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Skeletonizing the Dynamics of Soft Continuum Body
from Video
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Abstract

Soft continuum bodies have demonstrated their effectiveness in generating flexible and adaptive functionalities by
capitalizing on the rich deformability of soft material. Compared with a rigid-body robot, it is in general difficult to
model and emulate the morphology dynamics of a soft continuum body. In addition, a soft continuum body potentially
has an infinite degree of freedom, requiring considerable labor to manually annotate its dynamics from external
sensory data such as video. In this study, we propose a novel noninvasive framework for automatically extracting the
skeletal dynamics from video of a soft continuum body and show the applications and effectiveness of our framework.
First, we demonstrate that our framework can extract skeletal dynamics from animal videos, which can be effectively
utilized for the analysis of soft continuum body including animal motion. Next, we focus on a soft continuum arm, a
commonly used platform in soft robotics, and evaluate the potential information-processing capability. Normally, to
control such a high-dimensional system, it is necessary to introduce many sensors to completely capture the motion
dynamics, causing the deterioration of the material’s softness. We illustrate that the evaluation of the memory
capacity and sensory reconstruction error enables us to verify the minimum number of sensors sufficient for fully
grasping the state dynamics, which is highly useful in designing a sensor arrangement for a soft robot. Also, we release
the software developed in this study as open source for biology and soft robotics communities, which contributes to
automating the annotation process required for the motion analysis of soft continuum bodies.
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Introduction

L iving organisms incorporate elastic body tissues to
realize smooth and adaptive behavior in uncertain en-

vironments. Motivated by the ubiquity of soft structures in
creatures, soft robots have been developed that incorporate
the deformability of soft material.1,2 In addition, the diverse
spatiotemporal pattern of soft continuum bodies has recently
been highlighted as a novel tool for implementing adap-
tive behavioral controllers,3–6 sensors,7–12 and information-
processing devices.13–15 To sum, the dynamic property of
soft material will be exploited to realize the versatile func-
tionality in developing next-generation robots.

It is, however, challenging to quantitatively capture skel-
etal dynamics of a soft continuum body in biology and soft
robotics. Unlike a conventional rigid-body robot, soft con-
tinuum bodies are often continuous, and modeling their

dynamics potentially requires an infinite state space. Owing
to the intrinsic nonlinearity and hysteresis of soft materials,
soft continuum bodies generate a rich variety of dynamic
deformation patterns when actuated, making it difficult to
construct a precise model describing the deformation dy-
namics.16,17 Moreover, the morphology displacement may
be able to be measured by embedded sensors. However, the
implanted sensors often impair a material’s softness, limiting
the number to be used. Therefore, to completely grasp the
deformation dynamics of a soft continuum body, it is desir-
able to extract the skeletal dynamics by noninvasive external
sensors such as video cameras or laser rangefinders.

In the field of computer vision and imaging science,
skeletonization has been an important topic for finding
compact representations of objects from the image for many
years.18 Blum’s pioneering work19 first formulated the con-
cept of object skeletons and established the foundation of
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skeletonization. Blum’s skeleton is obtained by the grassfire
transform process and analytically defined as a set of colli-
sion points of two independent curves propagating from
the object boundary at a constant velocity.20 Based on the
grassfire transform process, many approaches have been
developed, including geometric approaches approximating
the skeleton using the Voronoi diagram21–23 and continuous
curve propagation approaches emulating grassfire propaga-
tion with partial differential equations.24–27 The skeletoni-
zation technique has been widely employed in various image
processing and computer vision applications. In particular,
medical imaging widely uses skeletonization to extract the
centerline of blood vessels and arteries from computed to-
mography imaging.28,29

Many frameworks have also been proposed to extract
skeletal dynamics from the video recording of the motion of a
soft continuum body. To analyze the complicated behavior of
an octopus, a framework for extracting a three-dimensional
(3D) arm trajectory was developed using multiple video
cameras.30,31 The skeletonization algorithm is easily accom-
plished by simulating Blum’s grassfire process on the digital
grids. By parameterizing the contour with elliptic Fourier
descriptors, it is possible to describe the morphology dy-
namics of soft continuum bodies.37 Also, deep neural net-
work (DNN) models that track characteristic points on video
have recently been proposed, which would be powerful op-
tions for skeletonizing soft continuum bodies.33,38 Although
these approaches based on computer vision are useful in
skeletonizing soft continuum body dynamics, they have
several drawbacks. For example, the endpoint coordinates
of the skeleton should be manually specified for all video
frames in the octopus arm tracking system used in Refs.30,31

The model-free method based on the elliptic Fourier de-
scriptors37 is not suitable for extracting skeleton dynamics
because it does not provide direct information of the skele-
tal coordinates. It is necessary to prepare annotation data
and fine-tune the model in the methods based on DNN
(Table 1).33 Also, the markers were directly attached or
written on the soft continuum body as a reference
point,8,14,39,40 which involves an invasive process and cannot
be used, especially with animals.

In this study, we propose a novel framework called SSS
(Soft Skeleton Solver) for skeletonizing soft continuum body
dynamics based on a background subtraction algorithm and a
skeletonization algorithm36 using a fast marching method
(FMM).35 By employing the minimum distance field and the
traveling time field calculated during the skeletonization al-
gorithm, our framework can effectively and automatically
extract the endpoint coordinates and skeleton curve of the
soft continuum body on all frames except the first one. Fur-
thermore, by specifying the resolution and tracking parame-

ters, it is possible to extract the skeleton curve with arbitrary
accuracy. Below, we list the contributions of this article:

� Our proposed method automates the annotation process
of specifying the skeleton’s tip points, which signifi-
cantly enhance the extraction efficiency and reduce the
manual operation costs.

� Unlike skeletonization methods based on DNN, our
proposed method does not require pretraining, which
alleviates the annotation and training costs.

� We demonstrate that our methods can fully capture the
deformation dynamics of soft bodies in a noninvasive
manner, which could be effectively employed for de-
signing the optimal sensor placement.

In this article, we first demonstrate that our framework can
extract skeletal dynamics from dead fish ‘‘swimming’’ and
brittle star movement videos. We also show that both the
microscopic and macroscopic features of the animal motion
are effectively reflected in the analysis. In addition, we verify
the minimum number of sensors sufficient for fully grasping
the state dynamics of a soft silicone rubber arm, a typical
platform in soft robotics, from the video. Normally, to com-
pletely capture the deformation dynamics, a sufficient num-
ber of sensors should be embedded in the body. However,
implanting sensors in the soft components often reduces its
deformability and motion variety. We exhibit that our frame-
work effectively offers a noninvasive indicator to design the
sensor arrangement on a soft robot through the two demon-
strations measuring the information-processing capacity
and the reconstruction error of the actual sensor dynamics.
Finally, we discuss the usefulness and future extension of our
framework. Our software used in this study is open source
and released on a website, which should be especially helpful
for biologists and soft roboticists who wish to analyze the
dynamic movement of soft continuum bodies.

Proposed Method

In this study, we propose an iterative skeletonizing frame-
work for soft continuum bodies composed of the following
three steps (Fig. 1A–C). The skeletonization process is au-
tomatically completed for all frames except the first one by
extending the centerline estimation algorithm36 based on the
FMM algorithm. We explain the detailed algorithm of each
step through a demonstration with a five-armed brittle star
video (Fig. 1). Five skeletal curves should be extracted in this
demonstration.

Basal point estimation

First, one of the two endpoints of the skeletal curve is
estimated (referred to as the basal point). Initially, the

Table 1. Comparison with Other Markerless Methods That Can Skeletonize

Soft Continuum Bodies (N¼ the Number of Frames)

Method Algorithm Pretraining Resolution Manual specification of tip points

Octopus arm tracking
system30,31

Thinning algorithm32 Not required Adjustable O(N) (required for every frames)

DeepLabCut33 ResNet34 Required Fixed not required after the pretraining
Soft Skeleton Solver

(ours)
Fast marching method27,35,36 Not required Adjustable O(1) (only first frame)
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region of target object Ot is extracted from the raw image
It(t¼ 1, 2, 3, � � � ) (Fig. 1A-i, ii). Here, we used a simple
background subtraction algorithm to binarize the image It

based on the pixel values with an appropriate threshold. Note
that the extracted region Ot is assumed to be simply con-
nected, that is, enclosed by a single closed curve and having
no holes in the region. Next, the minimum Euclid distance
field Dt(x) is calculated from the contour of Ot [x 2 Ot is a

grid coordinate; Dt(x) represents the distance between x and
the nearest boundary ofOt]. By applying the FMM algorithm,
the computational complexity for the Dt(x) calculation can be
suppressed to O(HW log (HW)) for grid number HW (H and
W are the height and width of the video, respectively). Based
on the distance field Dt(x), the coordinate of basal point s(t) is
estimated. Since the points on the skeletal curve are distrib-
uted on the ridge line of the distance field, the basal point s(t)

FIG. 1. Detailed description of the algorithm. The algorithm has three steps. Each step processes data from left to right
figure (i–iii). (A) Basal point estimation. In this demonstration using the brittle star video, the farthest point from the edge was
selected as the basal point. (B) Tip point estimation. Five tip points were estimated corresponding to the five arms in this
demonstration. (C) Skeletal curve estimation. The skeletal curve was estimated to connect the basal point and the tip points.
The solution was obtained by backtracking along the gradient of the traveling time field. Color images are available online.
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can be estimated from the local maximum point of Dt(x).
Especially in this brittle star demonstration, five ridge lines
corresponding to the five arms intersect at the maximum
point of distance field Dt(x). Therefore, we selected the local
maximum point of Dt(x) on the e-neighborhood of the pre-
vious basal point s(t� 1) as the next basal point s(t) (e is set to
an appropriate value according to the video size). Note that
this estimation algorithm can be flexibly modified or replaced
with another one depending on the target object morphology.
For example, a similar algorithm was used by fixing the
Y-coordinate of the basal point for the soft octopus arm video
presented in the Designing Sensory Configuration for Soft
Robotic Arm section (see the Appendix for detail). Also, the
previous basal point s(0) is manually set for the initial basal
point s(1) on the first frame I1. We developed a user interface
to set the endpoint coordinates for the first frame (Supple-
mentary Videos S1 and S2).

Tip point estimation

Next, another endpoint of the skeletal curve is estimated
(referred to as the tip point). First, the following speed vector
field Ft(x) is calculated based on the distance field Dt(x) with
the following equation (Fig. 1B-i):

Ft(x) :¼ exp aDt(x)ð Þ, (1)

where a is a constant value adjusting the convexity of Ft(x)
(we used a¼ 0:5 for calculation stability). Next, consider a
closed curve Gt propagating normal to itself with the speed
Ft(x) from the wave source s(t). Then, the traveling time field
Tt(x) is calculated. Tt(x) denotes a time whenGt passes over x.
Especially in a special case where the wave front moves in one
direction with the velocity Ft, the relationship between Tt(x)
and Ft(x) can be formulated with the following equation:

j=Tt(x)jFt(x)¼ 1: (2)

This is called the eikonal equation, whose solution can be
efficiently acquired by the FMM algorithm as with the cal-
culation of the distance field.36

After the calculation of Tt(x), the tip point dn(t) is esti-
mated (Fig. 1B-ii). Here, n is an arm index (n¼ 1 � � � 5 in this
demonstration). The travel time field Tt(x) takes a local
maximum value at the farthest points from the wave source
s(t). Therefore, we selected the local maximum point of Tt(x)
as the new tip point dn(t) on the e-neighborhood of the pre-
vious tip point dn(t� 1). Also, the previous tip points dn(0) of
dn(1) on the first frame I1 are manually set, and those on the
rest of the frames are automatically gained.

Skeletal curve extraction

Finally, the Ndim point sequences Rn
t ¼fri(t)gi(i¼

1 � � �Ndim) distributed at regular intervals on the skeletal
curve is extracted by connecting the basal point s(t) and each
tip point dn(t) (below, the arm index n is omitted for
simplicity). We consider the following skeletal curve Ct

minimizing the accumulate value of the cost function among
the curves connecting s(t) and d(t):

Ct :¼ argmin
C

ð
C

Ut C(s)ð Þds, (3)

Ut(x) :¼ exp � aDt(x)ð Þ ¼ Ft(x)ð Þ� 1
� �

: (4)

The minimum cost path between s(t) and d(t) is found by
backtracking along a gradient =Tt from d(t) until reaching
s(t) (Fig. 1C-i, ii).36 The second-order Runge–Kutta method
(RK2) was used for approximating the gradient with a con-
stant width d in Algorithm 1. This algorithm yields a point
sequence Pt¼fpi(t)gi(i¼ 1 � � �Nraw) on the skeletal curve Ct.
Note that Nraw does not necessarily match Ndim.

Algorithm 1 Backtracking in Skeletal Curve Extraction

1: Pt¼f/g x point sequence on the skeletal curve
2: p¼ d(t)
3: while kp� s(t)k> e do
4: Pt)Pt [ fpg
5: p)pþ d=xTt(x) x approximating =xTt with RK2
6: Pt)Pt [ fs(t)g

After the backtracking process, the smoothed point sequ-
ence Qt¼fqi(t)gi(i¼ 1 � � �Nraw) is obtained from point se-
quence Pt with the following smoothing algorithm:

qi(t)¼ +
K

j¼ �K

pmax ( min (iþ j, Nraw), 1)(t), (5)

where K is a constant value adjusting the smoothing strength.
Then, Qt is interpolated to construct a smoothed curve
CQ

t : [0,1)! Ot (a cubic interpolation was used). Finally,
the point sequence Ri on CQ

t is reconstructed to satisfy
jRtj ¼Ndim and kri� 1(t)� ri(t)k ¼ const: for all i¼
2 � � �Ndim. The skeletal resolution can be arbitrarily set by
adjusting the width d in the gradient-descent process and the
number of points Ndim. Through the iterative algorithm re-
peating the above three steps, our framework can automati-
cally extract the skeletal dynamics of soft continuum bodies.

Case Studies

In this section, we demonstrate the applications of our
framework to biological and soft robotic data.

Analysis of biological data

First, we demonstrate the effectiveness of our framework
by skeletonizing animal movement. We prepared a dead trout
swimming video (published in Refs.,41,43 178 frames) as a
simple task and extracted the spine dynamics. This video
displays the ability of a dead fish body to swim upstream
by employing the Karman vortices generated by a D-shaped
obstacle. In this demonstration, we used the manually an-
notated time series data of the head position as the basal
point dynamics s(t), and the skeletal dynamics and tail
position d(t) were automatically extracted with our frame-
work. Figure 2A shows the extracted spine dynamics
(Ndim¼ 1000). As can be seen from the figure, our frame-
work effectively extracted the continuum spine dynamics
(Supplementary Video S3).

Next, we exhibit that our framework can be applied to
skeletonizing a multi-armed object. We prepared a five-
armed brittle star (Ophiactis brachyaspis) video (published in
Ref.,42 843 frames). It was reported that brittle star randomly
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selects the leading arm opposite to one that is stimulated and
has a tendency to move forward in the direction of the leading
arm while synchronizing the bilateral arms adjacent to the
leading arm.42 Especially, there exist two candidate arms
to be selected in response to the external stimulus in a five-
armed brittle star. In the video, the tester provided a stimulus
to the tip of arm #5 (purple). Then, the brittle star selected
arm #2 (orange) as the leading arm until around the 500th
frame, and arm #3 (green) after that. Figure 2B shows the
relative coordinates dynamics (Ndim¼ 1000) of each arm and
its movement analysis. Note that the skeletal dynamics for all
the frames were automatically extracted except for the first
one. Positive correlation values were globally obtained on the
two correlation matrices; one between arm #1 and arm #3 and
another between arm #2 and arm #4 (surrounded by a dotted
line in Fig. 2B), which is consistent with the observed leading
arm selection and synchronized arm movement (Supple-
mentary Video S4). In this way, our framework efficiently
extracts the skeletal dynamics of the soft continuum bodies
and provides useful information for understanding the com-
prehensive movement of animals.

Also, our proposed method can be used to skeletonize
fuzzy soft body objects. We prepared a video recording the
behavior of Hydra vulgaris,44 whose body is semitransparent
and thus generally hard to skeletonize. Our proposed method
is, however, applicable to skeletonizing such a blurry body
when the background is homogeneous since a simple binar-
ization process can extract the semitransparent object (Sup-
plementary Video S5). In this way, our proposed method can
extract the object structure more robustly in a case where the
background environment can be easily controlled (e.g., in a
laboratory environment).

Designing sensory configuration for soft robotic arm

Next, we demonstrate that our framework offers a nonin-
vasive indicator for designing the sensory configuration of
a soft robot. Here, we prepared a movie recording of soft
octopus arm movement (published in Refs.,15,46 36,321
frames). The soft octopus arm is a typical soft continuum
robotic body in which a servomotor and 10 bend sensors are
attached to a silicone rubber arm (Fig. 3A). A soft continuum
arm is a commonly used platform in the field of soft robot-
ics.13,14,47 Also, the soft octopus arm is a primary mechanical
device for physical reservoir computing,5,6,48–53 where the
complicated time series responses generated on the soft
material are exploited for machine-learning tasks. In partic-
ular, the soft octopus arm converts binary motor commands
u(t) with the switching time interval sstate into continuous
sensory dynamics xsensor(t) (Fig. 3B, we fixed the interval to
sstate¼ 11). Originally, 10 bend sensors were embedded to
extract complex spatiotemporal deformation patterns [i.e.,

xsensor(t) 2 R10], which was insufficient for fully grasping
the deformation dynamics. However, owing to reduced
flexibility, the number of attachable sensors was limited. We
estimated the sufficient number of sensors to capture the de-
formation dynamics by evaluating the potential information-
processing capacity of the soft octopus arm.

We prepared for 10,010 points of extracted skeletal dy-
namics Rt (Ndim¼ 10, 010). Then, to correspond to the actual
sensor, the tangent vectors x(t) 2 R10, 000 · 2 were calculated
from Rt by the following formula:

xi(t)¼ riþ 10(t)� ri(t)ð ÞT :

Figure 3C and D displays the skeletal dynamics x(t) and
sensory dynamics xsensor(t) in response to the binary sequence
u(t) (Supplementary Video S6). Here, we assumed that these
tangent vectors corresponded to three-axis accelerometers
measuring the direction of gravity. A three-axis accelerom-
eter is often embedded into soft robotic components to
measure the displacement of the material deformation.54–56

In other words, we estimated the number of required three-
axis accelerometers to fully exploit the potential computa-
tional resource.

To evaluate the information-processing capability, we
prepared a short-term memory task that measured the mem-
ory property for a random input signal. The short-term
memory task requires system to reconstruct past input before
n segments, u(t¢� n), from current state x(t¢) with a linear
logistic regression model.57 Below, we introduced t :¼ sstatet¢;
that is, only the dynamics on every sstate¼ 11 steps were
considered. The linear weight w on the model was trained to
approximate u(t¢� n) as follows:

u(t¢� n) � y(t¢),

y(t¢) :¼ 1 (p(t¢) > 1=2)

0 (otherwise)

�
,

p(t¢) :¼ 1=(1þ exp (wx(t¢))):

Since the logistic regression model has a minimal non-
linearity and no memory property, the task performance
significantly reflects the degree of the computational capa-
bility of the system. Here, we introduced mutual information
MIn between the output y(t¢) and target u(t¢� n) as an eval-
uation measure. MIn takes a value within [0, 1] and ap-
proaches one as the performance increases (see the Appendix
for the MI algorithm). Also, we calculated the performance
capacity Cmemory :¼+

n
MIn to assess the overall computa-

tional capacity. We prepared 1250 time steps of training data

‰
FIG. 2. Demonstration of skeletal dynamics extraction. (A) Extracted spine dynamics of the dead trout. We used a video
published in the study of Beal et al.41 and the manually annotated basal points. The XY-coordinate dynamics of each point
on the spine are plotted (the colormap shows the 1000-dimensional dynamics of XY-coordinates from the head to the tail).
The skeletal curve and tip point were automatically extracted by our framework (Supplementary Video S3). (B) Skeletal
dynamics of five-armed brittle star and its movement analysis. We used a brittle star video published in the study of Wakita
et al.42 The skeletal curve and endpoints were automatically extracted by our framework (Supplementary Video S4). Each
arm is indexed in clockwise order from the upper one. The left colormap plots the dynamics of the relative coordinates
rn

i (t)� s(t). The right colormap shows the correlation matrix of velocity kDrn
i (t)k. Color images are available online.
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and 1250 time steps of evaluation data. In addition, to in-
vestigate the dependence of the number of sensors on the
information-processing capacity, Nselect elements among
20,000 nodes in x(t) were randomly chosen (we tested
Nselect¼ 1, 2, 5, 10, 20, 50, 100, 200, 500, and 1000). We also
measured the performance with the bend-sensor dynamics
xsensor(t¢) as the baseline.

Figure 4A depicts the performance function MIn and
memory capacity Cmemory, suggesting that the performance
monotonically improved as Nselect increased and was com-
parable with sensory dynamics at Nselect¼ 10. Moreover, the
memory capacity saturated at around Nselect¼ 102. These
results revealed the following two points: (i) our system
brought out the information-processing capability of the soft
octopus arm more than the actual 10 bend sensors, and (ii) the
computational capacity of the soft octopus arm can be suf-
ficiently extracted by embedding 102 accelerometers.

Furthermore, we demonstrate that our framework can es-
timate the number of required sensors to extract deformation
dynamics even without input information u(t). We evaluated

the reconstruction error of the bend-sensor dynamics xsensor(t)
using the extracted skeletal dynamics x(t). A linear ridge
regression model was used, and the normalized mean square
error (NMSE) between the output y(t) and target dynamics
z(t) was measured with the following equation:

NMSE(y, z) :¼
E (y� z)2
� �
Var(z)

¼
+

t
y(t)� z(t)ð Þ2

+
t
(z(t)��z(t))2

, (7)

where�z(t) is the average of z(t). Also, the sum of NMSEs over
10 bend-sensor dynamics was calculated to measure the
overall reconstruction accuracy.

Figure 4B displays the reconstruction error over Nselect.
The bend-sensor dynamics were effectively reconstructed

FIG. 3. Soft octopus arm setup. (A) Overview of soft octopus arm.45 (B) Experimental setup for evaluation of the
information-processing capability. (C) Dynamics of the extracted skeletal dynamics and corresponding contact vector. The
color represents the angle of the tangent vector. (D) Response curve comparison. Top: 10 bend sensor dynamics xsensor. Each
label represents the index of the sensor. Middle: Input time series u(t). Bottom: Dynamics of the angle of the tangent vector
x(t). The y-axis in the colormap corresponds to the position on the soft octopus arm (i.e., #1: the top basal point, #10,000:
the bottom tip point). Refer also the Supplementary Video S6. Color images are available online.
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using the extracted skeletal dynamics. Also, the NMSE eval-
uation showed that the reconstruction accuracy was mono-
tonically improved and saturates at around Nselect¼ 102,
which was consistent with the results of the short-term
memory task. In this way, the number of required acceler-
ometers to extract deformation dynamics can be estimated
even with sensory information of different modalities.

As with the case studies in the Analysis of Biological Data
section skeletonizing biological data, our framework, of
course, can be used to extract the skeletal dynamics of the
other soft robotic systems, which offer useful information
for control (see the Supplementary Video S7 skeletonizing a
soft manipulator from a video published by Truby et al.58).
Also, 3D skeletal coordinates can be easily implemented with
multiple videos from different viewpoints. We prepared a
simple setup recording behavior of the soft octopus arm from
two cameras arranged in the vertical direction and recon-
structed the 3D arm dynamics (Supplementary Video S8 and
Appendix). This 3D skeletonization would help estimate the
posture of soft robotic systems.

Discussion

In this article, we proposed a framework for automatically
extracting skeletal dynamics from video information of a soft
continuum body. Since most of the annotation process are
automated compared with the conventional methods, our
framework can efficiently skeletonize soft continuum bodies.
Also, the skeletal curve can be extracted with arbitrary ac-
curacy by adjusting the tracking width and normalization
parameter.

In the Analysis of Biological Data section, we exhibited
that our framework efficiently extracted the skeletal dy-
namics from the video recording of animal movement. We
showed that our framework can simultaneously extract
multiple skeletal dynamics through a demonstration with a
brittle star video. Also, we illustrated that our framework is
applicable to analyze animal behavior. In the brittle star
demonstration, for example, we demonstrated that the mac-
roscopic arm movements of the five-armed brittle star were
effectively reflected in the analysis with correlation matrices.

FIG. 4. (A) Results of the short-term memory task. Left: Performance function. The averaged mutual information values
MIn over 10 trials are plotted. MIn with 10 bend sensors are plotted (black dotted line). The number in the labels denotes the
dimension of selected dynamics. Right: Performance capacity (+

n
MIn). The dotted line shows the capacity with the actual

sensory data. The error bar shows the standard deviation over 10 trials. (B) Reconstruction of sensor time series. Left:
Reconstruction of the 10 bend sensor dynamics. The figure displays both the actual sensor values (dotted) and predicted
values by the linear model (red). Right: Reconstruction error. The sum of NMSEs for the 10 sensor dynamics
+10

i¼ 1
N M S E (yi, zi) is plotted. The error bar represents the standard deviation over 10 trials. NMSE, normalized mean

square error. Color images are available online.
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We show that O. brachyaspis continuously switches the
leading arm, which was neither quantitatively evaluated nor
visualized in a previous study.42 The extracted arm dynamics
of H. vulgaris can be used to study the mechanism of the
behavioral generation when it is analyzed with the imaged
cell activity data44 In this way, our framework is promising
for studying animal behaviors.

In the Designing Sensory Configuration for Soft Robotic
Arm section, we verified the minimum number of sensors
sufficient for fully grasping the state dynamics by evaluating
the information-processing capacity through the short-term
memory task. We also demonstrated that the number of re-
quired sensors can be estimated without input information
through the reconstruction of actual sensory dynamics. From
the viewpoint of morphological computation, it is desirable
to know the potential computational capacity of a body be-
fore deciding the sensor configuration.59–62 However, an
implanted sensor often worsens a soft material’s deform-
ability, which limits the number of attachable sensors. Our
framework can be employed to estimate the optimal sensor
positions of soft robots in a noninvasive manner, which is
helpful in the design of soft robot. For example, by opti-
mizing the sensory placements to maximize a measurement
called effective dimension,63 we can reduce the redundant
sensors and efficiently capture the internal state of the soft
body with a limited number of sensors. Another possible
scenario is that our framework can be used to estimate the
minimum dimension to model the deformation dynamics of
the soft body. Since the redundant sensors are wiped out by
the optimization, the number of obtained optimal sensors
would be related to the required dimension for modeling the
soft body. To sum, our framework offers a useful indicator in
designing soft robot setups.

Finally, we discuss the possible direction for extending our
framework. The accuracy of our framework depends highly
on the performance of the background subtraction algorithm.
In this study, we prepared movies where the background
and the object could be easily binarized by a single threshold
value. It is, however, necessary to introduce advanced back-
ground subtraction algorithms such as Refs.64,65 especially
when the background has a complicated pattern such as in a
natural environment. Moreover, our framework cannot ex-
tract the skeleton of a soft continuum body overlapping on the
image, limiting the scalability of our framework in the con-
trol of soft robots. To solve the problem, a 3D volume video
should be used instead of a two-dimensional video. In par-
ticular, the FMM algorithm, a core algorithm in our frame-
work, can be easily extended to a 3D volume image, which
should be developed in future work.
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62. Hauser H, Ijspeert AJ, Füchslin RM, et al. The role of
feedback in morphological computation with compliant
bodies. Biol Cybern 2012;106:595–613.

63. Abbott LF, Rajan K, Sompolinsky H. Interactions between
intrinsic and stimulus-evoked activity in recurrent neural
networks. In Ding M, Glanzman D, eds. The dynamic
brain: an exploration of neuronal variability and its func-
tional significance. Oxford, UK: Oxford University Press,
2011, pp. 1–16.

64. Braham M, Van Droogenbroeck M. Deep background
subtraction with scene-specific convolutional neural net-
works (2016 international conference on systems, signals
and image processing, IWSSIP). Bratislava, Slovakia:
IEEE, 2016, pp. 1–4.

65. Babaee M, Dinh DT, Rigoll G. A deep convolutional
neural network for video sequence background subtraction.
Pattern Recognit 2018;76:635–649.

Address correspondence to:
Katsuma Inoue

Graduate School of Information Science
and Technology

The University of Tokyo
7-3-1 Hongo, Bunkyo-ku

Tokyo 113-8656
Japan

E-mail: k-inoue@isi.imi.i.u-tokyo.ac.jp

Appendix

Basal Point Estimation

Different basal point estimation algorithms were used in
the three demonstrations: dead trout, brittle star, and soft
octopus arm. In the demonstration of the dead trout video,
the manually annotated head dynamics were used as basal
point s(t). In the soft octopus arm case, a point maximizing
the value of distance field Dt was selected as s(t) in the
e-neighborhood of the previous basal point s(t� 1):

s(t)¼ arg max
x2At

Dt(x), (A1)

At :¼fx 2 Otj k x� s(t� 1) k< eg: (A2)

In the soft octopus arm extraction, the Y-coordinate of s(t)
was fixed at y0 and the X-coordinate was set to maximize the
value of distance field Dt:

s(t)¼ arg max
x2Bt

Dt(x), (A3)

Bt :¼f[x, y]T 2 Otj k [x, y]T � s(t� 1) k< e ^ y¼ y0g:
(A4)

Mutual Information

The mutual information MI(X; Y) between two random
variables X, Y is calculated by the following formula:

MI(X; Y)¼ +
x2f0, 1g

+
y2f0, 1g

PXY (x, y) log
PXY (x, y)

PX(x)PY (y)

� �
,

(A5)

where PXY is the joint probability of X, Y .

Estimation of Three-Dimensional Skeletal Coordinates

The three-dimensional skeletal coordinates shown in
Supplementary Video S8 were estimated by properly map-
ping the front Z-coordinate (vertical positions) to the side
one. This mapping was obtained by minimizing the following
cost function L ts

i

	 

i

� �
for given values of tf

i

	 

i
:

L ts
i

	 

i

� �
:¼ +

i

zf tf
i

� �
� zs ts

i

� � , (A6)

where zf : [0, 1]! R and zs : [0, 1]! R are parametric
representations of the front and side Z-coordinates, respec-
tively (we used quadratic interpolation), tf

i

	 

i

and ts
i

	 

i

are
monotonically increasing sequences s.t. 0¼ tk

1 � tk
1 � � � �

� tk
N ¼ 1(k¼ f, s). Each skeleton was scaled to have the same

value range of the Z-coordinate.
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