infiltration compared 
with those of low‑risk ccRCCs. Infiltration by M0 macrophages, 
CD4 memory activated T cells, follicular helper T cells and 
Tregs were all found to be significantly increased in high‑risk 
ccRCC. These tumor‑infiltrating immune cells present at high 
levels are proposed to sculpt a highly immunosuppressive 
microenvironment to potentially promote the development 
of tumors, particularly ccRCC (49,57). In a previous study, 
M0 macrophages were found to facilitate the progression of 
ccRCC, where they were present at high levels in high‑risk 
patients with ccRCC (49). Tregs normally prevent hyperac‑
tive immune responses and autoimmunity  (58). They have 
been reported to accumulate aberrantly in tumors, where they 
suppress antitumor immunity and support the establishment 
of an immunosuppressive microenvironment (58). All these 
aforementioned results strongly indicate that the dysregulation 
of immune cells or the immune microenvironment can fuel the 

Figure 7. Clinical validation of the IPS. (A) H&E staining results of IPS‑identified high‑ and low‑risk ccRCC samples. Arrows indicate some macrophage 
examples. (B) IHC results of the top four most hazardous IGPs. All scale bars are 50 µm. (C) IGP expression and IPS score of each patient with ccRCC. 
(D) Quantification of IHC results of the top four most hazardous IGPs. ccRCC, clear cell renal cell carcinoma; IPS, inflammatory prognostic signature. CCL7, 
C‑C motif chemokine ligand 7; LTB4R2, leukotriene B4 receptor 2. **P<0.01 and ***P<0.001.
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progression of high‑risk ccRCC, which was identified by the 
IPS in the present study.

There are certain limitations to the present study. 
Although analysis was performed using a large sample size, 
the retrospective nature is a limitation. Therefore, these 
findings, including IPS and IPI, require further validation in 
clinical trials. Furthermore, the IPS and associated immune 
mechanisms require further validation using clinical data 
from multiple centers. It was also not possible to analyze 
disease‑free survival due to the high abundance of censored 
data. Experimental in vitro and in vivo data are expected to 
strengthen the clinical feasibility of the IPS, which will be 
pursued further as planned for future studies.

In conclusion, data in the present study suggest that the 
constructed IPS and IPI are a highly effective and robust 
tools for the clinical pre‑stratification of patients with 
ccRCC for the precise designation of intervention strategies 
to enhance survival probability. Subsequently, it was found 
that inflammatory responses and the dysregulation of the 
immune microenvironment, including higher infiltration of 
immunosuppressive cells, can fuel the progression of ccRCC. 
It is hoped that these findings can facilitate the biological 
understanding into the roles of immunity and inflammation in 
ccRCC development.
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