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Epigenome erosion and SOX10 drive neural crest phenotypic
mimicry in triple-negative breast cancer
Jodi M. Saunus 1,2✉, Xavier M. De Luca1, Korinne Northwood1, Ashwini Raghavendra1, Alexander Hasson 3, Amy E. McCart Reed 1,
Malcolm Lim1, Samir Lal1, A. Cristina Vargas1, Jamie R. Kutasovic 1, Andrew J. Dalley 1, Mariska Miranda4, Emarene Kalaw1,
Priyakshi Kalita-de Croft 1, Irma Gresshoff1, Fares Al-Ejeh 4, Julia M. W. Gee 5, Chris Ormandy6, Kum Kum Khanna4,
Jonathan Beesley4, Georgia Chenevix-Trench4, Andrew R. Green 7, Emad A. Rakha7, Ian O. Ellis 7, Dan V. Nicolau Jr3,8,
Peter T. Simpson 1 and Sunil R. Lakhani 1,9✉

Intratumoral heterogeneity is caused by genomic instability and phenotypic plasticity, but how these features co-evolve remains
unclear. SOX10 is a neural crest stem cell (NCSC) specifier and candidate mediator of phenotypic plasticity in cancer. We
investigated its relevance in breast cancer by immunophenotyping 21 normal breast and 1860 tumour samples. Nuclear SOX10 was
detected in normal mammary luminal progenitor cells, the histogenic origin of most TNBCs. In tumours, nuclear SOX10 was almost
exclusive to TNBC, and predicted poorer outcome amongst cross-sectional (p= 0.0015, hazard ratio 2.02, n= 224) and metaplastic
(p= 0.04, n= 66) cases. To understand SOX10’s influence over the transcriptome during the transition from normal to malignant
states, we performed a systems-level analysis of co-expression data, de-noising the networks with an eigen-decomposition method.
This identified a core module in SOX10’s normal mammary epithelial network that becomes rewired to NCSC genes in TNBC.
Crucially, this reprogramming was proportional to genome-wide promoter methylation loss, particularly at lineage-specifying CpG-
island shores. We propose that the progressive, genome-wide methylation loss in TNBC simulates more primitive epigenome
architecture, making cells vulnerable to SOX10-driven reprogramming. This study demonstrates potential utility for SOX10 as a
prognostic biomarker in TNBC and provides new insights about developmental phenotypic mimicry—a major contributor to
intratumoral heterogeneity.
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INTRODUCTION
Effective management of triple-negative breast cancer (TNBC)
remains a significant challenge worldwide. These tumours lack
expression of oestrogen and progesterone receptors (ER/PR) and
HER2, hence are not indicated for treatment with classical
molecular-targeted agents. Chemotherapy remains the most reliable
systemic treatment option, producing durable responses in ~60% of
patients, while the other ~40% typically present with lung, liver and/
or brain metastases within 5 years1–3. Second-line chemotherapy
can temporarily stabilise metastatic disease but is rarely curative, so
these patients endure a heavy treatment burden for no lasting
benefit. Efforts to develop alternative treatments have been
hampered by molecular and cellular variability between, and within,
individual tumours. Intra-tumoural heterogeneity (ITH) directly
increases the probability of relapse because it diversifies the
substrate for clonal selection4–7. It has been proposed that to
further improve the prognosis for TNBC patients, we need to
develop agents that target the drivers of heterogeneity itself8.
TNBCs are characterised by defective DNA repair, mitotic

spindle dysfunction, chromosomal aberrations, and a mutation
rate around 13 times that of other breast tumours4,5. Genomic
instability is a key driver of ITH, however only some cases can be
explained by the selection of individual driver mutations9, and

other sources of heterogeneity are coming to light10–12. For
example, cellular heterogeneity is influenced by the differentiation
state of the normal cellular precursor(s)13, which in TNBC is
thought to be the luminal progenitor (LP) cell14–17.
ITH is also driven by phenotypic plasticity—the dynamic

reprogramming of cell state in response to extrinsic stimuli10,11.
Cancer cell state transitions can be de-differentiating (the loss of
lineage commitment and acquisition of stem cell features) and/or
trans-differentiating (assuming the state of another cell type)18.
Compared to genomic and histogenic sources of ITH, how tumour
cells invoke this capability is poorly understood, and yet
potentially more ominous for the patient, as cell state transitions
can be induced by treatment via heritable-epigenetic change. In
controlled experimental conditions, drug-tolerant TNBC cell states
can be averted by epigenome remodelling inhibitors19–23,
suggesting these agents might reduce rates of relapse if used
clinically8,11. However, epigenetic therapies have genome-wide
effects, so our ability to use them rationally requires a deeper
understanding of the epigenome-driven features of treatment-
refractory human tumours8.
SOX10 is a transcription factor that was recently implicated in

phenotypic plasticity in experimental models of TNBC24. It is first
expressed in embryonic neural crest stem cells (NCSCs), where its
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self-reinforcing gene regulatory module facilitates multipotency
and cell migration, orchestrating the embryo patterning pro-
cess25–28. Once patterning is complete, SOX10 is silenced in all
NCSC descendants except glial and melanocyte progenitors; and is
nascently induced in ectoderm-derived epithelial progenitor cells
of the salivary, lacrimal, and mammary glands29–33. In the mouse,
Sox10 is an obligate requirement for mammary gland develop-
ment. Its expression marks gland repopulating potential in the
basal (myoepithelial) compartment, while Sox10+ luminal cells
represent the committed progenitor fraction29. Functional studies
have shown that Sox10 is one of several fate specifiers that
regulates the equilibrium between mammary stem cell (MaSC)
and LP states29,32.
In NCSCs where the genome is unmethylated and accessible,

SOX10 facilitates a mesenchymal, migratory state, whereas its
function in adult tissues is influenced by the tissue-specific growth
factor milieu and lineage-specific DNA methylation. Remarkably,
ectopic expression of SOX10 reprogrammed postnatal fibroblasts
with multipotency and migration capabilities equivalent to NCSCs,
providing they were also exposed to chromatin unpacking agents
and early morphogens (DNA methylation and histone deacetylase
inhibitors plus Wnt activation)34. This established that with the
erasure of lineage-specific epigenetic marks and appropriate
extrinsic cues, SOX10 can recreate its ‘default’ regulatory circuit
and that this is sufficient to phenocopy NCSCs.
SOX10 expression in human breast cancer is associated with

TN, basal-like, metaplastic and neural progenitor-like pheno-
types4,35–39. In transgenic mouse mammary tumour cells, it
promoted invasiveness, expression of mammary stem/progenitor,
EMT and NCSC genes and the repression of epithelial differentia-
tion genes24. These findings suggest that SOX10 could mediate
de-differentiation in TNBC; but the relevance is unclear, particu-
larly given there are no available inhibitors of SOX10 itself. We
explored the significance of SOX10 in breast cancer development
and progression by immunophenotyping histologically normal
breast tissue, and large breast tumour sample cohorts. To
understand its contribution to phenotypic plasticity and identify
drivers of this capability, we performed systems-level analysis to
map SOX10’s regulatory circuit in the broader TNBC transcrip-
tional network.

RESULTS
SOX10 is expressed in luminal progenitor cells of the human
mammary gland
Functional studies have shown that SOX10 marks stem and
luminal progenitor (LP) cells of the mouse mammary gland29,32,
but its expression pattern in the human breast has not been
established. Therefore, we performed immunohistochemical (IHC)
analysis of 19 histologically normal reduction mammoplasty (RM)
samples using a validated antibody (Supplementary Fig. 1a and
Supplementary Table 1). SOX10 was detected in nuclei of ductal
and lobular epithelia, with individual terminal ducto-lobular units
(TDLUs) exhibiting either basal-restricted or combined baso-
luminal expression (Fig. 1a). Compared to ducts, lobules were
more likely to exhibit luminal compartment expression of SOX10
(Fig. 1b), consistent with a role in lobulogenesis. Indeed, TDLUs
with basal-restricted SOX10 expressed high levels of luminal
cytokeratins (CK)8/18, while TDLUs with dual-compartment SOX10
had low CK8/18. This was evident even in neighbouring structures
of the same specimen (Fig. 1c and Supplementary Fig. 1b).
IHC analysis of serial sections showed SOX10+ luminal cells

lacked ER and were positive for the LP marker c-Kit, with no
obvious relationship to proliferation marker Ki67 (Fig. 1d). We also
analysed SOX10 mRNA in a published dataset from FACS-sorted
human mammary epithelial cells (hMECs)15. SOX10 levels were
similar to established LP markers ELF5 and KIT: highest in EpCAM

+ /CD49f+ LP cells, moderate in the EpCAM-/CD49f+ basal
compartment (myoepithelia and mammary stem cells (MaSCs))
and low in EpCAM+ /CD49f- mature luminal (ML) cells (Fig. 1e).
SOX10 is epigenetically regulated in mouse mammary

gland40,41, so we investigated this in human tissue. We isolated
hMECs from two fresh RM samples using FACS with antibodies
against CD49f and EpCAM, then performed high-density DNA
methylation array profiling. SOX10 was hypomethylated in LP and
basal samples (p < 1.0E−06; Fig. 1f). Consistently, analysis of hMEC
chromatin immunoprecipitation sequencing (ChIP-seq) data from
six independent RM samples42 showed the SOX10 locus is
enriched with activating (H3K4me3, H3K27ac) and depleted of
repressive H3K27me3 marks in LP and basal samples (Fig. 1f).

SOX10 is associated with poor clinical outcomes in TNBC
Analysis of TCGA, METABRIC and ICGC breast tumour datasets43–45

showed SOX10 mRNA is expressed almost exclusively in TNBC,
with a bimodal distribution suggesting distinct SOX10 positive
and negative (+/−) subgroups (Fig. 2a and Supplementary Fig.
2a). Consistent with other data39, SOX10 mRNA is highest amongst
TNBCs classified as ‘basal-like, immune-suppressed’ (BLIS), though
we noted that expression was heterogeneous amongst TNBC
subtypes classified by gene expression profile (e.g. 23% of ‘basal-
like, immune-activated’ (BLIA) TNBCs also had SOX10 levels in the
top quartile; Supplementary Fig. 2b). In terms of genomic drivers
of SOX10 expression in breast cancer, copy-number (CN)
amplification or gain at the SOX10 locus was evident in ~20% of
TNBCs (Fig. 2b) and was associated with higher mRNA levels in
both METABRIC and TCGA datasets (Fisher’s Exact p ≤ 0.001).
Analysis of TCGA HM450k methylation array data indicated that
SOX10 is frequently hypomethylated in TNBC (Fig. 2b) and that
this correlates strongly with expression (Fig. 2c and Figs. S2c, d),
but does not extend to adjacent genes on chromosome 22
(Fig. 2d). Hence, like normal basal and luminal progenitor cells,
gene-specific hypomethylation also underpins SOX10 expression
in a subset of TNBCs, and in some cases, this appears to be
reinforced by clonally selected CN gains.
Analysing published cell line gene expression and methylation

array datasets46,47 and our cell line bank48,49, we found that in
contrast to tumours, TNBC cell lines express very low to
undetectable levels of SOX10, and the SOX10 gene is hypermethy-
lated (Fig. S2e, f). shRNA-mediated depletion of SOX10 in one of
the few positive lines (HCC1569) resulted in 100% cell death
within a few passages (Supplementary Fig. 2g).
Next, we performed IHC studies to investigate the prognostic

significance of SOX10 expression at the protein level. Surveying a
large, cross-sectional cohort of invasive primary breast tumours
from Australia and the UK (n= 1330), we detected SOX10 almost
exclusively in tumour cell nuclei of TN cases (Fig. 2e; see
Supplementary Table 2 for cohort characteristics). Approximately
38% of TNBCs were classified as SOX10+, and another 11.5%
exhibited heterogeneous staining (see Fig. 2e and Supplementary
Fig. 2h for scoring thresholds). SOX10 positivity was associated
with histologic features typical of this group, such as high grade,
metaplastic and medullary morphology, pushing margins and a
larger size at diagnosis (Supplementary Table 2). Similar, though
statistically weaker trends were found between these variables
and heterogeneous SOX10 staining (Supplementary Fig. 2i).
Rather than a simple correlate of the TN phenotype, SOX10

positivity stratified TNBC-specific survival in both univariate (Fig. 2f
and Supplementary Fig. 2j) and multivariate regression analyses,
with a prognostic value greater than clinicopathologic indicators
used in current clinical practice: tumour size, grade, and the
density of tumour-infiltrating lymphocytes (TILs) (hazard ratio 1.8-
2.5; p= 0.02–0.002; Supplementary Table 2). Increased propensity
for brain metastasis is one of the factors underlying premature
death in TNBC, so we also analysed patient-matched pairs of
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Fig. 1 SOX10 is expressed in basal and luminal progenitor cells of the human mammary gland. a Representative SOX10 IHC analysis of
reduction mammoplasty (RM) samples. Some terminal ducto-lobular units (TDLUs) had exclusive basal compartment expression (i) while
others had expression in both basal and luminal compartments (ii). b (i) Analysis of SOX10 expression in ducts vs lobules of RM samples from
19 donors (whole sections). (ii) SOX10 expression in lobules was heterogeneous and more likely to occur in the luminal compartment
(Mann–Whitney p= 0.011; n= 102 ducts and 102 lobules; median ± 95% confidence interval shown). c Representative immunofluorescent
staining of SOX10 and CK8/18. Circled lobules and isolated cells (arrows) exhibited reciprocal expression of SOX10 (green) and CK8/18 (red) in
structures with either (i) dual compartment (ii) or basal-restricted SOX10 expression. d IHC analysis of SOX10, c-kit, ER and Ki67 in serial RM
sections. The three magnified regions represent major SOX10 staining patterns: (i) dual compartment, heterogeneous; (ii) dual compartment,
homogeneous; and (iii) basal-restricted. Luminal SOX10 expression was directly associated with c-kit and inversely associated with ER, with no
obvious relationship to Ki67 (e.g., cell cluster indicated with an arrow). e SOX10 mRNA levels in FACS-sorted human mammary epithelial cell
(hMEC) subtypes15. Differentiation markers were analysed for comparison: basal markers CK14 and CK5; luminal progenitor (LP) markers KIT
and ELF5; and markers enriched in mature luminal (ML) cells: CK18 and ESR1 (isolates with significantly different marker levels according to
paired ANOVA tests are indicated and colour-coded: ****p < 0.00001; ***p < 0.0001; **p < 0.001). Data shown were means ± standard error of
the mean from three donors. f Average methylation beta-values of SOX10 probes in FACS-sorted hMEC samples (DNAme), aligned with
histone modification signals in a published ChIP-seq dataset42: H3K4me3, H3K27ac (activating) and H3K27me3 (repressive). Data were
represented to scale on human chromosome 22. TSS transcription start site, UTR untranslated region. Indistinct= negative for CD45
(hematopoietic cells), CD31 (endothelia), CD140b (fibroblasts), EpCAM and CD49f (epithelia).

J.M. Saunus et al.

3

Published in partnership with the Breast Cancer Research Foundation npj Breast Cancer (2022)    57 



primary TNBCs and brain metastases (n= 19 pairs). Compared to
cross-sectional TNBCs, SOX10 was over-represented in brain-
metastatic cases, with SOX10 status concordant in ~90% of
matching brain tumours (Fig. 2h). Consistent with previous
reports37,50, we also detected nuclear SOX10 in an independent
cohort of metaplastic breast cancers (MBC; Asia-Pacific Metaplastic
Breast Cancer consortium51). Compared to cross-sectional cases,
SOX10 staining was more heterogeneous in MBCs, and was not
associated with TN status (Supplementary Fig. 2k); but was
prognostic amongst MBCs with a TN phenotype (Fig. 2g).

Considering all our IHC study findings, we concluded that
strong nuclear expression of SOX10 is associated with TNBC
progression.

SOX10’s TNBC regulatory module confers transcriptomic
similarity to NCSCs
To investigate the basis of SOX10’s association with poor patient
outcomes, we compared the expression profiles of TNBCs
expressing high versus low levels of SOX10 mRNA and found that

Fig. 2 Expression of SOX10 in human breast cancer. a Bimodal expression of SOX10 in TNBC compared to other breast cancers (nonTNBC) in
the METABRIC cohort. b Frequency of copy-number alterations (CNAs) and DNA hypomethylation affecting SOX10 in TNBC and nonTNBC
compared to the archetypal SOX10+malignancy, melanoma (SKCM; TCGA datasets). c Correlation between SOX10 methylation and
expression (normalised RNAseq counts) in SKCM, TNBC and nonTNBC (Spearman correlation coefficients (r) and p values are shown; derived
from TCGA data). d Proportions of TNBC and nonTNBC cases with hypomethylation at each probe across the SOX10 locus (as defined in (b)).
e Representative IHC showing SOX10-neg, heterogeneous and nuclear-positive (+) TNBCs. Tumours with absent or very weak nuclear staining
in ≥50% of tumour cells were classified as SOX10-negative, while those with any one of replicate TMA cores exhibiting moderate-strong
nuclear staining in <50% OR weak-moderate nuclear staining in ≥50% of tumour cells were classified as heterogeneous (see also
Supplementary Fig. 2h). Survival curves of heterogeneous and negative categories overlapped (Supplementary Fig. 2j) and hence are grouped
together here. f Kaplan–Meier analysis of the relationship between SOX10 nuclear positivity and breast cancer-specific survival (BCSS) in cross-
sectional TNBCs. Log-rank test p value and hazard ratio (HR) are shown (95% confidence interval). g Kaplan–Meier analysis of the relationship
between SOX10 nuclear positivity and BCSS in TNBCs classified as metaplastic breast cancers. Gehan–Breslow–Wilcoxon test p value shown.
h SOX10 expression in brain-metastatic TNBC and matching brain metastases (BrM), compared to the frequency in cross-sectional TNBCs (Chi-
square p value shown).
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SOX10high tumours were significantly enriched with the expression
of mesenchymal, neural, and glial development genes (Supple-
mentary Fig. 3 and Tables S3, S4).
We then mapped SOX10’s regulatory neighbourhood within

the breast cancer transcriptome using weighted gene co-
expression network analysis (WGCNA). This approach quantifies
co-variation in gene expression across a biological sample set to
identify genes with highly coordinated regulation, which is
indicative of functional relatedness52,53. We built a network from
TCGA breast cancer RNAseq data (n= 919 cases) and validated it
with datasets from METABRIC (n= 1278, expression array) and
ICGC (n= 342, RNAseq). In this model, all genes expressed above
a background threshold are connected (12,588 genes, 12,5882

connections). The connection between each gene pair is based
on a weighted correlation coefficient, and unsupervised cluster-
ing can reveal groups of genes with a high probability of co-
functionality (modular transcription programmes). The module
eigengene (ME) is a centroid calculated for each module in each
sample that represents both module expression and net
connection strength.
WGCNA partitioned ~20% of expressed genes into eight

consensus modules that align with established hallmarks of breast
cancer; for example, an ER/FOXA1-driven module expressed in
luminal tumours, and a mitotic instability module in basal-like and
luminal-B tumours (Table 1, Fig. 3a, Tables S5–S8 and Supp File 2).
The remaining ~80% of genes were not linked to any one module.
SOX10 was identified as one of the most interconnected genes in
the ‘green’ module, which has a hierarchical structure (Fig. S4a, b)
and is predominantly expressed in high-grade TNBCs (Supple-
mentary Fig. 4c). In this module, SOX10’s co-expression profile was
highly similar to genes implicated in Wnt signalling, neuroglial
differentiation and embryo patterning (Fig. 3b). We named it the
SOXE-module and ascribed ‘multipotency’ as its primary ontology,
as the member gene list is enriched with developmental
phenotypes, and includes all three SOXE family members (SOX8/
9/10) and embryonic stem cell genes (LMO4, POU5F1) (Fig. 3c and
Supplementary Table 9).
IHC analysis of six other module members confirmed that their

co-expression in TNBC holds true at the protein level (Fig. 3d), with
staining often observed in the same cells within individual
tumour-rich tissue cores (Fig. 3e). Consistent with the defining
features of TNBCs—de-differentiation, genomic instability, high
mitotic index and the presence of TILs—TNBCs express variable
proportions of primarily three modules: green (SOXE), blue
(mitotic instability) and yellow (TILs) (Fig. 3f). Kaplan–Meier
analysis showed that cases expressing high levels of both SOXE
and mitotic instability modules had shorter survival compared to
those with predominant expression of one or the other, while co-
expression of the yellow module was associated with better
prognosis, consistent with the protective effect of TILs in TNBC54

(Fig. 3g and Supplementary Fig. 4d).

The SOXE-module represents the shift from a luminal
progenitor to an NCSC-like state
Ontology analysis showed that the SOXE-module includes genes
typically expressed in differentiating glia, cardiomyocytes, and
odontoblasts, which all descend from NCSCs. In fact, develop-
mental genes comprised a large proportion of SOXE-module
hubs (genes with the highest network connectivity and centrality
values; Fig. 4a and Supplementary Table 10), hence representing
points of maximal module vulnerability. These include cell-fate
regulators ELF5, FOXC1 and SOX10; Wnt/β-catenin signalling
genes SFRP1, MAML2 and TRIM29; and embryonic cell migration
and neuronal development genes RGMA, ROPN1, ROPN1B, MID1
and APCN.
To directly investigate if the SOXE-module is associated with

NCSC phenotypic mimicry, as has been reported for Sox10 in Ta
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mouse mammary tumour cells24, we performed expression and
enrichment analyses using two independent genesets: (1) 308
genes represented in at least two of the 78 terms matching ‘neural
crest’ in the gene ontology database (‘NC terms’); and (2)
transcripts specific to migratory, Sox10+ NCSCs in chick embryos

(‘ch.NCSC’; n= 200 genes)55, representing Sox10’s most primitive
transcription programme (Supplementary Table 11). Except for
SOX10, SOX8 and LMO4, there is minimal overlap between the
SOXE-module and these genesets (Fig. 4b), but their expression is
strongly correlated (Fig. 4c). This was confirmed by geneset

Fig. 3 SOX10’s regulatory network is associated with multipotency, cell migration and poor prognosis in TNBC. a Relative expression of
eight predominant transcription modules in human breast tumours, according to the PAM50 subtype (TCGA dataset). b SOXE-module co-
expression profile similarity matrix, clustered to highlight genes with very highly coordinated expression. The similarity is based on cosine
distance and has a maximum value of 1. SOX10 mapped to one of six module sub-clusters, the members of which are shown to the right of
the matrix. See also Supplementary Fig. 4a, b. c Summary of results from unsupervised gene set enrichment analysis of the breast cancer
transcriptome after ordering transcripts according to their correlations with SOXE-module expression (denoted by the ME value, TCGA
dataset). d Tile plot showing overlapping expression of SOXE-module representatives. For each protein, significant co-expression with ≥2
other module members is indicated by a Fisher’s exact test result (*p < 0.05; ***p < 0.001; ****p < 0.0001). Refer to Supplementary Table 1 for
scoring criteria. e IHC staining of representative SOXE-module nodes in serial sections from the same tumour. f Proportional expression of all
eight modules (coloured as for (a)) in TNBCs annotated with PAM50 and TNBC subtypes (METABRIC dataset; LAR luminal androgen receptor-
like, MES mesenchymal, BLIS basal-like immune-suppressed, BLIA basal-like immune-activated39). g Kaplan–Meier analysis of METABRIC TNBCs
expressing different proportions of the three predominant TNBC modules. BCSS breast cancer-specific survival. ME fraction thresholds for
classifying cases as high or low were 0.33 for SOXE/blue and 0.1 for yellow.
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enrichment analysis (GSEA; Fig. 4d). Hence, the SOXE-module
confers transcriptomic similarity to NCSCs.
Since several SOXE-module genes (e.g. SOX10, SOX9, LGR6 and

ELF5) are key regulators of normal hMEC states56, we hypothesised
that the SOXE-module might evolve from the deregulation of a
lineage differentiation programme expressed in TNBC’s normal
cellular precursors. Module preservation analysis using RNAseq
data from TCGA normal breast samples indicated that the SOXE-
module does not exist as an interconnected unit in the normal
breast transcriptome (Supplementary Fig. 4e). But after perform-
ing de novo WGCNA module identification on this dataset
(Supplementary Table 12), we found that SOX10’s normal breast
module overlaps with the TNBC-specific SOXE-module signifi-
cantly more than expected by chance (Fig. 4e; 109 shared genes,
Chi-square p= 2.8E−26).
Both ‘normal-exclusive’ and ‘shared’ genes were enriched with

epithelial differentiation ontologies, with cell adhesion distinctly
over-represented in the shared set (Fig. 4e and Supplementary
Table 13). According to network influence metrics, the shared
genes were significantly more important to the SOXE-module than
SOXE-exclusive genes (Fig. 4f and Supplementary Fig. 4f). This
suggests that while SOXE-exclusive genes are primarily respon-
sible for conferring NCSC-like attributes, genes ‘inherited’ from

TNBC’s normal precursors are comparatively more important to
the SOXE-module’s regulatory structure. Together, these data
suggest that SOXE-module and its associated NCSC-like pheno-
type arise because a core set of epithelial differentiation and
adhesion genes becomes rewired during TNBC development (Fig. 4g).

Genomic and epigenomic determinants of the NCSC-like
transcriptional shift in TNBC
To address the central question of what drives this transcriptomic
shift, we analysed case-matched gene copy-number (CN), RNAseq
and WGCNA data (TCGA cases). Candidate module drivers were
defined as those for which both CN and expression correlated
significantly with SOXE-ME values. About 182 genes met these
criteria (130 gains and 52 losses), of which 140 (77%) are part of
large chromosomal alterations: 6p21-22 (gained/amplified in
56.7% of TNBC cases), 8q22-24 (gained/amplified in 78.7%),
9q34 (lost in 59.6%) (Supplementary Fig. 5a). SOXE-module genes
were over-represented amongst the positively correlated genes
(25/130 (19.2%) and had increased CN and expression in SOXEhigh

TNBC; ChiSq p= 9.7E−31; Fig. 5a). However, network influence
metrics for these 25 were no higher than other module genes
(Fig. 5b). Hence, the SOXE-module may be augmented by

Fig. 4 The SOXE-module drives the transition from normal mammary epithelial stem/progenitor to NCSC-like phenotypic states.
a Influence of SOXE-module genes over network architecture and information flow. kWithin: intramodular ‘connectivity’ based on weighted
correlations with all other module genes; Eigencentrality: considers the connectivity of each node’s nearest neighbours as an indicator of ‘local
influence’; Betweenness centrality: ‘conductivity’ based on each node’s position along the shortest paths between other nodes (genes with
high betweenness are information conduits). Key hub genes are indicated (see Supplementary Table 10 for the full dataset). b Chick (ch.)NCSC
and neural crest (NC) terms genesets are largely independent of each other and from the SOXE-module. c Correlations between SOXE-ME
values and NCSC genesets (singscore values) in TNBC (n= 106 TCGA cases with tumour cellularity ≥0.6). Correlation coefficients (r) and
p values are shown. d GSEA using three TNBC gene expression datasets (ICGC, METABRIC, TCGA). Normalised enrichment scores (NES) and
corrected p values (q) shown. e Overlap between members of the SOXE-module and SOX10’s normal breast module (from de novo module
identification on n= 97 TCGA normal breast samples; Supplementary Table 12). Generic ontology enrichment results are summarised (full GO
term lists in Supplementary Table 13). f Comparison of network structure and information flow metrics (as for (a)) between shared and SOXE-
module-exclusive genes. Groups were compared using Mann–Whitney tests (**p= 2.4E-03; ***p= 5.6E-04). Boxes show the 10–90th
percentiles and median, with whiskers extending to the minimum and maximum values. Mean is indicated with ‘+’. g Model depicting the
mammary epithelial progenitor gene regulatory network core being sustained through transformation and rewired as the SOXE-module in
TNBC. Shared hub genes are listed.
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increased CN of some of its component genes, but this seemed
unlikely to be an early or dominant driver of module evolution.
Next, we investigated whether mutational processes that shape

the breast cancer genome could be involved. To this end, we
utilised case-matched mutational signature and WGCNA data for
the ICGC cohort 45,57. There were direct relationships between the
SOXE-module and overall mutation burden (substitutions and
small insertion-deletion (indels)), as well as specific signatures of
genome instability (rearrangement sigs (RS)3 and RS5), homo-
logous recombination (HR)-directed repair of double-strand DNA

breaks (DSBs) and genome editing (sig-3: HR deficiency; HRDetect;
sig13: APOBEC; Fig. 5c).
APOBEC activity and DSB repair are both indirectly demethylat-

ing. For example, 5-methyl cytosine (5mC) loss occurs because of
APOBEC-mediated genome editing and/or during the repair of
edited bases, and DSB repair has been causally linked to the
progressive loss of 5mC during cellular ageing58,59. Therefore, we
hypothesised that the evolution of the SOXE-module in TNBC may
be related to epigenetic dysregulation. Consistent with this idea,
the 105 CN-driven SOXE-module correlates (i.e., those not part of
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the SOXE-module itself; Fig. 5a) were enriched with a transcription
factor, chromatin remodelling and DNA repair genes (Fisher’s
Exact p < 0.001). Furthermore, visualising SOXE-module strength
relative to the overall methylome profile using t-SNE showed that
SOXE-ME values were highest in the most epigenetically divergent
tumours (Fig. 5d).
To investigate this further, we then correlated SOXE-ME values

with probe-level methylation data directly, in the following
regional categories: CpG islands (CGIs), CGI shores, shelves or
open sea regions at transcription start site (TSS) regions,
untranslated regions (UTRs), gene bodies or intergenic regions
(IGRs). We also quantified methylation at ‘solo-WCpGW’ sites at
late-replicating, heterochromatic loci, which act as a biomarker of
replicative senescence60 and are hypomethylated in breast
tumours compared to hMECs (Supplementary Fig. 5b). There
was no relationship with solo-WCpGW sites (Supplementary Fig.
5c), but there was a striking inverse correlation between SOXE-ME
values and genome-wide promoter methylation; particularly at
CGI shores, the substrate for lineage-specific methylation in adult
tissues (Fig. 5e and Supplementary Fig. 5c). These data indicate
that SOXE-module expression and connectivity are directly
proportional to promoter demethylation in TNBC (Fig. 5e). There
was no such relationship with any other module in TNBC
(Supplementary Fig. 5d).
Having established that SOXE-module levels correspond with

loss of tissue-specific 5mC marks, we then built a correlation
matrix from ME and genome-wide promoter methylation data
(TCGA) and performed unsupervised clustering to look for
evidence of epigenetic control. The SOXE-module had a distinct
promoter methylation signature—three clusters of genes that are
hypomethylated when SOXE-module strength is highest, of which
two were enriched with developmental ontologies (Fig. 5f and
Supplementary Table 14). Only 10% of these correspond to SOXE-
module genes, but this 10% is enriched with hub genes (Fig. 5g),
suggesting a higher level of epigenetic control over module
structure and information flow. We then used GSEA to test the
enrichment of the SOXE-associated promoter methylome with
NCSC genesets. Like the transcriptome (Fig. 4d), the methylation
landscape associated with the SOXE-module was also enriched
with NCSC genes (NC terms: normalised enrichment score (NES)
−1.5; q= 6.0E−03; Ch.NCSC: NES −1.3; q= 3.6E−02).
Finally, we investigated direct demethylation processes as

potential enablers of SOXE-module formation by cross-
referencing SOXE-ME values from our three WGCNA datasets
(TCGA, ICGC, METABRIC) against the expression of demethylases in
the EpiFactors database61. There were direct associations with
APOBEC3A/3B cytosine deaminases and TET1 (Supplementary Fig.
5e). TET dioxygenase enzymes catalyse the first step of 5mC
demethylation and are involved in processes requiring cell states
to be reset or adjusted, such as methylome erasure in
preimplantation embryos, and epigenetic plasticity in brain
regions that facilitate learning and memory. TET1 is a maintenance
demethylase that prevents methylation from spreading from
silenced loci, particularly at CGI shores62,63. It has been causally
implicated in TNBC metastasis64 and our findings suggest this may
be at least partly due to reinforcement of the SOXE-module.
In summary, the SOXE-module’s dominance over the TNBC

transcriptome is directly proportional to APOBEC activity, DSB
repair and TET1 expression, which are all demethylating. Of all
methylation domains across the genome, the module is most
strongly correlated with hypomethylated promoter CGI shores—
the substrate for lineage-specific methylation. Kim et al. showed
that the minimal genetic requirements for reprogramming
postnatal fibroblasts with an NCSC identity are SOX10 expres-
sion and the erasure of previous epigenetic memory34. We
postulate that progressive erosion of the epigenome in SOX10+
tumour-initiating cells simulates these conditions, driving

NCSC-like reprogramming and poor clinical outcomes in
SOX10+ TNBCs (Fig. 6).

DISCUSSION
Heterogeneity has emerged as a major bottleneck to effective
sub-classification and treatment of cancer, and TNBC is no
exception. Post-treatment relapse occurs through clonal expan-
sion of cells with pre-existing, advantageous mutations, but also
cell state changes brought about by adaptive epigenetic
remodelling—a phenomenon that unites the ‘cancer stem cell’
and ‘epigenetic progenitor’ models of cancer65. The intrinsic
plasticity of TNBC is problematic because existing therapies
cannot eradicate a shifting target. Early evidence implies that
blocking this capability with epigenetic therapy may improve
treatment efficacy, but this will require a deeper understanding of
how phenotypic plasticity evolves66. TNBC exhibits genome-wide
hypomethylation, which evidently drives de-differentiation by
destroying the state-defining epigenetic barcode of its normal
cellular precursor, the LP cell14–17,65,67. Differential methylation at
certain genomic loci is prognostic in TNBC22, and myriad studies
have helped to decipher the mechanistic contributions of
individual writers, readers, and erasers of epigenetic marks, but
the phenotypic manifestations of genome-wide 5mC loss have not
been extensively studied.
Consistent with functional analysis of Sox10 in experimental

mice29,32, our human tumour network studies show that SOX10’s
TNBC-specific regulatory module confers similarity to highly
plastic NCSCs. We traced a cluster of super-connected SOXE-
module genes back to the tissue-resident mammary stem and
progenitor cells and found that in contrast to the normal breast
where it was associated with epithelial lineage differentiation, in
TNBC this core was connected to Wnt signalling, neuroglial
differentiation and embryo patterning genes. Critically, we found
that expression of the SOXE-module amongst TNBCs was
proportional to overall transcriptional similarity to Sox10+
migratory NCSCs from chick embryos55, despite there being

Fig. 6 Model summarising the study findings. Proposed links
between established drivers of TNBC progression, epigenome
erosion and the emergence of a neural crest-like transcriptional
programme in de-differentiated TNBCs.
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minimal direct overlap in member genes. We also identified SOXE-
module hub genes as points of maximum network vulnerability as
candidate therapeutic targets. In support of this approach, two of
these—BBOX1 and BCL11A—have already been validated as such
in TNBC68–72.
To better understand the evolution of NCSC-like transcriptional

reprogramming, we investigated potential links to the established
drivers of TNBC development—genomic instability, large-scale
CNAs, and defective DNA repair. We identified several processes
that correlate significantly with the SOXE-module eigengene (DSB
repair, APOBEC and TET1 activity, which are all demethylating); but
most discernibly, the loss of lineage-specific methylation marks at
CGI shores. Several mechanisms have been postulated to
contribute to widespread methylome erosion in cancer, including
DSB repair58,59 and reduced availability of 5mC substrates through
metabolic reprogramming73. Accepting that there are probably
multiple contributing factors in any individual tumour, our
findings nevertheless suggest that NCSC-like reprogramming
occurs concomitantly with epithelial de-programming in TNBC.
The gene regulatory networks that operate in NCSCs are amongst
the most evolutionarily conserved in vertebrates25,74. We postu-
late that when the broadly open chromatin landscape of the early
embryo is simulated in epigenetically eroded tumours, dominant
fate specifiers like SOX10 may recreate their ancestral regulatory
circuits by default.
In summary, our data indicate that the extent of promoter

methylation loss in SOX10+ breast tumours correlates with their
transcriptomic similarity to NCSCs—the earliest developmental cell
state programmed by SOX10 activity and one synonymous with
migration, multipotency and phenotypic plasticity. We propose that
during TNBC development, progressive erosion of the epigenome
drives de-differentiation while simultaneously making cells vulner-
able to NCSC-like reprogramming. Broadly, these findings support

preclinical data19–23 on the potential for epigenetic modulators to
combat phenotypic plasticity in TNBC.

METHODS
Human tissue samples (also see Table 2)
This study involved immuno-detection of SOX10 and other biomarkers in
the following human tissue cohorts:

1. Reduction mammoplasty (RM) samples: obtained in collaboration
with Dr William Cockburn (Wesley Hospital, Brisbane) and the Royal
Brisbane and Women’s Hospital (RBWH) Plastics Unit. Nineteen RM
specimens were used for IHC and IF analysis, and two for
methylation arrays. Age, parity and menopausal status of these
patients were unknown. 30% of cases showed fibrocystic change
and 10% presented with columnar cell lesions (histopathology
review by SRL).

2. Clinically annotated, primary breast tumour samples:

a. A cross-sectional primary breast tumour cohort comprising
samples from Australia (treated by the RBWH Breast Unit) and
the UK (Nottingham University Hospital), from patients treated in
the mid-1980s to mid-1990s. Tumour blocks were sampled as
0.6 mm cores in tissue microarrays (TMAs). For baseline
characteristics see Supplementary Table 2.

b. Metaplastic carcinomas (Asia-Pacific Metaplastic Breast Cancer
Consortium (whole sections).

3. Patient-matched primary TNBC and brain metastases (n= 19 pairs).
Tumour blocks were sampled as 1.0 mm cores in TMAs.

Ethics approval
Human research ethics approval was obtained from the Royal Brisbane and
Women’s Hospital (2005000785), The University of Queensland (HREC/
2005/022) and North West Greater Manchester Central Health (15/NW/
0685). Written patient consent to use tissue for research purposes was
obtained where required under the conditions of these approvals and all

Table 2. Biological resources.

Resource Source, identifier and relevant citations Related figure(s)

Tissue samples

Histologically normal breast FFPE whole sections The Brisbane breast bank48 1a–e

Fresh RM surgical samples The Brisbane breast bank48,76 1f, Supp-1b, Supp-6a

Australian BC series, FFPE TMA sections & clinical data Pathology Qld & The Brisbane breast bank48,89 2e, f, 3d–e, Supp-2h-k

UK breast cancer series, FFPE TMA sections & clinical data Nottingham Breast Cancer Research Centre90,91 2e, f, Supp-2h-k

Metaplastic tumour series, FFPE sections & clinical data Asia-Pacific MBC consortium51,92 2g

Patient-matched primary TNBCs and brain metastases Pathology Qld & The Brisbane breast bank48,89 2h

Cancer cell lines

293 T ATCC® CRL-3216™ Supp-1a, Supp-2g

MDA-MB-435S ATCC® HTB-129™ Supp-1a, Supp-2e, Supp-2g

HCC38 ATCC® CRL-2314™ Supp-2e

HCC1569 ATCC® CRL-2330™ Supp-2e, Supp-2g

Primary melanoma cells (D41, D05) Dr. Chris Schmidt, QIMR Berghofer77 Supp-2e

TaqMan gene expression assays

SOX10 ThermoFisher, Hs00366918_m1 Supp-2e

RPL13A ThermoFisher, Hs03043885_g1 Supp-2e

shRNA sequences

SOX10_1 Sigma-Aldrich TRCN0000018984 Supp-1a, Supp-2g

SOX10_2 Sigma-Aldrich TRCN0000018987 Supp-1a, Supp-2g

SOX10_3 Sigma-Aldrich TRCN0000018988 Supp-1a, Supp-2g

Non-targeted negative control (NTNC) Sigma-Aldrich SHC002 Supp-1a, Supp-2g

Supp supplementary.
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Table 3. software, code, and published datasets.

ResRource Source, identifier and relevant citations Related figure(s) Related table(s)

Software packages and code

ChAMP https://bioconductor.org/packages/release/bioc/html/ChAMP.html80 5d–f –

Clustergrammer https://maayanlab.cloud/clustergrammer/87 3b Supp-10

Community detection algorithms Refs. 85,86 Supp-4a –

Epifactors database https://epifactors.autosome.ru61 Supp-5e –

FACSDiva™ BD Biosciences, licensed 1f, Supp-6a –

FCS Express (v7) De Novo Software, licensed 1f, Supp-6a –

GSEAPreranked https://genepattern.org83 3c, 4d, 5f, Supp-3 1, Supp-4, Supp-
9

Ingenuity Pathways Analysis (IPA) Ingenuity, licensed – 1

MATLAB Mathworks, licensed Supp-4a Supp-10

Princeton Generic GO term finder https://go.princeton.edu93 5a Supp-13, 14

Prism (v8.4.3) GraphPad, licensed Multiple S2

R package, Cluster https://cran.r-project.org/web/packages/cluster/index.html 5f –

R package, FlashClust https://cran.r-project.org/web/packages/flashClust/index.html 5f, g Supp-14

R package, Limma https://www.bioconductor.org/packages/release/bioc/html/limma.
html

Supp-3 Supp-3

R package, t-SNE https://CRAN.R-project.org/package=Rtsne 5d –

R package, WGNCA https://cran.r-project.org/web/packages/WGCNA/index.html52,53 Multiple Multiple

REVIGO http://revigo.irb.hr Supp-3 Supp-4

Singscore https://www.bioconductor.org/packages/release/bioc/html/
singscore.html88

4c –

SPSS IBM, licensed – Supp-2

Tableau desktop (2020.4) Tableau, licensed 4a –

Published datasets

Cell line expression data https://www.ebi.ac.uk/arrayexpress47 (E-TABM-157) Supp-2e, f –

Cell line expression, CNA and
methylation datasets

https://www.ncbi.nlm.nih.gov/gds46 (GSE42944; GSE48216) Supp-2e, f –

Chicken embryo neural crest gene set Ref. 55, Supplementary Table 1 4b–d Supp-11

Gene ontology resource http://geneontology.org – Supp-11

Genomic locations of solo-WCpGW sites Ref. 60 Supp-5c –

hMEC ChIP-seq data www.epigenomes.ca; ref. 42 1f –

hMEC gene expression array data Gene expression omnibus, https://www.ncbi.nlm.nih.gov/geo/
(GSE16997); and ref. 15 (Tables S5–8)

1e –

Human reference genome NCBI build 37
(GRCh37/hg19)

UCSC Genome Browser https://genome.ucsc.edu 2d, Supp-5a –

ICGC gene expression data Ref. 45, Supplementary Table 7 – Supp-8

ICGC HRDetect scores Ref. 57, Supplementary Table 3b 5c –

ICGC mutational signatures (COSMIC, v2
SigProfiler)

Ref. 45, Supplementary Table 21B, S21E 5c –

Illumina Infinium Omni2.5 array data https://www.ncbi.nlm.nih.gov/geo/ (GSE199579) 1f, Supp-5b –

METABRIC gene expression &
clinical data

EGAD00010000210, EGAD00010000211, EGAS00000000083; EGA
portal, via data access committee43

2a, 3f, g, Supp-3,
Supp-4c, d

Supp-4, Supp-7

MetaCore https://portal.genego.com Supp-3 Supp-4

SOXE-module network metrics This paper 4a, f, 5b, g Supp-10

TCGA clinicopathologic annotation Ref. 94 2a–d, 3a –

TCGA gene copy-number data Gistic2.Level_4; TCGA Data Analysis Center Firehose44 https://gdac.
broadinstitute.org

2b, 5a, b, Supp-5a –

TCGA gene-level methylation data Preprocess/meth.by_min_expr_corr; TCGA Data Analysis Center
Firehose44 https://gdac.broadinstitute.org

2b, c –

TCGA Illumina HiSeq RNASeq-v2 RSEM
level-3 normalised datasets

illuminahiseq_rnaseqv2-RSEM_genes_normalized (MD5); TCGA Data
Analysis Center Firehose44 https://gdac.broadinstitute.org

2a, c Supp-4

TCGA Illumina HiSeq RNASeq-v2 RSEM
level-3 raw counts

TCGA Data Analysis Center Firehose44 https://gdac.broadinstitute.
org

3a, S3 Supp-3, 5, 6, 9,
10, 12, 13

TCGA probe-level methylation data Humanmethylation_450; TCGA Data Analysis Center Firehose44

https://gdac.broadinstitute.org
5d–f, Supp-5b–d –
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samples were de-identified in the analytical database. This study complies
with the World Medical Association Declaration of Helsinki.

Immunohistochemistry (IHC)
Formalin-fixed, paraffin-embedded (FFPE) tissue samples or TMAs were
sectioned, deparaffinised, subjected to antigen retrieval and chromogeni-
cally stained as described in ref. 75 and detailed in Supplementary Table 1.
Slides were scanned using the Aperio ScanScope T2 digital scanning
system at 40x magnification. TMA images were segmented using Spectrum
software (Aperio), and high-resolution images of individual cores were
extracted and scored by two experienced observers in a blinded fashion
(hidden metadata tags corresponding to TMA position were used to link
clinical and sample data). Digital image files were scored according to the
criteria set out in the legends to Figs. 2e and S2h.

Immunofluorescence (IF)
FFPE RM tissue sections (Table 2) were sectioned, deparaffinised, subjected
to antigen retrieval and stained as described in ref. 76 (Supplementary
Table 1). Briefly, primary antibodies diluted in tris-buffered saline (TBS)
were incubated on tissue sections for 1 h at room temperature, washed in
TBS then incubated with secondary antibodies for 30min in the dark. To
minimise tissue autofluorescence, slides were stained with SUDAN Black
for 20min in the dark (Sigma #S-2380), then washed (0.1% TBS-Tween
(30min), TBS (10min). Slides were mounted using Vectashield (Vecta Labs)
with DAPI (Sigma-Aldrich), cover-slipped, sealed and imaged on a Carl
Zeiss MicroImaging system using Axio Vision LE version 4.8.2 (PerkinElmer).

Fresh reduction mammoplasty (RM) tissue processing and
fluorescence-activated cell sorting (FACS)
RM samples were processed, and single-cell suspensions were prepared as
previously described (Table 2 and refs. 48,76). Briefly, tissue was cut into
small pieces (~5mm3) and digested overnight with agitation at 37 °C in
DMEM-F12 (Gibco), foetal bovine serum ((FBS), 5%, Gibco), antibiotic/
antimycotic (Gibco), Amphotericin B (2.5 μg/mL, Gibco), collagenase type
I-A (200 U/mL, Sigma-Aldrich) and Hyaluronidase I-S (100 U/mL, Sigma-
Aldrich). Epithelial organoids were obtained by centrifugation (80 × g,
1 min), then dissociated to single-cell suspensions for 5–10min in TrypLE
(Gibco), followed by Dispase (5 mg/mL, Gibco) and DNAse-I (100 ug/mL,
Invitrogen). Enzymatic activity was quenched in ice-cold Hank’s Balanced
Salt Solution ((HBSS), Gibco) with 2% FBS and cells were filtered through a
40-μm cell strainer (BD Falcon).
Cell concentration and viability were determined using a Countess®

automated counter (Invitrogen) with trypan blue and adjusted to 2.0E6/mL.
Single-cell suspensions (typically 30–60mL) were labelled for 10min on ice
with SytoxTM green (Invitrogen) plus a cocktail of fluorescent antibody
conjugates to discriminate hMEC subsets (negatively gated, non-epithelial
‘lineage’ markers: CD31, CD45, CD140b; positively gated hMEC markers:
CD49f, EpCAM—see Supplementary Table 1 and Supplementary Fig 6a).
Samples were washed (80×g, 2 min) and then resuspended in cold HBSS+
2% FBS. For robust fluorescence compensation and gating of specific
hMEC populations, we also tested in parallel small samples stained with
isotype control antibodies, and ‘fluorescence minus one’ negative controls
(samples from which one of the main conjugates was omitted).

Fluorescence data acquisition, gate placement and sorting were performed
on a BD FACS Aria II instrument with FACSDiva software (v6.1.3; QIMR
Berghofer). Sorted cells were collected on ice before being pelleted (80×g,
2 min) and snap-frozen at −70 °C.

Methylation array profiling and ChIP-seq meta-analysis
DNA was extracted from FACS-sorted hMEC samples using the QIAGEN
AllPrep DNA/RNA mini kit, with bisulphite conversion using the EZ DNA
methylation Kit (Zymo Research) following the manufacturer’s protocol
with modification for Illumina methylation arrays. Bisulphite-converted
DNA was amplified and hybridised to Infinium methylationEPIC 850k
beadchips (Illumina) according to the manufacturer’s protocol. Arrays were
scanned on an iScan, and data were processed using GenomeStudio
(Illumina) with BMIQ array normalisation to derive average methylation
beta-values.
Histone modification ChIP-seq data were obtained from Pellacani et al.42.

Bigwig format files were retrieved from www.epigenomes.ca, and the
mean signal/bin was plotted across the region chr22:38365030-38396083
for each histone mark in each cell type.

Analysis of SOX10 expression in cell lines
MDA-MB-435, HCC1569 and HCC38 cells were from the American Type Cell
Culture Collection (ATCC; (Table 2); authenticated in our laboratory and
cultured according to ATCC recommendations49. D41 and D05 melanoma
cells were selected from the primary melanoma cell line bank of Dr Chris
Schmidt and Prof Nick Hayward (QIMR Berghofer) based on having high
and low baseline SOX10 expression, respectively77. Cells were routinely
cultured at 37 °C in a humidified atmosphere with 5% CO2 and routinely
screened for mycoplasma. RNA and protein were extracted from cells in
the exponential phase of growth using standard Trizol and RIPA buffer
methods78. SOX10 mRNA was quantified relative to RPL13A as previously
described (ref. 79 and Table 2). For Western analysis (MDA-MB-435,
HCC1569, HCC38 cells), protein lysates (30 μg) were resolved by SDS-PAGE
then SOX10 and β-actin were detected using standard chemiluminescence
(Supplementary Table 1).

Stable-shRNA knockdown of SOX10 in breast cancer cell lines
Three pre-validated SOX10-targeted shRNA constructs, and a non-targeting
negative control (NTNC) construct (pLKO.1), were purchased from Sigma-
Aldrich (Table 2). Plasmid DNA was isolated from overnight bacterial
cultures, then lentiviral particles were produced by triple transient
transfection of HEK-293T (human embryonic kidney) packaging cells with
one of the four transfer plasmids (pLKO.1-puro; 2 μg), together with
companion plasmids encoding lentiviral packaging and replication
elements (2 μg pHR’8.2ΔR+ 0.25 μg pCMV-VSV-G; donated by Dr Wei Shi,
QIMR Berghofer). Virus-containing supernatants (in target cell media) were
then collected over the following two days and filtered (0.45 μm). MDA-
MB-435 target cells were seeded at 3.1 × 104/cm2 in six-well plates, then
after 24–48 h (at ~50% confluence), cells were infected with filtered viral
supernatants, supplemented with 1 mg/mL polybrene (Sigma-Aldrich) for
24 h. Stably transduced cells were then selected with 1 μg/mL puromycin
(Sigma-Aldrich) for 2 weeks to eliminate uninfected cells.

Table 3 continued

ResRource Source, identifier and relevant citations Related figure(s) Related table(s)

Triple-negative breast cancer subtypes
(Burstein et al)

Ref. 39, Supplementary Table 19 3f, Supp-2b –

Tumour purity for TCGA cases Supp data-1 (CPE metric) & infinium metric, refs. 81,95 Multiple –

WGCNA ME dataset, ICGC cases This paper Multiple Supp-8

WGCNA ME dataset, METABRIC cases This paper Multiple Supp-7

WGCNA ME dataset, TCGA normal cases This paper Multiple Supp-12

WGCNA ME dataset, TCGA tumour cases This paper Multiple Supp-6

WGCNA mod membership dataset
(TCGA cohort)

This paper Multiple Supp-5

Supp supplementary.
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Datasets and processing
TCGA level-3 normalised RNAseq data ('rnaseqv2 illuminahiseq rnaseqv2 unc
edu Level 3 RSEM genes normalised data.data.txt') from the Data Analysis
Center Firehose (http://firebrowse.org/) were used for all single-gene
analyses (Supplementary Figs. 2a, 5e; test group stratification for
Supplementary Fig. 3; SOX10 heatstrips in Fig. 3a and Supplementary
Fig. 6a, c). Scaled estimate columns of the 'rnaseqv2 illuminahiseq rnaseqv2
unc edu Level 3 RSEM genes data.data.txt' were used for all other
algorithmic analyses.
For methylation datasets, TCGA level-3 Illumina HM450k data were

downloaded from the National Cancer Institute Genomics Data Commons
(GDC) data portal (https://portal.gdc.cancer.gov/) and processed using the
ChAMP package80. We applied the champ.filter function to remove
problematic probes (those mapping to X/Y chromosomes, mapping to
multiple locations, located near an SNP and non-CG probes). Filtered data
were normalised using the champ.norm function, according to the Beta-
Mixture Quantile (BMIQ) algorithm; is an intra-sample normalisation
procedure that corrects the bias of type-2 probe values.
Level-4 GISTIC-2 copy-number data for TCGA cases were downloaded

from the Data Analysis Center Firehose (http://firebrowse.org/) and used
for correlative analyses with no further processing. To apply tumour purity
cutoffs (TCGA cases), we used a consensus measurement of four different
purity estimation methods81.
With permission from the METABRIC data access committee, normalised

Illumina HT 12 expression array data were downloaded from the European
Genome-phenome Archive (EGAD00010000210-211). For the ICGC RNAseq
dataset, normalised data were downloaded as supplementary data45 and
used with no further processing. Mutational signature data (COSMIC, v2
SigProfiler) were downloaded as raw event counts from ref. 45 and
HRDetect probability scores for these cases from ref. 57.

Differential expression analysis of SOX10-high and -low TNBCs
(Supplementary Fig. 3)
To characterise the transcriptomic phenotype associated with SOX10
expression in TNBC, we performed differential expression analysis of
SOX10-high versus SOX10-low (median split) TCGA and METABRIC datasets
using limma82 (differential expression was defined by a corrected p value
cutoff of 0.01).

Ontology enrichment analyses
GO term enrichment analysis was performed using the Generic GO term
finder hosted by Princeton University (Lewis-Sigler Institute for Integrative
Genomics; https://go.princeton.edu). Gene set enrichment analysis (GSEA)
was performed using the Prerank function of GenePattern83 using 1000
permutations. For Supplementary Fig 3, GSEA inputs comprised differen-
tially expressed genes (q ≤ 0.01) ranked by fold-change in each dataset.
The input for all other GSEA experiments was whole transcriptome gene
lists ranked by a Spearman correlation coefficient. Biological process
genesets (Gene Ontology v7.2; gene set size 15-500) were mined for
unsupervised analyses and neural crest genesets for supervised analyses
(Supplementary Table 11). Datasets and ranking metrics are indicated in
the respective Figure legends. Normalised enrichment scores (NES) and
corrected p values are reported. GeneGo (Metacore® Clarivate Analytics)
and Ingenuity® Pathway Analysis (Ingenuity) were also used to analyse pre-
ranked gene lists. REVIGO84 was used to resolve semantic redundancy and
identify major themes amongst the enriched terms.

Weighted gene co-expression network analysis (WGCNA)—
module identification and validation
WGCNA is a powerful network analysis tool that identifies groups of
transcripts (modules) that fluctuate in a highly coordinated fashion,
implying co-functionality52,53. First, it iteratively correlates the expression
of every pair of transcripts in a test dataset, producing an adjacency matrix.
It then converts this to a topological overlap matrix that reflects net
connection weight, accounting for both direct connections and the
impacts of shared neighbours. In this study, we created ‘signed’ networks,
which reflect the overall topological overlap considering both positive and
negative correlations. Dynamic module identification and characterisation
(derivation of network metrics, sample eigengene values and module
preservation in orthogonal datasets, see below) were performed in the R
coding environment, and publication-quality figures were prepared from
raw datasets using GraphPad Prism or Clustergrammer (Table 2).

Modules were identified using the TCGA RNAseq (n= 919 samples
after quality filtering) and validated using METABRIC (n= 1278;
expression array; Supplementary Fig 6b–d). A consensus set of eight
modules was determined according to satisfactory concordance
between these two orthogonal networks and a third was generated
from the ICGC dataset (n= 342; RNAseq). We further validated the
eight consensus modules using preservation analysis on a third breast
cancer expression dataset. For normal breast samples, WGCNA was
performed independently on TCGA normal breast samples (n= 97 after
quality filtering).
Standard WGCNA outputs include the following (raw data in Supple-

mentary Tables 5–11):

● Module eigengene (ME): a theoretical gene that is the most strongly
connected to all other genes in the module and hence represents net
module expression and connectivity. Mathematically, the first principal
component of each module’s adjacency matrix.

● Module membership and connectivity: Each gene is ascribed k values
describing modular and network connectivity (kTotal, kWithin and
kOut). These continuous variables are amenable to integrated analysis
of overlapping transcriptional programmes, utilising the granularity in
expression datasets rather than levelling it as is done when assigning
fixed phenotypes or categories. kME correlation and kME p values
describe how tightly individual genes are linked to all other genes
within each module.
To identify hub genes (Supplementary Fig. 6e), additional network

connectivity and influence measures were calculated for each node in
the SOXE-module topological overlap matrix using igraph toolkit
functions in R:

● betweenness centrality: betweenness(graph, v= V(graph), directed=
FALSE, weights= NULL, nobigint= TRUE, normalised= FALSE).

● eigencentrality: eigencentrality(graph, directed= FALSE, scale= TRUE,
weights=NULL, options= arpack defaults).

Finally, we used community detection algorithms85,86 to examine the
substructure of the SOXE-module (MATLAB 2020a), using the adjacency
matrix as input. This revealed a hierarchical, sub-modular organisation, and
consistently discriminated two partitions (59 and 41% of nodes each). To
identify the module ‘control centre’ and hub genes as points of structural
vulnerability, submodule assignment was cross-referenced against clus-
tered Cosine similarity data (Fig. 3b, Clustergrammer87) with the same
input (Supplementary Fig. 4).

Neural crest genesets
Geneset-1 (NC terms) comprises 308 genes represented in at least two of
the 78 terms matching ‘neural crest’ and ‘human’ in the gene ontology
database (http://geneontology.org). Geneset-2 (ch.NCSC) comprises the
top 200 transcripts statistically over-represented in Sox10+ chick neural
crest cells compared to all other embryo cells (fold-change 3.9–23.3; false
discovery rate 9.3E−03–1.0E−15)55 (Supplementary Table 11). The ch.NCSC
gene set represents genes coordinately expressed with Sox10 in a stem cell
state hence was also suiTable-for network analyses (see below). We used
the singscore algorithm88 to score RNAseq datasets against the neural crest
genesets at the individual sample level.

Breast cancer methylation data analyses
Methylation beta-values were derived from TCGA level-3 Illumina HM450k
data as outlined above. Beta-values for all probes corresponding to
TSS1500, TSS200 and 5′UTR regions in each sample were first normalised to
correct for their bimodal distribution (median absolute deviation (MAD): Pβ
– median(Pβ – median(Rβ)); where P= probe in the promoter region and R
= all probes in promoter region). After filtering out genes with >2 missing
probes and those for which >2% of samples were missing data, the final
dataset included average MAD-normalised promoter methylation beta-
values for 4482 genes (determined from a total of 518 samples with
complete clinical annotation). Pairwise Spearman correlations were then
calculated between each promoter region and each module eigengene
across the sample cohort. Unsupervised hierarchical clustering of correla-
tion values was performed in R using the Flashclust package based on the
Euclidean distance method. Clusters were visualised and validated with the
cluster package, using the Silhouette coefficient to confirm distinct clusters.
To generate t-distributed stochastic neighbour embedding (t-SNE) plots, we
used the Rtsne package (https://cran.r-project.org/web/packages/Rtsne/) on
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normalised beta methylation values, with 5000 iterations and a perplexity
parameter of 40.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
Published datasets used in this paper are outlined in Table 3. Network data generated
by the study are also outlined in Table 3, and available as supplementary data. Raw
DNA methylation array data for FACS-sorted normal breast epithelial cell subsets are
available from the Gene Expression Omnibus (GSE199579; Table 3).

CODE AVAILABILITY
This study used published code and/or publicly available tools (see Table 3).
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