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deletion phenotypes in Saccharomyces cerevisiae
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Abstract

Loss-of-function (LoF) mutations associated with disease do not
manifest equally in different individuals. The impact of the genetic
background on the consequences of LoF mutations remains poorly
characterized. Here, we systematically assessed the changes in
gene deletion phenotypes for 3,786 gene knockouts in four Saccha-
romyces cerevisiae strains and 38 conditions. We observed 18.5% of
deletion phenotypes changing between pairs of strains on average
with a small fraction conserved in all four strains. Conditions caus-
ing higher wild-type growth differences and the deletion of pleio-
tropic genes showed above-average changes in phenotypes. In
addition, we performed a genome-wide association study (GWAS)
for growth under the same conditions for a panel of 925 yeast
isolates. Gene–condition associations derived from GWAS were not
enriched for genes with deletion phenotypes under the same
conditions. However, cases where the results were congruent indi-
cate the most likely mechanism underlying the GWAS signal. Over-
all, these results show a high degree of genetic background
dependencies for LoF phenotypes.
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Introduction

While a mutation can be associated with specific disorders, it has

long been observed that not all individuals carrying the disease vari-

ant will manifest it. Even for diseases caused by mutations in a

single gene (i.e. monogenic disorders), incomplete penetrance is

frequent, presumably due to differences in the genetic background

(Kammenga, 2017; Hou et al, 2018). Modulators of penetrance of

disease-causing variants have been identified for many human

diseases (Cohen et al, 2005; Flannick et al, 2014; Chen et al, 2016)

and loss-of-function (LoF) mutations in different model organisms

(Hamilton & Yu, 2012; Chari & Dworkin, 2013; Vu et al, 2015; Chow

et al, 2016; Mullis et al, 2018). This impact of the genetic back-

ground on the phenotypic consequence of LoF mutations affects our

ability to predict phenotypes based on genetic variants. In Saccha-

romyces cerevisiae and E. coli, gene deletion phenotypes have been

extensively measured for all genes across hundreds of stress condi-

tions (Hillenmeyer et al, 2008; Nichols et al, 2011). However, genes

carrying putative LoF mutations in different strains are only weakly

predictive of expected gene deletion phenotypes (Jelier et al, 2011;

Galardini et al, 2017; Wagih et al, 2018). Understanding the extent

and the mechanisms by which the effect of LoF variants depends on

the genetic background is critical for the development of personal-

ized medicine.

While there are many known examples of background dependen-

cies on LoF mutations, few comprehensive studies have addressed

this phenomenon. Studies in S. cerevisiae have shown that 5% of

essential genes are dispensable between two closely related strains

(Dowell et al, 2010). In addition, the deletion of 7 chromatin-asso-

ciated genes was shown to have quantitative differences in growth

for 10 different conditions across 2 S. cerevisiae genetic backgrounds

(Mullis et al, 2018). The genetic underpinning of these differences

was mapped using 1,411 wild-type and mutant yeast cross progeny

revealing a large number of underlying genetic interactions (Mullis

et al, 2018). In addition to these yeast studies, a systematic RNAi

experiment in C. elegans showed that 20% of the 1,400 genes tested

had different mutant phenotypes across two backgrounds and natu-

ral variation in gene expression accounted for some of the observed

differences (Vu et al, 2015). Recently, gene deletion libraries were

generated for 3 other backgrounds of S. cerevisiae (Busby et al,

2019) other than the original reference laboratory strain library

(Winzeler et al, 1999). Growth measurements of these knockout

libraries in the presence of statin identified strong differences in

gene deletion phenotypes across the four genetic backgrounds. The

availability of these libraries now allows for the systematic genome-

wide study of the impact of the genetic background on gene deletion

phenotypes.
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Here, we have measured the growth for 4 S. cerevisiae deletion

collections in a panel of 38 perturbations. The growth of the gene

deletion strains shows a large variation across the genetic back-

grounds with an average of 18.5% gene–condition associations

changing in each strain across all pairwise comparisons. Genes with

the largest number of strain-dependent changes of growth had

above-average number of genetic and physical interactions sugges-

tive of a role of genetic interactions in these changes. Conditions

eliciting variable growth rates among the wild-type strains tended to

have the largest number of strain-specific variation in gene deletion

phenotypes. Finally, we have measured the growth profiles of a

panel of 1,006 S. cerevisiae natural isolates (Peter et al, 2018) across

the same conditions, identifying several variants associated with dif-

ferences in growth that we linked to causal genes through the gene

deletion analysis.

Results

Gene deletion growth measurements for 38 conditions in 4
S. cerevisiae genetic backgrounds

We measured growth for 17,186 total gene knockouts in 4 S. cere-

visiae genetic backgrounds (S288C, UWOPS87-2421, Y55, YPS606)

with 3,786 gene deletions measured in all backgrounds. The four

strains used are genetically diverse with an average of 5.4 to 5.9

SNPs/kb relative to the laboratory “reference” strain S288C (Winzeler

et al, 1999; Busby et al, 2019; Fig 1A). The deletions were arrayed as

colonies in a 1,536 agar plate format and were robotically pinned onto

agar plates containing the 38 different conditions (Materials and Meth-

ods; Fig 1B). Colony size at the endpoint was used as a proxy for fit-

ness, and deviation from the expected growth was calculated, taking

into account the replicate measurements, using the S-score (Collins

et al, 2006; Kapitzky et al, 2010; Nichols et al, 2011; Fig 1B). The

expected growth model assumes that the fitness of a gene deletion in

a given condition should be the product of fitness of the independent

perturbations (i.e. gene deletion and stress condition). Positive and

negative S-scores indicate gene deletions that confer resistance and

sensitivity to a given condition, respectively. The list and description

of the 38 conditions is available in Table EV1. These include environ-

mental stresses (e.g. heat, high osmolarity, DNA damage), drugs (e.g.

caspofungin, clozapine), metabolic conditions (e.g. amino acid starva-

tion) or combinations of stressors.

In total, we measured 876,956 gene–condition S-scores represent-

ing the measurements of resistance or sensitivity of each gene

knockout in each condition for the four genetic backgrounds (pro-

vided as Table EV2). A statistically significant resistance or sensitiv-

ity to a given condition is defined as a growth phenotype. The assay

is highly reproducible as measured by the correlation of the S-scores

using either 13 conditions that were replicated in two batches

(Fig 1C, Pearson’s r = 0.744, P < 1E-50) or 2,293 genes that were

spotted as replicates on the plates at different locations (Fig 1D,

Pearson’s r = 0.811, P < 1E-50). The correlation of S-scores for pairs

of gene recapitulates known functional relationships between genes

(Fig EV1), further confirming the high quality of the screening data.

We observed large differences in the profile of gene deletion growth

measurements for the four different strains (Fig 1E) that can be

quantified taking into account the high reproducibility of the assay.

Quantification of genetic background differences of
deletion phenotypes

The gene deletion S-scores for the 38 conditions defines the

growth profile of the loss of a given gene. If the growth differences

of deleting a gene were the same regardless of the genetic back-

ground, these quantitative growth profiles would be highly corre-

lated when comparing the S-scores of the same KO in two

different strains. We correlated the S-scores of the same gene dele-

tion for pairs of strains as a measure of similarity of their growth

profiles and plotted the distribution of correlations for all genes in

Fig 2A. On average, the similarity of S-scores of the same gene

knockout in different strains is only marginally higher than the

observed for the correlation of scores for random pairs of genes

(Fig 2A). The lack of correlation could be explained by the large

fraction of KOs with no strong response across the conditions

screened, resulting in differences in quantitative scores dominated

by technical variability. In line with this, the similarity of S-scores

across strains increases for gene knockouts having larger numbers

of significant deletion phenotypes (Fig 2A). However, even for

gene deletions with many phenotypes the correlation across

strains remains low, when compared with biological replicates

within the same strain.

In order to identify statistically significant differences of growth

in each condition, we used an empirical null model that takes into

account the variance of the assay and the mean dependence of the

variance for the S-score (Bandyopadhyay et al, 2010; Materials

and Methods; Fig EV2). For each pair of strains, we identify the

gene deletion phenotypes that were significantly shared (Fig 2B,

black) or exclusive (Fig 2B, red) to each genetic background

(Materials and Methods). We then used only the significantly

shared/exclusive phenotypes, excluding other phenotypes (Fig 2B,

grey), to calculate the fraction of shared/exclusive phenotypes for

each pair of strains. We performed all pairwise comparisons for

each strain. We then calculated the average fraction of shared

phenotypes that a strain has with each of the other three strains

(Fig 2C), which ranged from 58% for S288C to 84% for Y55. This

fraction drops further for phenotypes significantly conserved

across more strains with 22–51% observed in three strains and 9–

24% of gene deletion phenotypes significantly conserved in all four

backgrounds (Fig 2C). These highly conserved phenotypes include

very central genes relevant for the corresponding responses such

as sensitivity to osmotic stress (hog1D), drug efflux (pdr5D) and

amino acid biosynthesis (adeD, metD, serD, trpD), among others

(Table EV3). Only a small fraction (3–5%) of the phenotypes that

are not conserved between pairs of strains show a reversal in sign

whereby the deletion causes resistance to the stress in one back-

ground but increased sensitivity in another background

(Table EV4). We observed the strongest reversal for met5D
exposed to amino acid starvation, which has a strong sick pheno-

type in YPS and UWOP, but shows increased resistance when

knocked out in S288C. Since the S288C KO library is based on the

BY4741 met17D (Cherry et al, 2012) strain, a hypothetical explana-

tion for this phenotype reversal could be a positive genetic interac-

tion between MET5 and MET17. We observed few changes in

these proportions when varying the significance threshold for call-

ing phenotypes, indicating the robustness of these trends

(Fig EV3).
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To ascertain the degree of errors in the quantification of changes

in gene deletion phenotypes, we performed two independent assess-

ments of the false-positive rate. For the first test, we analysed as

biological replicates 2,326 gene deletions that are spotted in dupli-

cate on all of the four genetic backgrounds. We determined the

gene–condition S-scores for each replicate separately and deter-

mined the fraction of growth phenotypes that were different when

comparing the replicates (Materials and Methods). Any difference in

the phenotypes determined for the replicates can be considered an

error, giving us an estimated error rate. At a q-value below 0.01 (per

strain), we detected 2.6, 3.5, 4.5 and 0% false positives for S288C,

UWOP, Y55 and YPS, respectively. Additionally, to account for

errors in the generation of deletion strains or accumulation of other

issues associated with large libraries (e.g. secondary or compen-

satory mutations, wrong mutations, cross-contamination), we

created 16 new deletion strains (Materials and Methods) in each of

the four backgrounds. We then performed a smaller scale screen on

10 conditions and determined gene–condition S-scores (Table EV5).

The average correlation coefficient of the S-scores between the new

replicated KOs and the library KOs was typically higher than 0.6 for

all strains. The exception was the S288C laboratory strain, which

tended to have lower correlations (Fig EV4). We used the same

procedure to determine the error rate in determining a change in

phenotypes for the new replicated KOs and found 17.6, 1, 2.7 and

1.59% for S288C, UWOP, Y55 and YPS, respectively. The rate of

error was below 3% with the exception of S288C, which was close

to 18%. This higher rate of error for S288C is likely due to accumu-

lated secondary or compensatory mutations in the S288C KO library,

which is consistent with previous reports (Teng et al, 2013). It is

likely that these genomic differences will tend to incorrectly inflate

the phenotype differences observed for S288C when compared to

other strains (Fig 2C).

We next focused on the gene knockouts that had the largest

number of background-dependent changes in phenotypes. We

ranked all gene deletions according to the proportion of changes

over all tested conditions (Fig 2D, Table EV6) and observed that the

genes that change their deletion phenotypes at least once (N = 242)

had also a higher number of genetic and physical interactions part-

ners based on data collected in the BioGRID database (Chatr-Arya-

montri et al, 2017) for the S288C laboratory strain (Fig 2E; genetic

A

E

B C D

Figure 1. Chemical genomic screen across four Saccharomyces cerevisiae strains.

A Core genome phylogeny of part of the Saccharomyces Genome Resequencing Project (SGRP) yeast isolates; coloured dots indicate the four strains whose KO library
was screened in this study.

B Schematic of the chemical genomic screen; each strain’s KO library was robotically plated on 1,536 solid agar plates, and each KO colony size was used as a proxy for
fitness in each condition.

C Reproducibility of the S-scores using the two batches used in the screening.
D Reproducibility of the S-scores using genes having multiple independent colonies plated in the screening.
E Clustered heatmap of the whole chemical genomic screen; each subsection belongs to an individual strain’s KO library. Grey cells indicate missing values.
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interactions: Kolmogorov–Smirnoff test, P-value: 1.00E-9, Cohen’s

d: 0.53; physical interactions: P-value: 5.19E-11, Cohen’s d: 0.49).

Significant results are observed also when restricting the analysis to

systematic studies reporting at least 2,000 interactions (P-value and

effect sizes of 1.19E-18 and 0.55, and 1.4E-13 and 0.49 for genetic

and physical interactions, respectively). This suggests that the

degree of interactions of genes, and therefore their degree of func-

tional connections, is correlated with the probability that a deletion

phenotype will depend on the genetic background. It has been

shown previously that the number of gene deletion phenotypes of a

given gene correlates with its number of genetic interactions

(Costanzo et al, 2010). To determine whether our observation

depends indirectly on this relationship, we repeated the analysis

comparing groups of genes with similar number of growth pheno-

types but different numbers of strain-specific phenotypes. This had

no impact on the significance of the observed relationship between

the number of physical/genetic interactions and number of changes

in gene deletion phenotypes.

Genes with many changes in gene deletion phenotypes were

enriched in GO terms related to endosomal transport (13 genes over

242, q-value = 0.006), mitochondrion organization (23 genes over

242, q-value = 0.007), cellular respiration (11 genes over 242,

A C

D

E

B

Figure 2. Systematic assessment of genetic background dependencies of gene deletion phenotypes.

A Average S-score Pearson’s correlation between the same genes (orthologs, solid line) and random gene pairs (shaded distribution) across all the 38 conditions and
four strains. Genes are stratified by the number of conditions in which they show a significant phenotype across the four strains.

B S-score scatterplots for each pairwise strain comparison, highlighting conserved phenotypes (black points), significant changes (red points) and gene–condition
relationships for which no call can reliably be made (grey points). “r”, Pearson’s r value.

C Fraction of deletion phenotypes in each strain conserved with other stains in pairwise, three-way and four-way comparisons. Error bars represent standard deviation
for all pairwise and three-way comparisons. Only a four-way comparison is possible for each strain so no error bars are represented in these cases.

D Gene exclusiveness: a measure of each gene’s propensity to change its chemical genomic profile across strains. The top 10 genes’ names are reported.
E Genes with high exclusiveness (> 0) tend to have a higher number of negative genetic and physical interactions (as reported in the BioGRID database). The central

vertical line indicates the median, the box delimits the lower and upper quartile of the distribution and the whiskers extend to 1.5 times the Inter-Quartile Range
(IQR) plus the lower and upper quartile of the distribution, respectively.
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q-value = 0.007) and cell wall organization or biogenesis (20 genes

over 242, q-value = 0.009; Table EV7). These genes were not more

likely than others to be highly conserved (P = 0.065), have a higher

fraction of disordered regions (P = 0.49) or show expression

changes in optimal growth conditions across the 4 yeast strains

(Fisher’s exact test P > 0.05; Table EV8).

Condition-specific wild-type growth differences contribute to
variance in gene deletion phenotypes

For each condition, we counted the number of changes in deletion

phenotypes observed across genetic backgrounds (Figs 3A and

EV5). We compared these changes with the average growth rate dif-

ferences of the 4 wild-type (WT) strains (i.e. no knockout) in the

same conditions (Figs 3B and EV5). We noticed that some condi-

tions having large number of changes corresponded to cases where

a significant growth difference was observed for the WT strains. For

example, S288C grows poorly under maltose relative to the other

strains (Chow et al, 1989) (Fig 3B) and also showed the largest

number of exclusive gene deletion phenotypes (Fig 3A), the same

was observed for caffeine. In contrast, in the high-salt (osmotic

shock) conditions, S288C had the highest WT growth and the small-

est number of phenotype differences. While this was not the case

for all conditions, there is a significant trend where a slower WT

strain growth in a condition is associated with a larger number of

strain-specific knockout phenotypes (Fig 3C, Pearson’s r = �0.21,

P = 0.02).

We analysed in more detail some conditions with large changes

in phenotypes. For high salt, that elicits an osmotic stress, deleting

the two central kinases of the osmotic shock pathway (HOG1 and

PBS2) generally impaired growth in all backgrounds, as expected.

This pathway has two upstream branches converging on PBS2/

HOG1 (Brewster et al, 1993; Hohmann, 2009). These branches can

be redundant and thus show few phenotypes under osmotic stress.

However, the STE50 deletion shows striking differences causing

increased sensitivity in YPS background, resistance in the Y55 and

no phenotype in S288C and UWOP. Similar to STE50, we identified

10 more genes with strain-specific phenotypes in high-salt condition

(Fig 3D). Some of these genes are related to osmosensing (STE50,

RVS161), ER function (DSC2, GEA1) and metabolism (MRS4,

TRP3).

For growth under maltose, the two strains with the best WT

growth (UWOP and Y55) also had strong growth defects when

maltose-induced genes, present in two clusters, were deleted

(Fig 3E). It is known that S288C does not grow effectively in

maltose due to inactivation of the maltose activator proteins in the

MAL loci (Chow et al, 1989). It is therefore expected that deleting

MAL genes (i.e. maltose-induced genes) causes no further decrease

in growth in maltose-negative strains such as S288C but has a strong

impact on MAL-positive strains such as Y55 and UWOP. Similar to

S288C, the YPS strain appears to also be a maltose-negative strain.

The poor growth under maltose then creates additional vulnerabili-

ties to the cell, rendering essential a large number of genes involved

in nonfermentable growth under maltose for S288C (Fig 3E). Inter-

estingly, the same set of genes are required for S288C to grow in

glycerol, suggesting that S288C should grow poorly under glycerol,

although this did not translate into a strong growth defect of the WT

under this condition (Fig 3B).

Quantitative trait analysis of condition-specific growth
differences in a panel of 1,006 S. cerevisiae strains

To test whether the gene deletion phenotypes in different genetic

backgrounds could be used to better understand the impact of natural

variation on yeast growth under the same conditions, we performed

a GWAS across 47 conditions using a panel of 925 S. cerevisiae natu-

ral isolates. These 925 strains are the fraction of the tested 1,006

strains (Peter et al, 2018) with available genotype data. Growth

measurements, fitness measurements and phenotype calculations

were performed as for the deletion libraries (Materials and Methods).

The S-score measurements used (Figs 4A and EV6) represent, as

above, condition-specific growth measurements for each strain where

a genetic background can specifically affect growth under a given

condition. Using the genomic variants, we identified a total of

151,673 common single nucleotide polymorphisms (SNPs, minor

allele frequency > 5%). In addition, we predicted the impact of

missense variants in each coding region and calculated a probability

of loss of function (LoF) for each gene in each strain (Jelier et al,

2011; Galardini et al, 2017); this could be regarded as a gene disrup-

tion or gene burden score. We then performed a GWAS for each

condition using the common SNPs, the gene burden score, the gene

copy-number variation (CNV) and the presence/absence patterns of

genes as predictors (Materials and Methods). In total, we found 579

significant associations (association P < 1E-6), with the largest

number of associations observed for growth under amphotericin B

and caffeine (Fig 4B), both known to have an impact on the cell wall.

Both conditions are also unlikely to be present in the natural environ-

ment, and therefore, genetic variants causing growth defects under

these conditions are less likely to be selected against. Common SNPs

had the highest number of significant associations (365), followed by

gene presence/absence (159), gene burden score (29) and CNVs (26).

It is not unexpected that SNPs result in the largest number of signifi-

cant associations since these also constitute the most frequent type of

genetic change. Relative to all tested associations, the significant asso-

ciations represented 0.005% for SNPs, 0.805% for gene presence/

absence, 0.047% for gene burden and 0.06% for CNVs. Not surpris-

ingly, the SNPs had the lowest frequency of significant associations

since the other genetic changes are more likely to result in a pheno-

type difference with a large effect.

For each condition, we obtained a list of genes associated with

growth differences from the gene deletion analysis and crossed it

with the variants, and their linked genes, associated with growth

differences across the 925 yeast strains. Unexpectedly, we found no

significant enrichment between the gene–condition associations

obtained from the GWAS analysis and the gene–condition associa-

tions found in the gene deletion experiments (Fisher’s exact test,

P > 0.05). Despite the lack of overall enrichment, several GWAS

associations can be validated by the gene deletion information

(Fig 4C–G; Table EV9). For example, 141 strains had a high gene

burden score in the PDR5 locus, which had a significant association

with growth in the presence of cycloheximide. Deletion of this ABC

transporter is known to cause multidrug sensitivity and showed

cycloheximide-dependent deletion phenotypes in all 4 backgrounds

(Fig 4D). The presence of two SNPs in two other transporters, the

cadmium-transporting P-type ATPase (PCA1) and a membrane

Na+/Pi cotransporter (PHO89), was linked to growth under

cadmium chloride and had also significant gene deletion phenotypes
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in at least 3 of the strains (Fig 4E). A SNP close to BRP1 showed an

association with growth under high-salt stress, which is supported

by BRP1 deletion phenotypes in two strains. However, several other

cases had less support. For example, the absence of the ADH1 gene

in 450 strains showed an association with anaerobic growth in the

presence of amphotericin B. Yet, deleting this gene results in a

strong phenotype for in this condition only in the Y55 strain. We

found a total of 22 gene–condition associations overlapping between

the GWAS and KO analysis with most overlaps observed with gene

deletion phenotypes exclusive to a single genetic background.

Discussion

Our results show that the genetic background has a strong impact

on gene deletion phenotypes in S. cerevisiae. The fraction of signifi-

cant differences across two individuals (18–40% and 18.5% on

average) is similar to the fraction of changes observed for RNAi

phenotypes for two strains of C. elegans 20% (Vu et al, 2015).

These results also corroborate a high degree of changes in gene dele-

tion phenotypes observed in a study of yeast chromatin-related

genes (Mullis et al, 2018) and with the initial characterization of the

gene deletion library used in this study (Busby et al, 2019). The

genome-wide nature of our study argues against the possibility that

the high degree of changes observed in previous studies could be

due to a specific selection of genes. The study of 4 genetic back-

grounds also allows us to quantify the degree of shared phenotypes

across additional strains. We see that this fraction decreases further

with < 25% of significant phenotypes being shared across all four

strains. Analysis of additional backgrounds would be needed to fully

access the fraction of gene deletion phenotypes that are independent

of the genetic background. As with other analyses of large-scale

gene deletion libraries, our estimation of background dependence of

gene deletion phenotypes may be overestimated due to the errors in

the libraries. These errors were found to be typically low (< 5% of

error) with the exception of error estimates for newly made KOs in

A C E

D

B

Figure 3. The fitness of the WT strain background is linked to the number of differences in KO phenotypes for a given condition.

A Barplots reporting the average number of gain and sick phenotypes that are specific to each strain across all pairwise comparisons.
B Wild-type fitness of each strain relative to S288C across the same conditions as in panel A; each dot represents a specific replicate where colony sizes were measured.
C Relationship between the wild-type fitness relative to S288C and the number of conditionally essential genes relative to S288C; each dot represents a strain–

condition replicate as in panel B. The conditions maltose, glycerol and NaCl are highlighted.
D Changes in gene deletion phenotypes for growth on osmotic stress conditions. The top heatmap contains genes belonging to the HOG pathway, while the bottom

one contains those genes whose growth phenotypes vary the most between Y55 and YPS. Significant growth phenotypes are marked with “-”.
E Changes in deletion phenotypes for growth on glycerol and maltose. The top heatmap contains the MAL genes, while the bottom one contains those genes whose

growth phenotypes vary the most between S288C and the other three strains. Significant growth phenotypes are marked with “-”.
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the S288C strain. Based on comparisons with newly made KOs, we

found that 18% of gene deletion phenotype changes determined for

S288C could be errors potentially due to additional mutations accu-

mulated in the library. If we were to remove 18% of gene deletion

phenotype differences that were estimated for comparisons of

S288C with other strains, we would still expect to measure on the

order of 38% of gene deletions having different phenotypes. Overall,

together these studies show very strong evidence that the conse-

quences of the loss of function of a gene can be highly dependent

on the genetic background.

The large-scale analysis allowed us to search for general trends

associated with the observed differences. Strains having a slower

WT growth in a given condition also tended to have a larger number

of gene deletion phenotypes in those conditions, suggesting that in

such conditions, the poor growing strains have more modes of fail-

ure and are impacted by a larger number of gene deletions. Growth

in maltose serves as a good example of how existing genetic varia-

tion can interact with LoF mutations. The S288C strain has genetic

variants that render it unable to grow well in maltose and therefore,

in this condition, becomes reliant on genes required for nonfer-

mentable growth. It remains a challenge to find similar justifications

for how the genetic background interacts with the gene deletions for

other conditions, but those identified here could be further studied

using a segregant analysis as previously done by Mullis and collea-

gues (Mullis et al, 2018). Analysing a larger number of such genetic

interactions will be fundamental for deriving general principles for

how gene deletion phenotypes change across genetic backgrounds.

Some genes had a higher proportion of changes in their deletion

phenotypes. These tended to also have an above-average number of

genetic and physical interactions. The interaction assays used as the

basis for this analysis have been conducted in the S288C back-

ground strain, but they nevertheless likely reflect the degree of func-

tional interactions of each gene. Compared to other genes, those

that have many genetic and physical interactions have been previ-

ously shown to be multifunctional and more important to the cell

(Yu et al, 2008; Costanzo et al, 2010). One interpretation of the

results would be that genes that are involved in multiple processes

are more likely to have also larger number of changes in deletion

phenotypes since there will be many ways by which the genetic

background difference may interact with the LoF of these genes. Of

the four strains, the reference strain (S288C) stands out as the one

where specific gene–condition associations are the most abundant

when compared to the other three strains: 58% versus ~80%. This

observation combined with other idiosyncrasies specific to this

strain (Mortimer & Johnston, 1986; Winston et al, 1995; Brachmann

et al, 1998), such as growth in the presence of maltose, indicates

that observations made on a domesticated individual might not

necessarily reflect natural populations. In addition, as discussed

previously, this laboratory strain gene deletion collection is also

more likely to contain secondary and compensatory mutations that

may inflate the degree of measured strain-specific deletion pheno-

types.

Lastly, we performed a GWAS analysis using 925 strains for the

same conditions and using the same experimental set-up. We were

A B C D

E

F

G

Figure 4. Genes linked to growth phenotypes via GWAS analysis in 925 natural yeast isolates.

A S-score heatmap of the yeast natural isolates across 34 conditions that were also used in the KO screening.
B Number of variants significantly associated (P < 1E-6) with phenotypic variation in each growth condition.
C Number of associated variants that overlap (i.e. are in a 3-kbp window) with a conditionally essential gene in the same condition, in any of the four KO libraries.
D–G Manhattan plots showing examples of overlaps between associated variants and the KO screening. The top plot shows the associations between variants and

growth in the natural isolates as a function of the �log10 of the association P-value, while the four bottom plots show the strength of the KO phenotypes across
the four yeast strains, as a function of the �log10 of the corrected S-score P-value. Sections shaded in grey indicate the overlap between associations and KO data.
Position in the yeast chromosome is reported in kilobase units.
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expecting that variants associated with differential growth in a given

condition were linked to genes whose deletion resulted in phenotypes

in the same condition. Overall, we found no such enrichment, which

suggests that using functional genomic assays to study gene–trait

associations derived from GWAS may be challenging. This degree of

overlap could be limited due to several technical reasons. Natural

isolates are likely to have few LoF variants, in particular associated

with conditions that are experienced in the environment, and there-

fore, the genetic perturbations are less likely to mirror the deletion

phenotypes. For SNP-based associations in particular, linking the SNP

to the causal gene is difficult and could be driven also by long-range

genomic interactions. The total number of strains used is likely to be

also limiting, since there are typically very few strains showing strong

growth differences across any specific condition. Larger number of

strains or segregant analysis (Bloom et al, 2013; Cubillos et al, 2013)

could be used in the future to further study the relationship between

natural variants and deletion phenotypes. Despite an overall lack of

enrichment, our results suggest that in some cases, the interpretation

of the impact of genetic variants is possible. Yet, it is unlikely that this

would be comprehensive using the gene deletion information avail-

able for a single genetic background.

In summary, the results presented here, together with related

literature, indicate that gene deletion phenotypes of individuals are

strongly dependent on the genetic background. The extent of these

dependencies in humans remains to be fully explored but may have

important consequences for human genetics.

Materials and Methods

Strains used

Mata haploid KO libraries in the genetic backgrounds of S288C

(Winzeler et al, 1999; 4,889 KOs), UWOPS87-2421 (abbreviated as

UWOP, 4,014 KOs), Y55 (4,190 KOs) and YPS606 (Busby et al,

2019; abbreviated as YPS, 4,093 KOs) were used to assess whether

different genetic backgrounds have an effect on gene deletion

phenotypes. These libraries were maintained on YPD+G418 prior to

screening in 384 colony format. The 1006 natural isolate strain

collection (Peter et al, 2018), a kind gift from Gianni Liti (Peter

et al, 2018), was maintained on YPD in 384 colony format prior to

screening.

Chemical genomic analysis

Growth of KO libraries and 925 strain collection were evaluated on

concentrations of chemical and environmental stress conditions

(Table EV1) that inhibit the growth of S288C by approximately

40%. The libraries were maintained and pinned with a Singer RoTor

in 1,536 colony format. Synthetic complete (Kaiser et al, 1994)

media were used with or without the stress condition, incubated at

30°C (unless temperature was a stress) for 48 h or 72 h, and imaged

using a SPIMAGER (S&P Robotics) equipped with a Canon Rebel T3i

digital camera.

The growth measurements were performed in two separate

batches with overlapping sets of conditions to judge for variation of

the method. In each batch, four biological replicates were collected

for each condition tested, and analysis was carried out with a

minimum of three replicates. The first batch of the chemical

genomic screening was carried out with the S288C deletion collec-

tion and used the following conditions: anaerobic, amphotericin B,

nystatin, DMSO, 2,4,D, glycerol, maltose, HEPES-buffered medium,

caffeine, 6-AU, paraquat, 39°C and sorbitol. Batch 2 was carried out

with the deletion collections in the four genetic backgrounds

(S288C, Y55, YPS606 and UWOPS87-2421) and contained all (13) of

the conditions from batch 1 plus: 5-FU, doxorubicin, cadmium chlo-

ride, caspofungin, clozapine, Nickel sulphate, clioquinol, high

glucose (20%), minimal medium, nitrogen starvation medium,

cycloheximide, and sodium chloride 0.4 and 0.6 M, and the duel

stress conditions: sodium chloride 0.4 and 0.6 M plus 39°C, 6-AU

plus 39°C and amphotericin B plus anaerobic growth. The two

batches were carried out as separate experiments.

Chemical genomic data analysis

Raw plate images were cropped using ImageMagick to exclude the

plate plastic borders. Raw colony sizes were extracted from

the cropped images using gitter (Wagih & Parts, 2014), v1.1.1,

using the “autorotate” and “noise removal” features on. Poor-

quality plates were flagged when no colony size could be reported

for more than 5% of colonies (poor overall quality) or when no

colony size could be reported for more than 90% of a whole row

or column (potential grid misalignment); known empty spots in

each plate were used to flag incorrect plates. Overall, < 5% of all

pictures have been discarded (175/4,221, 4.15%). Conditions with

less than three replicates across the two experimental batches were

excluded from further processing. Raw colony sizes for the remain-

ing conditions were used as an input for the EMAP algorithm

(Collins et al, 2006), with default parameters except the minimum

colony size which was set to five pixels. The algorithm computes

an S-score, which indicates whether the growth of each KO is devi-

ating from the expected growth in each condition taking into

account the variability across the four replicates. The raw S-scores

were further quantile-normalized in each condition. Significant

loss-of-function and gain-of-function phenotypes were highlighted

by transforming the S-scores in z-scores, given that the S-scores in

each condition follow a normal distribution. P-values were derived

using the survival function of the normal distribution and

corrected using an FDR of 5% (false discovery rate). The whole

dataset, comprising 876,956 gene–condition interactions, is avail-

able in Table EV2.

The overall relative fitness of the three nonreference strains

(Y55, UWOP and YPS) against the S288C reference was computed

as follows:

ustrain ¼ median Sstrainð Þ
median SS288Cð Þ

where median(S) is the median-normalized colony size. The

normalized colony size is computed in each plate by first applying

a surface correction step, followed by a border correction step. The

surface correction is applied to reduce the impact of spatial abnor-

malities on colony sizes; in short, the second-degree polynomials

of the row and column indices are computed in a matrix, which is

then qr-factorized. The resulting matrix is used to construct an

ordinary least squares linear model between the Q-factorized
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matrix and the corresponding vector of raw colony sizes. The

surface-normalized colony sizes are then computed as follows:

Ssurface ¼ Sraw � Ŝþ Sraw

where Ŝ is the size prediction from the ordinary least squares

model. The surface-corrected colony sizes (Ssurface) are further

corrected to take into account the border effect, meaning the dif-

ference in size between colonies in the two outermost rows and

columns with respect to the rest of the plate. The border correction

is computed as follows:

Sborder ¼ Souter �median Sinnerð Þ
median Souterð Þ

where median(Souter) is the median size of colonies on the outer

border of the plate, and median(Sinner) is the median size of colo-

nies in the rest of the plate. The overall fitness is computed only in

those cases where the plates belonging to the four strains’ KO

libraries have been screened at the same time, in order to make

the comparison robust to changes in experimental conditions. The

relative fitness measures are available in Table EV10.

To test whether the four KO libraries are able to recapitulate

known gene functional relationships, we tested whether gene pairs

belonging to the same functional groups tended to have correlated

S-score vectors in each of the four yeast strains. Two functional rela-

tionships sets were used: the CYC2008 protein complex set (Pu et al,

2009) and KEGG modules belonging to S. cerevisiae (Muto et al,

2013). The KOs common to all four libraries were selected, and for

each strain, only those that had at least one phenotype with

corrected P-value below 0.01 were used to compute the Pearson

correlation of S-scores between each gene pair. The ability of these

gene–gene correlations to recapitulate the known functional rela-

tionships was assessed by constructing receiver operating character-

istic and precision–recall curves, using the known relationships as

the true-positive set and 10 random gene pair sets with same

number as the true set as true-negative set.

The conservation or similarity of gene deletion phenotypes

across the four yeast strains was assessed by computing Pearson’s

correlation between the S-score profiles across all conditions of the

same genes in all pairs of strains and then by computing the average

of these values. Genes were stratified by the average number of

conditions in which they show either a loss-of-function or a gain-of-

function phenotype across the four strains. Random gene pairs were

used as background.

Reproducibility of chemical genomic screens

The reproducibility of the chemical genomic screen was assessed in

two separate ways. The first method assessed the technical repro-

ducibility of the S-scores across the two batches in which the screen

was conducted. The raw pictures were divided according to the

batch of origin, and the EMAP algorithm (Collins et al, 2006) was

used to compute a set of S-scores for each batch. For the 13 condi-

tions that were tested in both batches, the S-score correlation was

computed. We refer to this analysis as both technical and biological

because the inoculates are derived from the same source plate but

at very different times (Table EV11). Biological replicability was

assessed using 2,293 KOs that are pinned exactly twice across the

library.

Significant changes in growth phenotypes

Significant changes in chemical genomic profiles between any two

strains were computed following a previously published approach

that also used S-scores (Bandyopadhyay et al, 2010). The two sets

of S-scores computed as part of the batch replicate analysis were

used as a null model for the absence of changes in S-scores, as a

way to estimate the degree of expected variation observed across

different experiments. Since the variance in S-scores is higher at

higher absolute S-score values, this has to be taken into account

when calling significant differences; a sliding window approach was

applied when constructing the null model. Given the two sets of S-

scores, the following vectors were computed:

Nsum ¼ �jSbatch1 þ Sbatch2j

Nsub ¼ jSbatch1 � Sbatch2j

where Sbatch1 and Sbatch2 are the S-scores from the replicate

batches, respectively. The sliding window was then applied to

Nsum, dividing the vector in 100 slices with at least 20 observations

in each one and recording the mean (Nsub) and standard deviation

(rsub) of Nsub for each slice. For each strain pairwise comparison,

Nsum and Nsub were recorded for each matching slice, and the

corresponding Nsub and rsub were extracted from the null distribu-

tion using a linear interpolation. A normal distribution with mean

Nsub and standard deviation rsub was then constructed around each

slice, and the cumulative distribution of the normal function was

used to derive a P-value to indicate significant differences. The

P-value was FDR-corrected, and incoherent differences were

assigned a corrected P-value of 1—specifically, those cases where

both strains have a significant phenotype but corrected P < 0.01

(150 comparisons over 875,833) and cases where both strains do

not show a significant phenotype but corrected P < 0.01 (26

comparisons over 875,833). The full dataset comprising 875,834

comparisons is available in Table EV12. We note that this estimate

of variance of S-scores is not a condition.

When looking at the proportion of significant loss-of-function or

gain-of-function phenotypes that each strain shares with the other

strains, we considered those comparisons where the focal strain had

a significant gain-of-function or loss-of-function phenotype and

corrected P < 0.01 (phenotype not shared) and where both strains

had a significant phenotype and corrected P ≥ 0.01 (shared pheno-

type); all other comparisons were not considered.

Each gene’s propensity to change its conditional essentiality pro-

file across the six strains’ pairwise comparisons (E, exclusive pheno-

type propensity) was computed as follows:

E ¼ Pexclusive
Pexclusive þ Psharedð Þ

where Pexclusive is the number of loss-of-function or gain-of-function

phenotypes that vary significantly (corrected P < 0.01), while

Pshared is the number of loss-of-function or gain-of-function pheno-

types in both strains of the comparison that do not vary
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significantly (corrected P ≥ 0.01). A gene whose E > 0 was consid-

ered with “high exclusiveness” (Table EV6). Variable genes in

Fig 3D and E were selected based on a corrected P-value cut-off of

1E-4 in at least one comparison.

GO term enrichment analysis

Gene ontology (GO) annotations were downloaded from the SGD

database (Cherry et al, 2012), while the GO slim yeast dataset was

downloaded from the gene ontology website (Ashburner et al, 2000;

The Gene Ontology Consortium, 2017). GO term enrichments were

assessed using goatools (Klopfenstein et al, 2018), v0.8.2, using a

FDR-corrected P-value threshold of 0.01.

Transcriptomics analysis

Yeast were grown to an OD of 0.4, and total RNA was extracted

using the MasterPure Yeast RNA Purification Kit (Biozym, Epicen-

tre). The samples were quality-tested on the fragment analyser

(AATi/Agilent) using the Standard Sensitivity RNA Kit (AATi/

Agilent), and 600 ng of total RNA was used for library preparation.

The libraries were prepared using the TruSeq Stranded mRNA Kit

(Illumina) using a Beckman Fxp liquid handler system. Sequencing

was carried out on an Illumina NextSeq 500 in 75 single-end mode.

Raw single-ended Illumina reads were trimmed to remove the

TruSeq3 adaptors using trimmomatic (Bolger et al, 2014), v0.36.

Trimmed reads were pseudo-aligned to the yeast reference genome

transcripts (downloaded from the SGD database; Cherry et al, 2012)

using kallisto (Bray et al, 2016), v0.44.0, with the sequence-based

bias correction and using an average fragment length of 130 bp

(70 bp standard deviation). Differential gene expression analysis

between each strain and S288C was performed using DESeq2 (Love

et al, 2014), v3.8. Raw reads are available in the GEO database with

accession number GSE123118.

Natural isolate growth assay

Raw plate images were cropped using ImageMagick to exclude the

plate plastic borders. Raw colony sizes were extracted from

the cropped images using gitter (Wagih & Parts, 2014), v1.1.1, using

the “autorotate” and “noise removal” features on. Poor-quality plates

were flagged when no colony size could be reported for more than

5% of colonies (poor overall quality) or when no colony size could be

reported for more than 90% of a whole row or column (potential grid

misalignment). Conditions with less than three replicates were

excluded from further processing. Raw colony sizes for the remaining

conditions were used as an input for the EMAP algorithm (Collins

et al, 2006), with default parameters except the minimum colony size

which was set to five pixels. The computed raw S-scores were further

analysed as reported in “Chemical genomic data analysis” section.

Genome-wide association study of the yeast natural isolates

The genetic variants found in the yeast natural isolate collection

(SNPs/InDels, CNVs and genes presence/absence patterns) were

downloaded from http://1002genomes.u-strasbg.fr/files/ on 4 Octo-

ber 2018. SNPs and InDels were normalized and filtered to retain

variants with at least 5% minor allele frequency (common variants),

using bcftools (Li et al, 2009), v1.9. Rare variants (SNPs with minor

allele frequency ≤ 5%) were included computing their impact on

gene function, using the “gene disruption score” described in previ-

ous studies (Jelier et al, 2011; Galardini et al, 2017). In short,

common nonsynonymous and nonsense variants were kept, together

with gene presence/absence patterns; the impact of nonsynonymous

variants was predicted using the SIFT (Ng & Henikoff, 2001) and

FoldX (Guerois et al, 2002) algorithms, when applicable. The individ-

ual predictions were translated to their probability of being neutral

(Pneutral) based on a collection of variants with known impact (Jelier

et al, 2011), using the following transformations:

P neutralSIFTð Þ ¼ 1

1þ e� �1:312 ln SIFTþ1:598E�5ð Þþ4:104ð Þ� �

P neutralFoldXð Þ ¼ 1

1þ e� 0:218 FoldXþ0:074ð Þð Þ

where SIFT and FoldX are the scores of each individual predictor.

Nonsense variants were assigned a Pneutral value of 0.99 if they

appeared in the last 5% of the protein sequence, 0.01 otherwise.

The overall likelihood that gene function was affected by common

variants (P(AF), or gene disruption score) was computed as

follows:

PðAFÞ ¼ 1�
Yk

i¼1

PiðneutralÞ

where k is the totality of nonsynonymous and nonsense variants

observed in each gene. When both SIFT and FoldX predictions

were available, priority was given to SIFT scores; nonsynonymous

variants with neither predictions available were assigned the high-

est observed Pneutral value. If a gene was considered as absent, a P

(AF) value of 0.99 was assigned. The gene disruption score is

available in Table EV13. The CNVs, gene presence/absence

patterns and digitized gene disruption scores (1 if P(AF) > 0.9, 0

otherwise) were encoded in a VCF (variant calling format) file

together with the common variants and recoded using PLINK

(Purcell et al, 2007), v1.90b4.

A genome-wide association analysis has been carried out to high-

light common and rare variants associated with growth variability

across the yeast natural isolates, using the LMM (linear mixed

model) implemented in limix (preprint: Lippert et al, 2014),

v2.0.0a3. Missing values were mean-imputed, and the model was

applied to each growth condition independently. The kinship matrix

was computed using the strains’ phylogenetic tree from the original

yeast natural isolate publication (Peter et al, 2018). Variants with

association P < 1E-6 were considered associated. Intersections

between associated variants and genes present in the KO libraries

were recorded using a 3-kbp window centred around each gene.

Gene annotations were retrieved from the SGD database (Cherry

et al, 2012). Enrichments were tested using Fisher’s exact test.

Confirmatory KO screening

Gene knockouts for PBS2, HOG1, STE50, PET150, MAL32, MAL12,

MET5, BCS1, CHL1, SLM1, SLM4, AVL9, HOC1, ERG2, ERG5 and

RPL12B were constructed de novo using the PCR-mediated gene
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disruption method (Amberg et al, 2006) in S288C (BY4741), Y55,

YPS606 and UWOPS87-2421. Briefly, the KanMX4 cassette was

amplified from pFA6a along with 55-bp homology flanking the gene

to be deleted. This was transformed as described in Gietz and Schi-

estl (2007) into the appropriate strain, and confirmed via PCR. The

resulting gene KO mutants were then arrayed in 1,536 format (four

technical replicates per KO) along with their original corresponding

KO strains and screened against the following stress conditions: 2,4-

D, minimal media, acetic acid, caffeine, glycerol, maltose, sodium

chloride 0.4 and 0.6 M, nickel and synthetic complete medium using

the chemical genomic analysis. Plate pictures were processed into S-

scores as described in “Chemical genomic data analysis” section.

The confirmatory screening comprising 4,287 gene–condition inter-

actions is available in Table EV5.

To estimate the S-scores reproducibility and the identity of the

original Kos, the S-score correlation between the original and the

newly made KOs was computed, obtaining an estimate of the iden-

tity of the original KOs. A similar analysis was done across different

strains (e.g. HOG1 original KO in S288C against HOG1 newly made

KO in Y55), obtaining an estimate of the overall changes in gene

deletion phenotype.

The error in determining changes in gene deletion phenotypes

was estimated using two methods: first, we looked at changes

between KOs that are plated multiple times in the original screening

and counted the proportion of those changes over all comparisons

(q < 0.01). Secondly, we computed changes between the original

KOs and the newly made ones inside the confirmatory screening,

again counting the proportion of significant changes over the total

number of comparisons.

Computer code

Most of the code used to process the data is available at the follow-

ing URL: https://github.com/mgalardini/2018koyeast. The code is

mostly based on the python programming language, using the

following libraries: NumPy (Oliphant, 2006), v1.15.2; SciPy

(Oliphant, 2007), v1.1.0; pandas (McKinney et al, 2010), v0.23.4;

scikit-learn (Pedregosa et al, 2011), v0.20.0; statsmodels (Seabold &

Perktold, 2010), v0.9.0; biopython (Cock et al, 2009), v1.71; and

DendroPy (Sukumaran & Holder, 2010), v4.4.0. Reproducibility was

ensured through the use of snakemake (Köster & Rahmann, 2018),

v4.7.0. Data were visualized inside Jupyter notebooks using Jupyter

(Kluyver et al, 2016), v4.4.0, and using the Matplotlib (Hunter,

2007) and Seaborn (Waskom et al, 2018) plotting libraries, versions

3.0.0 and 0.9.0, respectively.

Data availability

The datasets and computer code produced in this study are available

as described below:

• All the screening data presented in the manuscript are available in

Tables EV2–EV4, as well as online at https://github.com/mgalard

ini/2018koyeast.

• Transcriptomics data: Gene Expression Omnibus GSE123118

(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE1231

18)

• Code used to process the data: GitHub (https://github.com/mgala

rdini/2018koyeast)

Expanded View for this article is available online.
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