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We demonstrate the generation of robust entanglement of a quantum dot molecular system in a voltage-
controlled junction. To improve the quantum information characteristics of this system, we propose an applicable 
protocol which contains the implementation of asymmetric quantum dots as well as the engineering of reservoirs. 
Quantum dots can provide asymmetric coupling coefficients due to the tunable energy barriers through 
the gap voltage changes. To engineer the reservoirs, superconducting leads are used to prepare a voltage-
biased Josephson junction. The high-controllability properties of this system give the arbitrary magnitude of 
entanglement by the arrangement of parameters. Significantly, the perfect entanglement can be achieved for 
an asymmetric structure in response to the increase of bias voltage, and also it continues saturated with the 
near-unit amount.
1. Introduction

Recent advancements in condensed matter physics and nanotech-
nology open new possibilities for the implementation of nanodevices in 
quantum information studies. Although, the concept of entanglement 
was basically studied for distinguishable bipartite systems [1, 2, 3, 4, 
5], in recent years there has been a great deal of interest in quantifying 
the entanglement of indistinguishable components in condensed matter 
systems. The elements of these systems are identical massive particles 
which involve quantum correlations at short distances. The entangle-
ment of indistinguishable particles either bosons or fermions should be 
characterized with their symmetrized or antisymmetrized wave func-
tions respectively [6, 7, 8, 9, 10, 11, 12, 13]. Particularly, the entan-
glement of fermions in condensed matter systems can be evaluated by 
two methods: entanglement of modes [8, 12, 14, 15] and entanglement 
of particles [6, 7, 9, 10, 11]. In the former, the entanglement of indis-
tinguishable fermions is associated with the shared modes not particles 
of subsystems in single-particle Hilbert space. But for the latter, the 
entanglement of fermions specifically is concerned about the antisym-
metrization of quantum wave functions of indistinguishable fermionic 
particles.

For fermionic entanglement of particles, firstly the quantum cor-
relations of two fermions in a 2K dimensional single-particle space 
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were characterized [6]. After that more than two indistinguishable 
particles, fermions in higher-dimensional single-particle spaces were 
analyzed and quantum correlations of pure states in the arbitrary-
dimensional Hilbert space were classified [7]. Recently, a multipartite 
concurrence was introduced for N-indistinguishable fermionic particles 
in an arbitrary-dimensional pure states [11]. It was presented that the 
multipartite concurrence can be displayed as an average amount of one 
observable when two copies of the compound state are accessible.

For studying the entanglement of indistinguishable fermionic parti-
cles, quantum dots (QDs) [16, 17] can be taken into account as promis-
ing candidates. QDs as one branch of broad two-state qubit systems [18] 
play prominent roles in nanostructures for their tunable discrete energy 
levels and also for their easy controllability of barriers by gate voltages.

Also, quantum dot molecules (QDMs) consist of quantum dots which 
are coupled by tunneling and separated by barriers have received great 
attention theoretically and experimentally [19, 20, 21, 22]. These quan-
tum structures have been selected as the ideal choices for researching in 
quantum information processing. The analysis of entanglement dynam-
ics between two electrons inside coupled quantum molecules demon-
strated the crucial entanglement characteristics [23].

Theoretical [24] and experimental [25] studies showed that the 
asymmetric structure of quantum molecules has enhanced the control 
of tunneling features. It was theoretically shown that in an asymmetric 
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quantum dot molecular system, the fidelity of entangled photon pairs 
can be achieved near-unit magnitude [26]. In addition, the asymmet-
ric quantum dot-lead couplings have been extensively implemented in 
electrical [27] and thermal [28] rectification devices to improve the 
electric and heat transport technologies.

Moreover, superconducting devices have found impressive interest 
in quantum information setups [29, 30] because of their long intrinsic 
coherency with no dissipation characteristics. Recent years, employ-
ing the superconducting qubits and superconducting resonators have 
improved the exploring of quantum entanglement [31, 32], quantum 
teleportation [33, 34] and quantum computing [35, 36] studies. Su-
perconducting qubits namely phase [37], flux [38] and charge [39] 
qubits can be connected with microwave [40], electrical [41], mechan-
ical [42], and superconducting [43] resonators.

According to the frequency range of superconducting devices, these 
nanostructures would be driven by microwave [44, 45] or optical [46, 
47] fields. Also, QDs in normal biased-voltage junctions have exten-
sively been used experimentally [48, 49, 50] and theoretically [51, 52, 
53]. Recently, quantum transport through the QDs system in contact 
with Josephson junctions (JJs) which act as the single transistors to fil-
ter the transfer of electrons has attracted a great deal of attention [54, 
55, 56, 57, 58].

It seems that quantum information studies on an asymmetric quan-
tum dot molecule in a bias-controlled Josephson junction can be con-
sidered as an interesting area for research which can provide novel 
achievements. Therefore in this study, we propose a QDM system in 
a conventional JJ with asymmetric tunneling coefficients to achieve ro-
bust entanglement and also to keep its magnitude near-unit under the 
bias voltage control. To this end, we consider the indistinguishable en-
tanglement for our system which becomes possible by evaluating the 
fermionic concurrence. To explore the quantum information processing 
of QDM system in a biased-voltage junction, we perform our analysis 
in Markovian regime. First, we obtain the quantum transport of molec-
ular system to show the current-voltage characteristics (I-V) as one of 
the important properties of biased-voltage circuits. Then, we investi-
gate the control of the entanglement with respect to the bias voltage. 
We find that with only bias voltage control, the complete controllabil-
ity to yield perfect entanglement is not possible. Therefore, we apply 
the strategy of left-right asymmetric coupling strength to achieve ro-
bust entanglement. The dynamics of entanglement and its response to 
bias voltage in different situations of symmetric and asymmetric cou-
plings demonstrate wide flexibility of the proposed setup to provide a 
desired high entanglement. The main advantage of this molecular sys-
tem includes the feasible controlling elements of the easy-tunable bias 
voltage driving field and the manipulation of quantum dot couplings. 
Indeed by engineering reservoirs and the presence of superconducting 
leads, the performance of the system is extensively influenced to pro-
vide robustly entangled states.

This paper is organized as follows: In Sec. 2, we introduce the pro-
posed model composed of a quantum dot molecular system in a JJ by 
describing the whole Hamiltonian. We compute the quantum transport 
of our molecular system in Sec. 3. In Sec. 4 by introducing symmetric 
and asymmetric structures, we obtain the entanglement of QDM system 
under the bias voltage control. In Sec. 5, we present the results of the 
entanglement behavior in bias voltage changes and its time evolution 
in constant bias voltages and also for specific order parameters. Finally, 
we conclude the results in Sec. 6.

2. Model

The proposed open quantum system consists of a QDM weakly cou-
pled to the superconducting leads which is demonstrated in Fig. 1, 
schematically. Applying an external bias voltage between the leads 𝐿
and 𝑅 induces the electron transport from the left to the right. The 
Hamiltonian of the whole system can be written as:

�̂� = �̂�𝑄𝐷𝑀 + �̂�𝐿𝑒𝑎𝑑𝑠 + �̂�𝑖𝑛𝑡. (1)
2

Fig. 1. The proposed physical system: A quantum dot molecule system consists 
of two coupled quantum dots, 𝐴 and 𝐵, with inter-dot coupling strength 𝑡𝐴𝐵
and QD-lead coupling strengths: 𝑇𝐴𝐿 , 𝑇𝐴𝑅 , 𝑇𝐵𝑅 , 𝑇𝐵𝐿 . The superconducting leads 
with the superconducting energy gaps Δ𝐿 and Δ𝑅 are under the bias voltage 𝑉 .

For simplicity, the polarized molecular quantum dot system is taken in 
spinless Anderson-Holstein model [59, 60]. So, �̂�𝑄𝐷𝑀 , the Hamiltonian 
of quantum dot molecule is expressed as:

�̂�𝑄𝐷𝑀 =
∑
𝛼

𝜀𝛼𝑑
†
𝛼
𝑑𝛼 + 𝑡𝐴𝐵(𝑑

†
𝐴
𝑑𝐵 + 𝑑𝐴𝑑

†
𝐵
), (2)

here, 𝑑†𝛼 (𝑑𝛼) is the creation (annihilation) operator of quantum dot 
𝛼 = 𝐴, 𝐵 with electronic energy levels 𝜀𝛼 . Beyond the Coulomb block-
ade regime with the condition of 𝑘𝐵𝑇 ≪𝐸𝐶 (𝐸𝐶 is the charging energy), 
single-electron tunneling is dominant for each QD [61, 62]. In the sec-
ond term, 𝑡𝐴𝐵 describes the inter-dot hopping strength which can be 
tuned using an applied gate voltage. In Eq. (1), �̂�𝐿𝑒𝑎𝑑𝑠 which introduce 
the Hamiltonian of left and right superconducting leads are described 
by the mean-field Hamiltonian as [63, 64]:

�̂�𝑀𝐹
𝐿𝑒𝑎𝑑𝑠

=
∑
𝑘𝜈𝜎

𝜉𝑘𝜈𝑐
†
𝑘𝜈𝜎
𝑐𝑘𝜈𝜎 +

∑
𝑘𝜈

(
Δ𝜈𝑐

†
𝑘𝜈↑
𝑐
†
−𝑘𝜈↓ +Δ∗

𝜈
𝑐−𝑘𝜈↓𝑐𝑘𝜈↑

)
. (3)

Here, 𝑐†
𝑘𝜈𝜎

(𝑐𝑘𝜈𝜎 ) is the creation (annihilation) operator of an electron 
with momentum 𝑘 and spin 𝜎 = ↑,↓ in lead 𝜈 = 𝐿, 𝑅. In this relation, 
𝜉𝑘𝜈 = 𝜀𝑘 − 𝜇𝜈 is the particle energy in which 𝜀𝑘 denotes the single-
particle energy regards to the electrochemical potential 𝜇𝜈 . Moreover, 
Δ𝜈 = |Δ𝜈 |𝑒𝑖𝜙𝜈 remarks the superconducting energy gap of lead 𝜈 with the 
superconducting phase, 𝜙𝜈 . The mean field Hamiltonian could be diag-
onalized by applying Bogoliubov transformation which is presented in 
Supplementary Material (1). This procedure leads to obtain:

�̂�𝐿𝑒𝑎𝑑𝑠 =𝐸𝐺 +
∑
𝑘𝜈𝜎

𝐸𝜈𝑘�̂�
†
𝑘𝜈𝜎
�̂�𝑘𝜈𝜎 , (4)

where 𝐸𝐺 , the ground state energy, represents the Cooper pair conden-
sate energy and �̂�†

𝑘𝜈𝜎
(�̂�𝑘𝜈𝜎) denotes the creation (annihilation) operator 

of Bogoliubov fermionic quasiparticle excitation which are used for di-
agonalizing the Hamiltonian of superconducting leads. The interaction 
Hamiltonian, �̂�𝑖𝑛𝑡 in Eq. (1), corresponds to the tunneling between the 
QDs and electrodes which can be written as:

�̂�𝑖𝑛𝑡 =
∑
𝑘𝜈𝛼

(
𝑇𝑘𝜈𝛼𝑐

†
𝑘𝜈
𝑑𝛼 + 𝑇 ∗

𝑘𝜈𝛼
𝑐𝑘𝜈𝑑

†
𝛼

)
. (5)

The tunneling coefficient, 𝑇𝑘𝜈𝛼 , describes the coupling strength depend-
ing on 𝑘, the momentum of an electron in lead 𝜈, the site of quantum 
dot 𝛼.

To determine the temperature region of the present quantum dot 
molecule, we consider all temperature conditions of this system. The 
required temperature for the entanglement of particles such as atoms 
and quantum dots [65, 66] and also the transition temperature of su-
perconductivity for the low-temperature as well as high-temperature 
superconductors [67]show that our proposed setup may work well from 
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Fig. 2. The density of states in the superconducting reservoirs of 
𝑆𝑐𝐿∕𝑄𝐷𝑀∕𝑆𝑐𝑅 junction. The asymmetric applied bias voltage, 𝑒𝑉 = 𝜇𝐿 − 𝜇𝑅, 
lets carriers to flow from the left reservoir to the QDM and then to the right 
lead.

a few Kelvin. Concerning the difficulties of overcoming the quantum de-
coherence and to preserve the entanglement, we suppose that the range 
of mili Kelvin would be more realistic.

To investigate the time evolution of the system, the quantum mas-
ter equation (QME) is obtained. This derivation is shown in the Sup-
plementary Materials (2). Then, we calculate the electric current and 
entanglement in the following sections. As in this paper only the elec-
tric current is investigated, for convenience, we drop the electric and 
use current instead of the electric current expression.

3. Current

To have transport through the present system, an external bias volt-
age is applied to the electrodes shown in Fig. 1. Due to this asymmetric 
bias voltage 𝑉 , the density of states of reservoirs are changed such that 
the electrochemical potential of the left lead becomes 𝜇𝐿 → 𝜇0 + 𝑒𝑉

while the right one remains as 𝜇𝑅 = 𝜇0 which is illustrated in Fig. 2. 
This means that 𝑒𝑉 = 𝜇𝐿 −𝜇𝑅. It leads to moving electrons from the left 
reservoir to the QDM and then to the right lead. Consequently, it causes 
a flowing current through the junction.

Current as a measurable quantity denotes the variation of total 
charged particle number in the lead 𝜈 which is defined as [57, 68]:

𝐼𝜈(𝑡) = −𝑒
𝑑�̂�𝜈

𝑑𝑡
= 𝑖𝑒

ℏ
[�̂�𝜈(𝑡), �̂�𝐼 (𝑡)]

= 𝑖𝑒

ℏ

∑
𝑘𝛼

(𝑇𝑘𝛼𝑐
†
𝑘𝜈
𝑑𝛼 − 𝑇 ∗

𝑘𝛼
𝑐𝑘𝜈𝑑

†
𝛼
), (6)

where �̂�𝜈 =
∑
𝜈 𝑐

†
𝜈 𝑐𝜈 is the number of electric charge 𝑒. According to the 

QME formalism, the density matrix evolution of the system would be 
written as ̇̂𝜌 = �̂��̂�. In this relation matrix �̂� shows the properties of the 
master equation. Therefore, we can rewrite the current formula, Eq. (6), 
as [58, 69]:

𝐼𝜈(𝑡) =
𝑒

ℏ
⟨�̂�|�̂�𝜈 |�̂�(𝑡)⟩, (7)

where �̂�𝜈 shows the contribution of lead 𝜈 in matrix �̂� . In the steady-
state of the system, by taking so long time (𝑡 → ∞), the stationary 
transport is shown in Fig. 3 containing the plots of normal junction 
(Δ = 0) and JJ with different energy gaps.

According to the I-V characteristic curves which are shown in Fig. 3, 
the magnitude of current is growing by the increase of bias voltage. 
Only in energies equal to the quantum dots’ energy levels, the current 
hits the peaks in delta type for the superconducting leads while it illus-
trates the smooth steps for the normal leads. Although the current level 
3

Fig. 3. Current-voltage characteristics in specific superconducting energy gaps. 
Normal leads: Solid line Δ = 0, Superconducting leads: Dashed line Δ

Γ0
= 1.8, 

Dot-dashed Δ
Γ0

= 2.6 for Γ0 = 𝜋𝑁𝐹 |𝑇 |2, 𝐼0 = 𝑒 Γ0
ℏ

and Δ𝐿 =Δ𝑅 =Δ.

of the system is increased by raising the magnitude of energy gaps, it 
reaches the platform for the large enough bias voltage.

In all calculations to deal with only the quasiparticle transport and 
ignoring the Cooper pair current, we assume all energy levels are far 
enough from the order parameter of leads.

4. Concurrence

It is convenient to apply the concurrence as a measure of entan-
glement for two-qubit systems. In the following, first this measure of 
entanglement for two distinguishable qubits is defined. Then, fermionic 
concurrence for indistinguishable particles will be characterized and 
evaluated in analogue with Wootters’ formula.

4.1. Concurrence of distinguishable particles

For the first time, Wootters introduced the measure of concurrence 
to evaluate the entanglement of qubits with two parties in both pure 
and mixed states [70, 71]. This measure of entanglement is defined as:

𝐶(𝜌) =𝑀𝑎𝑥[0, 𝜆1 − 𝜆2 − 𝜆3 − 𝜆4], (8)

in which, 𝜆𝑖, (𝑖 = 1, 2, 3, 4) represents the non-negative eigenvalues of a 
matrix �̂� in decreasing order 𝜆1 > 𝜆2 > 𝜆3 > 𝜆4. The matrix �̂� is defined 
as:

�̂� =
√√

�̂� ̃̂𝜌
√
�̂�, (9)

where �̂� =
∑
𝑖 𝑝𝑖|𝜓𝑖⟩⟨𝜓𝑖| denotes the density matrix of the system in 

which, 𝑝𝑖 is the probability of each state of decompositions. Also 
̃̂𝜌 = (�̂�𝑦 ⊗ �̂�𝑦)�̂�∗(�̂�𝑦 ⊗ �̂�𝑦). In this relation, 𝜎𝑦 describes the 𝑦 element of 
Pauli matrices and �̂�∗ represents the complex conjugate of the density 
matrix.

4.2. Concurrence of indistinguishable fermions

In condensed matter systems, the entanglement of electrons should 
be taken into account as indistinguishable particles. To characterize the 
entanglement of indistinguishable fermions, the simplest possible sys-
tem with the lowest-dimensional situation is defined for two fermions 
in four-dimensional single-particle Hilbert space [7]. An arbitrary state 
of two fermions is given:

|𝜓⟩= 4∑
𝑖,𝑗=1

𝜓𝑖,𝑗 𝑐
†
𝑖
𝑐
†
𝑗
|0⟩ (10)

where 𝜓𝑖𝑗 indicates the coefficient matrix. Its dual matrix �̃�𝑖𝑗 =
1
2
∑4
𝑘,𝑙=1 𝜀

𝑖,𝑗,𝑘,𝑙𝜓∗
𝑘,𝑙

is defined with antisymmetric unit tensor 𝜀𝑖,𝑗,𝑘,𝑙 . In 
this case, fermionic concurrence in analogy with distinguishable two-
qubit concurrence Eq. (8) can be written as [6, 7, 11]:
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Fig. 4. Configuration of the initial states of two spinless electrons of molecular 
double quantum dot. (a): 𝑄𝐷𝐴 is occupied in the ground state |𝑔𝐴⟩ and 𝑄𝐷𝐵

is occupied in the ground state |𝑔𝐵⟩, (b): 𝑄𝐷𝐴 is occupied in the excited state |𝑒𝐴⟩ and 𝑄𝐷𝐵 is occupied in the excited state |𝑒𝐵⟩, (c): 𝑄𝐷𝐴 is occupied in the 
ground state |𝑔𝐴⟩ and 𝑄𝐷𝐵 is occupied in the excited state |𝑒𝐵⟩, (d): 𝑄𝐷𝐴 is 
occupied in the excited state |𝑒𝐴⟩ and 𝑄𝐷𝐵 is occupied in the ground state |𝑔𝐵⟩.

𝐶𝐹 (|𝜓⟩) = |⟨�̃�|𝜓⟩| = ||||
4∑

𝑖,𝑗,𝑘,𝑙=1
𝜀𝑖,𝑗,𝑘,𝑙𝜓𝑖,𝑗𝜓𝑘,𝑙

||||
= 8|𝜓12𝜓34 +𝜓13𝜓42 +𝜓14𝜓23| (11)

Also, this relation can be expressed as [11, 72]:

𝐶𝐹 (|𝜓⟩) =√
2(1 − 2𝑇 𝑟[�̂�2]) (12)

in which �̂� denotes the single-fermion reduced density matrix. This 
means that the Wootters’ formula Eq. (8) which states concurrence was 
proved completely for two indistinguishable fermions.

4.3. Concurrence in our system

Our quantum dot molecular system with two spinless electrons can 
be realized as qubits by the orbital electronic degrees of freedom in 
quantum information theory. These electrons in a double-well poten-
tial are close enough to each other in a short distance to have quantum 
correlations. Therefore, they can treat as the entanglement of indistin-
guishable particles.

The states of DQD molecular system can be written as |𝜓⟩𝐴𝐵 =|Φ⟩𝐴 ⊗ |Φ⟩𝐵 , in which |Φ⟩𝐴 (|Φ⟩𝐵) shows the state of quantum dot 
A(B). As each electron of each dot can capture either ground or ex-
cited state, the general form of occupation states can be represented as |𝑔𝐴, 𝑒𝐴, 𝑔𝐵, 𝑒𝐵⟩ = |𝑔𝐴, 𝑒𝐴⟩ ⊗ |𝑔𝐵, 𝑒𝐵⟩. The configuration of all possible ini-
tial states of the system is shown in Fig. 4. To express the influence of 
asymmetrical coefficients on the entanglement of quantum dot molec-
ular system, the energy contributions of QD-reservoir couplings and 
also the superconducting energy gaps of reservoirs are taken into ac-
count unequal. These energy dependent parameters can be interpreted 
as asymmetrical elements which can be organized in right-left asym-
metric situations. The strength of coupling coefficients which strongly 
depend on the properties of QDs can easily be tuned left-right asym-
metrically by gap voltages. Also, the superconducting energy gaps of 
left and right reservoirs can be simply chosen unequally in the arrange-
ment of setup. To present the effect of asymmetric coupling coefficients, 
we define the asymmetric factor as a function of coupling contributions:

𝜅 =
𝜅𝐴 + 𝜅𝐵

2
(13)

in which 𝜅𝛼 = | 𝑇𝛼𝐿−𝑇𝛼𝑅
𝑇𝛼𝐿+𝑇𝛼𝑅

|, 𝛼 = 𝐴, 𝐵. Here, 𝑇𝐴𝐿 denotes the coupling of 
𝑄𝐷𝐴 to the near-lead (Left Lead) and 𝑇𝐴𝑅 shows the coupling of this 
𝑄𝐷 to the far-lead (Right Lead). Similarly, the coupling of 𝑄𝐷𝐵 with 
the far-lead (Left Lead) is shown by 𝑇𝐵𝐿 and with the near-lead (Right 
Lead) is indicated by 𝑇𝐵𝑅 which is illustrated in Fig. 1. All these cou-
pling parameters are considered positive which provide the magnitude 
of asymmetric factor from zero to unit.
4

Mostly, in the study of QDs system for simplification, the cou-
pling of QD with the far-lead is ignored [73]. However, we assume 
both couplings of each QD to the near-lead and far-lead non-zero with 
different strengths which are involved in the asymmetric factor defini-
tion (Eq. (13)).

According to the definition of asymmetric factor (Eq. (13)), we in-
vestigate the entanglement of our proposed quantum dot molecular 
system in two parts, namely symmetric and asymmetric structures as 
follows.

4.4. Symmetric structure

The symmetric structure is defined for the equal left and right cou-
pling coefficients of each QD (𝑇𝐴𝐿 = 𝑇𝐴𝑅 and 𝑇𝐵𝐿 = 𝑇𝐵𝑅) and also for 
the same superconducting energy gaps of the left and right reservoirs 
(Δ𝐿 =Δ𝑅). This situation supplies the minimum magnitude of the asym-
metric factor, 𝜅 = 0.

For the symmetric structure conditions, the entanglement of QDM 
system is obtained only for the initial entangled states. These initial 
states can be considered as the superposition of states in (𝑐) or (𝑑) con-
figurations of Fig. 4 which are known as Bell states. For our system, we 
assume the initial state of symmetric structure with the highest degree 
of entanglement as:

𝜌(0) =

⎡⎢⎢⎢⎢⎣

0 0 0 0
0 0.5 −0.5𝑖 0
0 0.5𝑖 0.5 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
. (14)

4.5. Asymmetric structure

We introduce the asymmetric structure for the left-right different 
coupling coefficients with 0 < 𝜅 ≤ 1 magnitude and the unequal order 
parameters of reservoirs, Δ𝐿 ≠ Δ𝑅. In this group, the ideal asymmetry 
element is achieved for the maximum amount of asymmetric factor 𝜅 ≃
1. The situation of ideal asymmetry is available when one of the left or 
right coupling coefficient is much larger than the other one. To apply 
the ideal asymmetry properties in physically rational considerations, 
we assume that each QD is coupled to the near-lead with much larger 
strength than the far-lead. In other words, we consider Γ𝐴𝐿 ≫ Γ𝐴𝑅 and 
Γ𝐵𝑅 ≫ Γ𝐵𝐿 to provide the most magnitude of asymmetric factor.

It is interesting that the entanglement of our composed systems in 
asymmetric structure is realized for the initial unentangled states. These 
states can involve in one of (𝑎) or (𝑏) configurations in Fig. 4. Here, we 
choose (𝑎) configuration as the initial state for the asymmetric structure 
which means that both QDs are occupied in their ground states. To 
investigate this significant situation in the present system, we assume 
an appropriate separated initial state as:

𝜌(0) =

⎡⎢⎢⎢⎢⎣

1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤⎥⎥⎥⎥⎦
. (15)

In the next section, we present the concurrence behavior of the pro-
posed QDM system for both symmetric and asymmetric structures.

5. Results

In this section, we investigate the concurrence behavior of molecu-
lar system firstly in response to the bias voltage, secondly by the time 
evolution in constant voltage and finally through the dynamics for spe-
cific superconducting energy gaps.
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Fig. 5. Concurrence-voltage characteristics for Panel (a): symmetric structure 
with 𝜅 = 0 and Panel (b): asymmetric structure with 𝜅 = 0.95; Γ0 = 𝜋𝑁𝐹 |𝑇 |2.
5.1. Concurrence-voltage characteristics

In this study, concurrence is considered as a function of bias voltage 
which indirectly depends on the distribution function of reservoirs. Ac-
cording to the Fig. 2, applied asymmetric bias voltage leads to shifting 
the energy level of the left reservoir with the 𝑒𝑉 magnitude. Therefore, 
we can investigate the effect of bias voltage on the concurrence through 
the concurrence-voltage characteristic (C-V) curves in Fig. 5.

Fig. 5 is plotted in two panels (a) and (b) for symmetric and asym-
metric structures respectively. The solid line curve in this figure demon-
strates the concurrence of quantum dot molecule in a normal junction 
which means that the superconducting energy gap is zero (Δ = 0). How-
ever, the curves of dashed and dot-dashed lines show the concurrence of 
quantum dot molecular system in the Josephson junction with certain 
superconducting energy gaps. For both panels of Fig. 5, concurrence 
changes with the step shapes for the normal leads (solid line) and with 
the delta peaks for the superconducting reservoirs (dot-dashed and dot-
ted lines) in resonant with QDs energy levels.

In panel (a) of Fig. 5, the concurrence for the symmetric struc-
ture firstly shows degradation and then it behaves in a saturated way 
through the increase of voltage. This means that electrons with the en-
tangled initial state in response to the increase of bias voltage can find 
more opportunities for movement which results in the entanglement 
degradation. The important point is that although QDM system demon-
strates entanglement reduction, it is never unentangled completely with 
the zero amount. For more bias voltage, the entangled states of electrons 
can preserve the saturated entanglement with a moderate magnitude.

For panel (b) of Fig. 5 with the initial unentangled states, con-
currence demonstrates increasing. Also, for high values of bias volt-
age, it indicates saturation behavior with the remarkable entangle-
ment amount. This means that electrons with the asymmetric structure 
through the bias voltage raising can have more possibilities for entan-
glement. Also, the situation of left-right asymmetric coupling coeffi-
cients provides quantum dots to become robustly entangled. Obviously, 
Fig. 5b shows that for convenient superconducting energy gaps of reser-
voirs (dot-dashed curve), saturated entanglement can be achieved with 
the maximum amount.

It is significant that the proposed QDM system can protect saturated 
entanglement with robust amount for the asymmetric situation.
5

Fig. 6. Time evolution of concurrence for the constant low bias voltage, Panel 
(a): the symmetric structure with 𝜅 = 0 and Panel (b): the asymmetric structure 
with 𝜅 = 0.95; Γ0 = 𝜋𝑁𝐹 |𝑇 |2.

5.2. Dynamics of concurrence in low bias voltage

Concurrence through the time evolution is shown in Fig. 6 with two 
panels. Panel (a) which is plotted for the symmetric structure has a 
minimum asymmetric factor with the value of zero. It occurs when 
the coupling coefficients of left and right sides are assumed the same 
(𝜅 = 0). In this situation, the energy gaps of both left and right reservoirs 
are considered equal to each other Δ𝐿 = Δ𝑅 = Δ. The dynamics of en-
tanglement for this condition starts from the initial entangled state and 
demonstrates degradation by time. After high enough time, it reaches 
the zero amount which means that electrons of QDM are separated 
completely. Also, this figure shows that the curves with larger super-
conducting energy gaps collapse faster.

In panel (b) of this figure, the asymmetric structure for the QDM sys-
tem is represented for the large asymmetric factor (𝜅 = 0.95) with the 
asymmetrical left-right coupling coefficients. Moreover, the supercon-
ducting energy gaps of leads are assumed unequal. For this situation, 
the dynamics of concurrence begins from the initial unentangled state 
(Eq. (15)) and illustrates increasing. After a long enough time, it shows 
saturated entanglement. Moreover, the energy gaps of superconducting 
reservoirs with the higher amounts provide larger entanglement magni-
tudes. This behavior is such that robust maximum concurrence can be 
achieved for the convenient situation of the dot-dashed line.

5.3. Dynamics of concurrence for specific superconducting energy gaps

Fig. 7 shows the time evolution of concurrence with regards to the 
proximity effect of superconducting reservoirs for symmetric and asym-
metric situations in panel (a) and panel (b), respectively. In this figure, 
bias voltages in resonant with energies of quantum dots 𝐴 and 𝐵 are 
influenced by the superconducting proximity effect of the reservoirs. 
Therefore, they have different concurrence magnitudes for the left and 
right sides of the resonant points. These resonant points which are 
𝑒𝑉 − 𝜀𝐴 + Δ𝐿 and 𝑒𝑉 − 𝜀𝐵 + Δ𝑅 are illustrated as peaks with respect 
to the bias voltage in Fig. 5.

In panel (a) for the symmetric structure, the first resonant point 
(𝑒𝑉 − 𝜀𝐴 +Δ𝐿 ± 0.01) has longer elapsed time than the second resonant 
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Fig. 7. Dynamics of concurrence for bias voltages in resonant with QD’s energy 
levels, panel (a) for the symmetric structure with Δ𝐿 = Δ𝑅 = Δ and panel (b) 
for the asymmetric structure. Solid line: left side of the first resonant point, 
Dashed line: right side of the first resonant point, Dot-dashed line: left side of 
the second resonant point, Dotted line: right side of the second resonant point 
and Thick-dashed line: high bias; Γ0 = 𝜋𝑁𝐹 |𝑇 |2.

point (𝑒𝑉 − 𝜀𝐵 + Δ𝑅 ± 0.01). In which, the former corresponds to the 
lower bias voltage. In panel (b) of this figure for the asymmetric situa-
tion, the curves of second resonant point (𝑒𝑉 − 𝜀𝐵 +Δ𝑅 ± 0.01) indicate 
larger concurrence amount than the first one (𝑒𝑉 − 𝜀𝐴 +Δ𝐿 ± 0.01). For 
this panel, the latter condition belongs to the lower bias voltage Accord-
ing to the increase of the bias voltage, this behavior of resonant points 
for both panels reveals that the amount of bias voltage plays more sig-
nificant role than the other elements in the concurrence time evolution. 
In addition, for the high bias voltage 𝑒𝑉 ≫ 0, the dynamics of system de-
cays in the middle rate of second resonant point curves with decreasing 
behavior for the symmetric situation in panel (a) and with increasing 
behavior for the asymmetric situation in panel (b).

The most important difference between panels (a) and (b) originates 
from their different initial states and also their values of the asymmet-
ric factor for the coupling coefficients which leads to the decrement and 
increment behavior, respectively. Remarkably, in the asymmetric situa-
tion of the system (Fig. 7(b)), the concurrence curves for the proximity 
effect in both resonant points firstly grow by time and then reach the 
ultimate magnitude steadily. Moreover, for the second resonant point, 
concurrence can receive the maximally unit amount through time.

In addition, it is interesting to mention that in spite of the surround-
ing temperature which usually causes entanglement degradation, there 
are some situations in which under the effect of environment-assisted, 
revival entanglement occures [74]. We believe that for the present 
quantum dot molecular system, investigating the dynamics of entan-
glement with respect to temperature variations is possible that we plan 
to do in the future works.

6. Conclusion

In summary, we proposed a procedure to obtain the perfect entan-
glement for two coupled QDs molecule in a voltage-controlled junction. 
In this strategy, we focused on the arrangement of different control-
ling elements to enhance the quantum information characteristics of 
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the system. First, by engineering the reservoirs, we applied supercon-
ductors as leads using the significant properties of Josephson junction 
under the bias voltage control. Second, we utilized the energy cou-
plings of QD-reservoirs asymmetrically. The main advantage of this 
hybrid quantum system refers to its controllability due to the easy 
tuning bias voltage and also its coupling coefficients arrangement by 
manipulating the quantum dot barriers to obtain the required results. In 
concurrence-voltage characteristics, applying the asymmetric coupling 
energy conditions can provide a high degree of entanglement while for 
the symmetric situation, the entanglement shows degradation.

Declarations

Author contribution statement

E. Afsaneh, M. Bagheri Harouni: Conceived and designed the analy-
sis; Analyzed and interpreted the data; Wrote the paper.

Funding statement

This research did not receive any specific grant from funding agen-
cies in the public, commercial, or not-for-profit sectors.

Competing interest statement

The authors declare no conflict of interest.

Additional information

Supplementary content related to this article has been published on-
line at https://doi .org /10 .1016 /j .heliyon .2020 .e04484.

Appendix A. Supplementary material

Supplementary material related to this article can be found online 
at https://doi .org /10 .1016 /j .heliyon .2020 .e04484.

References

[1] A. Peres, Quantum Theory: Concepts and Methods, Springer Science and Business 
Media, 2006.

[2] C.H. Bennett, D.P. DiVincenzo, J.A. Smolin, W.K. Wootters, Phys. Rev. A 54 (1996) 
3824.

[3] R.F. Werner, Phys. Rev. A 40 (1989) 4277.
[4] G. Alber, T. Beth, M. Horodecki, P. Horodecki, R. Horodecki, M. Rötteler, H. We-

infurter, R. Werner, A. Zeilinger, Quantum Information: An Introduction to Basic 
Theoretical Concepts and Experiments, Springer, Berlin Heidelberg, 2003.

[5] M.A. Nielson, I.L. Chuang, Quantum Computation and Quantum Information, 2000.
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