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We previously reported a novel affinity purification (AP) method termed modified chromatin
immunopurification (mChIP), which permits selective enrichment of DNA-bound proteins along
with their associated protein network. In this study, we report a large-scale study of the protein
network of 102 chromatin-related proteins from budding yeast that were analyzed by mChIP
coupled to mass spectrometry. This effort resulted in the detection of 2966 high confidence protein
associations with 724 distinct preys. mChIP resulted in significantly improved interaction coverage
as compared with classical AP methodology for B75% of the baits tested. Furthermore, mChIP
successfully identified novel binding partners for many lower abundance transcription factors that
previously failed using conventional AP methodologies. mChIP was also used to perform targeted
studies, particularly of Asf1 and its associated proteins, to allow for a understanding of the physical
interplay between Asf1 and two other histone chaperones, Rtt106 and the HIR complex, to be gained.
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Introduction

Progress in the chromatin field has been closely intertwined
with technical improvements in both genomic and proteomic
technologies. For instance, the chromatin immunoprecipita-
tion (ChIP) protocol has been used for many years to define the
binding sites of a protein on DNA (Kuo and Allis, 1999). While
early uses of the ChIP protocol were coupled to standard PCR
and restricted to the study of a few genomic loci at a time, the
development of better detection platforms, such as ChIP-chip
(Ren et al, 2000) and ChIP-seq (Barski et al, 2007), now allows
genome-wide studies. The analysis of proteins associated with
chromatin has also benefited from technical advances. For
instance, detailed analyses of histone isomers and their post-
translational modifications (PTM) by mass spectrometry (MS)
have been conducted in numerous organisms (Masumoto
et al, 2005; Bonenfant et al, 2006; Thomas et al, 2006). These
analyses enabled researchers to identify novel modifications
(Garcia et al, 2007) and to uncover cooperative actions among
multiple histone modifications (Jiang et al, 2007; Taverna et al,
2007), adding an extra level of complexity that was previously
undetected.

One area of chromatin research that still requires technical
improvement is the identification and characterization of
protein complexes associated with chromatin (Lambert et al,
2010). Affinity purification and mass spectrometry (AP-MS)
has emerged as a powerful tool for characterizing protein–
protein interactions and biological systems in general (Gingras
et al, 2007; Gstaiger and Aebersold, 2009). To date, AP-MS has
been successfully applied to multiple model organisms,
including budding yeast (Rigaut et al, 1999), fission yeast
(Cipak et al, 2009; Kim et al, 2009a), Drosophila melanogaster
(Veraksa et al, 2005), Caenorhabditis elegans (Ooi et al,
2010), mouse (Bienvenu et al, 2010), mouse stem cells
(Kim et al, 2009b) and human cells (Glatter et al, 2009).
Furthermore, numerous large-scale studies have been per-
formed both in budding yeast (Ho et al, 2002; Gavin et al, 2006;
Krogan et al, 2006) and in human cells (Ewing et al, 2007),
resulting in an improved characterization of protein–protein
interaction for thousands of gene products. As well, our
understanding of many chromatin-related processes, such as
transcription, has greatly benefited from AP-MS studies. For
example, an exhaustive analysis of protein complexes asso-
ciated with human RNA polymerase II (RNAPII) by tandem
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affinity purification (TAP) and analyzed by MS (Jeronimo et al,
2007; Cloutier et al, 2009) revealed many new proteins
relevant to RNAPII biology. However, these and most other
studies (Sardiu et al, 2008) only focused on protein complexes
that were extracted in the soluble fraction of the nucleus or the
entire cell. No study systematically investigated protein
interactions of proteins bound to chromatin.

Two techniques have been reported to enable purification of
protein complexes associated with a particular genomic locus.
The first approach relies on specific nucleic acid probes, which
are affixed to a solid support (i.e., beads). These nucleic acid
sequences act as affinity probes and replace antibodies. The
proteins associated with the nucleic acid probes can then be
selectively purified and subsequently identified by MS (Rubio
et al, 2008; Schultz-Norton et al, 2008; Burckstummer et al,
2009; Dejardin and Kingston, 2009). The second approach
uses mini-chromosomes that contain sequences of interest
flanked with repetitive Lac operator sequences. These mini-
chromosomes can be selectively purified from the bulk of
chromatin using an immobilized Lac repressor (Akiyoshi et al,
2009; Unnikrishnan et al, 2010). These two approaches are
well suited for studying specific genomic loci and their
associated protein complexes. Unfortunately, these methods
are limited in their applicability because they require many
specialized tools (affinity probes), they focus only on distinct
genomic loci and they require a large amount of materials.
Thus, another approach is required for performing large-scale
studies involving multiple baits.

In order to gain additional insight in the role of chromatin
binding proteins, we previously reported the development of
an AP method coupled to MS termed mChIP (for modified
chromatin immunopurification (mChIP; Lambert et al, 2009).
mChIP efficiently purifies protein–DNA macromolecular com-
plexes and enables their subsequent analysis by MS. The
mChIP method consists of a single AP step, whereby
chromatin-associated proteins are isolated from mildly
sonicated and gently clarified cellular extracts using
magnetic beads coated with antibodies (Lambert et al, 2009).
As such, the mChIP approach maintains chromatin
fragments in solution, enabling their specific purification,
something not previously possible in classical AP-MS methods
(Lambert et al, 2009). mChIP was successfully applied to
the study of both histones (Lambert et al, 2009) and non-
histone (Fillingham et al, 2009; Lambert et al, 2009)
chromatin-associated proteins. Furthermore, the mChIP meth-
od was shown to drastically increase the coverage of the
interactome for chromatin-associated proteins that are difficult
to purify, such as Lge1 and Yta7 (Lambert et al, 2009). Finally,
contrary to classical AP-MS techniques, mChIP can sensitively
identify direct and indirect (through chromatin) protein
associations present only at a few genomic loci (Fillingham
et al, 2009).

In this study, we report the first large-scale mChIP
characterization of the chromatin interactome in budding
yeast. As part of this study, 102 baits known to bind DNA or
with functional links to chromatin were successfully purified
by mChIP. MS was used to identify the chromatin proteins
associated with these baits. This mChIP study of the chromatin
interactome resulted in the detection of 2966 high confidence
protein associations with 724 distinct preys. To our knowledge,

this is the first large-scale effort to map the chromatin-
associated protein–protein interaction network.

Results

Large-scale study of chromatin-associated
proteins by mChIP-MS

We are particularly interested in better defining the inter-
actome of chromatin-associated proteins for which little
information was available. An analysis of the manually
curated complement of the Saccharomyces Genome Database
(SGD; www.yeastgenome.org) identified 64 proteins binding
to DNA, including 32 transcription factors or transcriptional
activators/repressors (Supplementary Table S1). Interestingly,
70% of these transcription factors and transcriptional activa-
tors/repressors possess five or fewer known interaction
partners, previously observed by AP-MS in the BioGRID
database (Stark et al, 2006; www.thebiogrid.com). By con-
trast, 15 out of the 64 DNA binding proteins had more than 20
protein–protein interactions reported by AP-MS (Supplemen-
tary Table S1). This group of proteins was composed mostly of
histones or members of large chromatin remodeling protein
complexes, which are present at high levels in the cell. As
such, current AP-MS methods appear viable for studying some
types of DNA binding proteins (e.g., histones), but they
provide little information about other classes (e.g., transcrip-
tion factors).

In this study, we used the mChIP procedure to characterize
the 32 known DNA binding proteins that have fewer than 6
reported interactions (Supplementary Table S1) and 98 other
proteins with molecular functions relevant to chromatin
biology. For instance, 10 histone chaperones, 10 lysine acetyl
transferases (KAT), 6 lysine methyl transferases and 7 nuclear
proline isomerases were also used as baits for mChIP (see
Supplementary Table S2 for complete list). The protein
expression of endogenous C-terminally TAP-tagged baits
(Howson et al, 2005) was first assessed by western blot. From
the 130 yeast strains tested, 110 showed the expression of a
TAP-tagged bait protein at the correct molecular weight. These
110 strains were subsequently subjected to large-scale mChIP
purifications (Figure 1). The purified proteins from each
mChIP were resolved on 4–12% NuPAGE gels and the gels
were silver stained (Supplementary Figure S1). Each lane
corresponding to one mChIP experiment was sliced into 12
sections. The proteins present in the sections were in-gel
digested with trypsin and were subsequently analyzed by MS
(see Materials and methods section for details). In total, 110
different TAP-tagged proteins were subjected to mChIP, and
102 of them were successfully analyzed by MS (Figure 1B and
C, Supplementary Table S2).

Curation and global analysis of mChIP-MS data

By design, the mChIP technique attempts to preserve protein–
protein interactions by keeping the salt concentration in
buffers and the sample centrifugation to a minimum (Lambert
et al, 2009). Consequently, the mChIP analysis of proteins
globally associated with chromatin (such as histones (Barski
et al, 2007) or members of the RSC complex (Floer et al, 2010))
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identified large numbers of associated proteins. Efficient data
analysis is thus critical to fully appreciate the data generated by
mChIP-MS. To refine the mChIP data set, we first applied a step
designed to remove common contaminants (Supplementary
Table S3). The list of common contaminants was compiled
from control mChIP purifications (Lambert et al, 2009) and
from a list of ribosomal proteins (common contaminants
in AP-MS experiments (Gingras et al, 2007)) in SGD
(www.yeastgenome.org). This first curation step resulted in
a data set containing 5723 protein associations among 102
unique baits and 896 distinct preys (Figure 1B, Supplementary
Table S4). The results were visualized as a heat map generated
by hierarchical clustering of the data set (Supplementary
Figure S3). Upon further examination of the heat map, it
became clear that numerous prey proteins are detected at high
frequencies in the mChIP results (vertical lines in Supplemen-
tary Figure S3). While these high-frequency preys were never
observed in our negative controls, they did not appear relevant
to chromatin biology and were also removed from the final
mChIP-MS data set. To more systematically identify these non-
specific mChIP preys, a mChIP abundance factor (the number

of times a prey was identified in our mChIP screen) was
determined for each prey (Supplementary table S4). Examples
of high-abundance preys include Yra1 (54), Prp43 (50) and
Vps1 (48), which have housekeeping roles not related to
chromatin biology. Other scoring algorithms for the removal of
non-specific binders have been reported (Ewing et al, 2007),
but our data set is not suitable for these algorithms. First,
mChIP does not identify only direct protein–protein interac-
tions but also indirect protein associations mediated by
chromatin. No previous scoring algorithm has been designed
to take this into account. Second, the baits studied by mChIP
are functionally linked, and thus they often associate with the
same preys. As such, some preys have a high mChIP
abundance factor but, nonetheless, they need to be retained
in the final mChIP data set (e.g., histone chaperones
co-purifying with histones). To circumvent these issues, a manual
examination of the data set was performed based on the prey’s
mChIP abundance factor, molecular function and cellular
localization (see Materials and methods section for complete
details). This led to the removal of 170 non-specific binders,
resulting in a higher confidence mChIP data set containing 724

700 ml culture
of TAP-tagged bait

   Pellet cells
Freeze at –80°C

4–12% NuPAGE gel silver stained

Cut gel section (12/samples)
In-gel trypsin digestion

%

m/z, amu

0

20

40

60

80

100

400 800 1200

Peaklist generation
Database search with Mascot
Data curation
Biological validation

LC-MS/MS analysis
using LTQ-MS

250
150
100
75

50

32

25
20
15

10

Asf1
-T

AP

Hif1
-T

AP

Sir3
-T

AP

Vps
75

-T
AP

Rad
9-

TA
P

Spt
16

-T
AP

Pob
3-

TA
P

Fpr
4-

TA
P

Esa
1-

TA
P

kDa

Mechanical lysis

1 2

4

5

6DNA shearing
gentle centrifugation

mChIP

3

7

Chromatin-related bait tested

Successful expression of  TAP-tagged bait

130

Successful mChIP-MS of  TAP-tagged bait

110

102

Bait information

# Of preys
# Of bait–prey
associations

No curration

Background removed

Common binders removed

1221

896

724

9028

5723

2966

mChIP-MS data set curation

A B

SBF - MBF

Rtt109/Vps75 KAT

Bre1/Lge1 complex

RPD3 complex

Spindle pole body

FACT

RENT

H3/H4 chaperones

COMPASS

Replication forkBre5 - Ubp3

Bait interaction profiles

B
ai

t i
nt

er
ac

tio
n 

pr
of

ile
s

C
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prey proteins (Supplementary Table S4). This refined data set
was used to generate a second heat map based on hierarchical
clustering using the Pearson’s correlation (Figure 2A;
Supplementary Figure S3).

In total, curation of the mChIP-MS data set removed 67% of
all protein–protein interactions while maintaining 85% of the
protein–protein interactions, previously detected by TAP-MS
of the same bait proteins (Supplementary Figure S4A).
Interestingly, the majority of the 49 protein–protein interac-
tions, previously detected by TAP-MS but removed by our
curation method, have been annotated as background in a
subsequent reanalysis of the TAP-MS data sets (Collins et al,
2007) or in a recent large-scale AP-MS study (Breitkreutz et al,
2010) (Supplementary Figure S4B). Furthermore, comparison
of the preys identified as background in this study with
two other large-scale AP-MS studies (Krogan et al, 2006;

Breitkreutz et al, 2010) revealed a large overlap (Supplemen-
tary Figure S5). In addition, proteins defined as background
only by our curation method are enriched for RNA processes
and location in the nucleolus in agreement with these preys
being contaminants (Supplementary Figure S6A). On the other
hand, most proteins classified as contaminants in other AP-MS
studies but not included in the mChIP-MS background have
not been detected (78 out of 127) or have been detected only in
one or two mChIP (32 out of 127) (Supplementary Figure S6A),
consistent with them not being contaminants in our data set.
The remaining 17 preys identified by others as contaminants
all possess functions related to chromatin biology, such as
histones, which explain their identification in multiple mChIP-
MS (Supplementary Figure S6A).

While our curation approach appears efficient, the lack of an
appropriate gold standard data set for benchmarking of the
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mChIP curation method prevents easy assessment of its value.
Thus, we defined global trends within the mChIP-MS data as a
mean to better evaluate its quality. For instance, a comparison
of the list of non-specific binders to our curated data set
revealed that the non-specific binders are biased towards mid
to high expression levels, whereas the mChIP preys are biased
towards low to mid expression levels (Figure 2B). The higher
expression levels of non-specific binders are consistent with
the literature on AP-MS contaminants (Chen and Gingras,
2007). Furthermore, over 80% of the preys in the final data
set are each associated with less than 5 baits (Figure 2C).
In addition, the mChIP data were enriched for chromatin-
related functions (such as chromosome segregation/division
or transcriptional control), while the non-specific binders were
not (Supplementary Figure S7). We also observed that the
preys retained in the final data set were detected by mChIP-MS
in a reproducible manner across multiple biological replicates
(Supplementary Figure S8). Taken together, these metrics
indicate that our manual removal of non-specific binders
improved the overall quality of three mChIP data set.

Next, mChIP data were compared with previously reported
genome-wide TAP-MS data (Gavin et al, 2006; Krogan et al,
2006). For over 75% of the baits studied by mChIP-MS, more
prey proteins were detected compared with TAP-MS. Further-
more, 18% of the baits that were successfully analyzed by
mChIP-MS had previously failed by TAP-MS (Gavin et al, 2006;
Krogan et al, 2006; Figure 2D). Interestingly, there was no
correlation between the increase in the number of associated
proteins detected by mChIP and the bait expression level
(Figure 2E). This finding suggests that the increase in the
number of protein associations detected by mChIP-MS
compared with those detected by TAP-MS is not mainly due
to a more sensitive mass spectrometer, but rather to the
purification technique itself. Overall, the budding yeast
chromatin-associated interactome that is now accessible by
mChIP-MS is an environment not previously investigated and
worth further study.

mChIP improves the characterization
of transcription factors

High-abundance chromatin-associated proteins, such as his-
tones and their chromatin-associated protein networks, were
successfully characterized by mChIP-MS. The results are
consistent with the wealth of protein interaction data currently
available in the literature for high-abundance baits (Supple-
mentary Table S1; Fillingham et al, 2009; Lambert et al, 2009).
In our current study, emphasis was also placed on lower
abundance targets, such as transcription factors. For instance,
the results from the mChIP-MS analysis of the Hap2 transcrip-
tion factor (a member of the CCAAT-binding complex) was
compared with traditional TAP-MS. mChIP-MS of Hap2-TAP
revealed over 80 associated proteins, including Hap3 and
Hap5, which are known to form a heterotrimer with Hap2, and
were previously identified by conventional TAP-MS (Gavin
et al, 2006; Krogan et al, 2006) (Figure 3A). Interestingly, the
overexpression of Hap2-FLAG using a galactose-inducible
construct followed by a one-step AP-MS analysis also
produced an extensive interactome (Ho et al, 2002). However,

a significant fraction of these associated proteins (B57%) did
not possess functions related to chromatin because they are
localized outside the nucleus (Figure 3B, Supplementary Table
S5). By contrast, Hap2-TAP mChIP largely uncovered chro-
matin-related associations (80 out of 82), including six
transcription factors (Ste12, Dal81, Gln3, Stp1, Stp2 and
Yap5) and chromatin remodeling complexes (RSC, SAGA,
etc). The association of Hap2 (a global regulator of carbohy-
drate metabolism) with Dal81 and Gln3 (two transcription
regulators of nitrogen utilization pathways) suggests a broader
role for Hap2 than previously reported. Our mChIP data
suggest that these transcription factors may mediate crosstalk
between the nitrogen utilization and non-fermentable sugar
utilization pathways.

Another example of transcription factors successfully
studied by mChIP is the highly homologous and functionally
redundant Msn2 and Msn4 proteins, which are implicated
in stress response. We recently showed using conventional
AP-MS that the transcription factor Msn4 is associated with the
NuA4 lysine acetyltransferase complex (Mitchell et al, 2008).
This interaction was further characterized by mChIP. First,
mChIP-MS of Esa1-TAP (the catalytic subunit of the NuA4
complex) was performed and, as expected, resulted in the co-
purification of Msn4 (Figure 3C). Second, reciprocal mChIP of
both Msn4-TAP and the related Msn2-TAP resulted in the co-
purification of NuA4 subunits (Figure 3C). Moreover, mem-
bers of both the SAGA and TFIID complexes were also
associated with Msn2 and Msn4, which suggests that
numerous transcriptional co-activators participate in Msn2
and Msn4 functions (Figure 3C). Based on the spectral count
data (Liu et al, 2004), it appears that Msn2 preferably
associates with protein complexes that contain the Gcn5
rather than Esa1 KAT (Figure 3C). Conversely, Msn4 does not
show this bias in its association with these transcriptional co-
activators (Figure 3C). mChIP-MS analyses of Msn2 and Msn4
also identified proteins uniquely associated with each of these
transcription factors. For instance, Ste23 was the top MS hit in
the Msn2 mChIP, but was not detected with Msn4. Ste23 is a
metalloprotease, which is an ortholog of the mammalian
insulin-degrading enzyme (Alper et al, 2009). Ste23 was also
shown to catalyze the cleavage of a peptide sequence
corresponding to pro-a-factor in vitro (Alper et al, 2009).
Furthermore, an additional link between Ste23 and Msn2 lies
in the presence of a stress response element (STRE) upstream
from the STE23 gene (Treger et al, 1998b). STRE are often
bound by the Msn2 and Msn4 transcription factors, and STRE-
controlled genes are induced following heat shock (Treger
et al, 1998a, b). Heat-shock proteins, many of which possess
STRE, are required for proper a-factor processing (Meacham
et al, 1999). Based on our data, we postulate that Ste23 has a
role in proper stress responses in budding yeast.

mChIP facilitates the characterization of
transcription factors that regulate the cell cycle

Coordinated gene expression is essential for maintaining
cellular fitness (Zhou et al, 2009). In budding yeast, numerous
transcription factors are critically involved in regulating the
expression of multiple genes at distinct phases of the cell cycle
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(Wittenberg and Reed, 2005). In S. cerevisiae, the cell cycle
transition from G1 to S begins with START, a coordinate
transcriptional program resulting in the timed expression of
hundreds of genes. Two protein complexes essential for this
process are the MBF and SBF transcription factors, composed
of Swi4–Mbp1 and Swi4–Swi6, respectively (Moll et al, 1992).
Previous AP-MS studies of MBF and SBF revealed interaction
partners, such as Whi5, Nrm1, and Msa1, with known roles in
cell cycle regulation. mChIP-MS analyses of Swi4-TAP, Swi6-
TAP and Mbp1-TAP successfully identified known interaction
partners (such as Stb1) for both MBF and SBF, which had not
been previously identified by AP-MS methods (Figure 4).

Interestingly, the networks for the transcription factors Azf1
and Mcm1 showed an interconnection with the Swi4, Swi6 and
Mbp1 networks (Figure 4). In fact, associations between Azf1-
TAP and Swi6, as well as associations between Mcm1-TAP and
Mbp1, Swi4, and Swi6, were detected by mChIP-MS (Figure 4).
Mcm1 is a transcription factor that participates in the
regulation of multiple genes depending on its associated
proteins (Ferrezuelo et al, 2009). For instance, when Mcm1
interacts with Ste12, it participates in regulating the mating-
specific genes (Errede and Ammerer, 1989), whereas associa-
tion with Yox1 or Yhp1 leads to the regulation of genes

expressed in the M to G1 transition (Pramila et al, 2002). The
mChIP data for Mcm1-TAP shows a wide array of associated
proteins involved in properly regulating the cell cycle (e.g.,
Sum1) and transcriptional activators, such as Gzf3 and Pog1
(Figure 4). Furthermore, Mcm1-TAP was found to associate
with Bck2 and Ste12 by mChIP-MS. Bck2, which is known to
activate numerous cell cycle-regulated genes (Ferrezuelo et al,
2009), was previously shown to be affected in strains lacking
ste12 or mcm1, thus indicating a common function (Ferrezuelo
et al, 2009). The fact that Mcm1-TAP co-purified with both
Ste12 and Bck2 by mChIP-MS supports a direct interplay
between these transcription factors at specific promoters.
Overall, we successfully purified several networks of tran-
scription factors involved in cell cycle regulation using the
novel mChIP approach.

mChIP uncovers novel roles for the peptidyl
proline isomerase CPR1

As part of our proteomic screen, many nuclear peptidyl proline
isomerases, enzymes that catalyze conformational changes of
proline residues (Lu et al, 2007), were studied. Seven nuclear
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peptidyl proline isomerases, including Cpr1 (Figure 5), a
known member of the Set3 complex (Pijnappel et al, 2001),
were successfully analyzed by mChIP-MS. In particular,
mChIP-MS of Cpr1-TAP revealed a large number of associated
proteins, including members of the Set3 complex as expected
(Figure 5A). In addition, all members of the TORC1 complex
and some members of TORC2 were found suggesting a role in
nutrient sensing. Moreover, numerous components of the
spindle pole body, as well as proteins with spindle-related
functions, were found with Cpr1. These findings suggest that
Cpr1 possesses wider functions than previously thought,
especially with regard to regulating cellular growth
(Figure 5A). Surprisingly, the E3 ubiquitin ligase Bre1 and its
interaction partner Lge1 were found to be associated with Cpr1
(Figure 5A). This association raises the possibility that Cpr1 is
ubiquitinated by Bre1, which is supported by the presence of
higher molecular weight bands in a western blot for the TAP
tag of the mChIP material, albeit at a low level (Figure 5B).
To further explore this possibility, Cpr1-TAP strains containing
a plasmid encoding myc-tagged ubiquitin under the control of
the copper-inducible CUP1 promoter were prepared. Follow-
ing induction with CuSO4, myc-tagged ubiquitin was ex-
pressed at high levels to facilitate the detection of
ubiquitinated proteins. Using this strategy, Cpr1-TAP was
observed to be ubiquitinated at mid-log phase culture
(Figure 5C). Furthermore, the extent of Cpr1 ubiquitination
was increased following treatment with rapamycin (a TORC1

inhibitor) or benomyl (a microtubule-destabilizing agent;
Figure 5C), whereas global ubiquitination levels were not
increased (Supplementary Figure S9). These higher molecular
weight bands were abolished when a mutant ubiquitin K48R
G76A protein, that is incapable of forming polyubiquitin
chains, was expressed (Supplementary Figure S9A). There-
fore, these higher molecular weight bands were confirmed to
be polyubiquitinated forms of Cpr1. Moreover, in strains
lacking lge1, bre1 or rad6, polyubiquitination of Cpr1 was
significantly reduced (Figure 5D, Supplementary Figure S9B)
further supporting a direct role for Bre1 mediating ubiquitina-
tion of Cpr1. Cpr1 ubiquitination appears to be modulated in
response to the two drug treatments, which suggests roles for
Cpr1 in nutrient sensing and cell cycle regulation through the
action of Lge1, Bre1 and Rad6.

Dissection of physical interplay among histone
H3/H4 chaperones

We previously used mChIP to show that the histone H3/H4
chaperone Rtt106 associates with two other histone chaperone
complexes, HIR and CAF-1 (Fillingham et al, 2009). Because HIR
and CAF-1 are both known to interact with Asf1 (Sharp et al,
2001; Sutton et al, 2001), mChIP was used to further characterize
the chromatin-associated protein networks of Hir1-TAP, Rtt106-
TAP, Asf1-TAP and Cac1-TAP (Figure 6A). MS analysis of these
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four baits revealed that HIR, Rtt106 and Asf1 associate with each
other, whereas Rtt106 and CAF-1 compose another well-
characterized complex (Huang et al, 2005, 2007; Li et al,
2008). The association between Rtt106, HIR and Asf1 was
further dissected by testing whether Asf1 was required for
Rtt106 association with HIR. Rtt106-TAP mChIP followed by
western blotting (mChIP-WB) for Hir1-myc showed a strong
association, which was abolished in the absence of asf1
(Figure 6B). We previously demonstrated that Hir1 binding to
the HTA1-HTB1 promoter is not affected by deleting asf1 or
rtt106, whereas Rtt106 binding to the same promoter requires
both Hir1 and Asf1 (Fillingham et al, 2009). Taken together,
these findings suggest a central role for Asf1 in the association
among Rtt106, HIR and Asf1. We thus focused on Asf1 to
further unravel the physical associations among these histone
chaperones.

To directly probe the association between Rtt106 and Asf1,
Rtt106-TAP mChIP-WB experiments were performed from
strains containing a myc-tagged version of wild-type Asf1 or
the Asf1 V94R mutant (Figure 6C). The V94R mutation was
previously shown to cause a greatly reduced affinity for
histone H3/H4 (Mousson et al, 2005) and, therefore, it is a
good tool for defining the role of histones H3/H4 in these
associations. The Rtt106–Asf1 association was found to be
significantly reduced in the V94R mutant compared with the
wild-type Asf1 (Figure 6C). This suggests that the ability of
Asf1 to bind histone H3/H4 is critical for efficient interaction
with Rtt106. Another alternative is that the association
between Rtt106 and Asf1 is dependent on the presence of
chromatin and thus is reduced in the V94R mutant. To directly
test this alternative, mChIP-WB experiments were performed
in the presence of benzonase, a promiscuous endonuclease
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that digests both DNA and RNA (Figure 6C). In the absence of
DNA, wild-type Asf1 was co-purified with Rtt106-TAP, but the
V94R mutant was not detected (Figure 6C). This suggests that
Asf1 and Rtt106 interact through histone H3/H4. This indirect
association between Asf1 and Rtt106 is consistent with the lack
of interaction observed between recombinant Asf1 and Rtt106
in in vitro binding assays (Huang et al, 2005). On the other
hand, the well-documented interaction between the HIR
complex and Asf1 (Sharp et al, 2001; Sutton et al, 2001) is
not affected in the V94R point mutant or in the absence of DNA
(Figure 6D).

The nucleosome assembly factor Asf1 has been extensively
studied by AP-MS and possesses well-defined interaction
partners such as the HIR complex (Green et al, 2005), Rad53
(Emili et al, 2001; Hu et al, 2001) and the histones H3/H4

(Munakata et al, 2000). Further, mChIP-MS experiments of
Asf1-TAP successfully identified these known interaction
partners and also revealed an extended network of proteins
associated with Asf1 such as transcription factors (Pdr1 and
Pho2), proteins involved in DNA replication (Sld3, Fob1) and
Mnr2, a putative magnesium transporter (Supplementary
Table S6). We next tested how this network of associated
proteins was affected by the absence of genes previously
linked to Asf1 (Figure 7A). Lack of hir1 resulted in a drastic
reduction of Asf1’s network of associated proteins, including
the loss of the HIR complex, Rtt106, and the transcription
factors Pdr1 and Pho2 (Supplementary Table S6). On the other
hand, deletion of rtt106 appeared only to have a marginal
impact on the proteins associated with Asf1-TAP by mChIP-MS
(Supplementary Table S6). These finding are consistent with
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our view that HIR functions upstream of Asf1 and Rtt106,
whereas Rtt106 functions downstream of both HIR and Asf1
(Fillingham et al, 2009).

Asf1 was previously shown to be required for the acetylation
of lysine 56 of histone H3 (H3K56Ac) (Recht et al, 2006). Tests
were performed to define how this histone mark affects the
network of associated proteins with Asf1. To do so, mChIP-MS
purifications of Asf1-TAP in strains lacking RTT109 (the sole
KATresponsible for H3K56Ac) were performed (Figure 7A). In
this background, a slight reduction in the Asf1-associated
protein network was observed (Supplementary Table S6).
Interestingly, the number of Rtt106 peptides sequenced by MS
(an indication of protein concentration) was significantly
reduced in the rtt109D background. This reduction was not
observed in a strain lacking vps75 (Figure 7B), a chaperone
previously shown to stabilize Rtt109, but not known to
affect the levels of H3K56Ac (Fillingham et al, 2008). This
observation points to an important role for H3K56Ac in the
interaction between Rtt106 and Asf1. The mChIP-MS of
Asf1-TAP in a strain where all histone H3 proteins contained

the K56R mutation also exhibited a lower number of Rtt106
peptides (Figure 7B). This supports the notion of a reduced
association between Asf1 and Rtt106 in the absence of
H3K56Ac. Previous work has shown that H3K56Ac (catalyzed
by Rtt109) greatly increases the affinity of Rtt106 for H3-H4 and
promotes Rtt106-based replication-coupled nucleosome as-
sembly (Li et al, 2008). In addition, we have demonstrated
that Rtt106 binds to the HTA1-HTB1 divergent promoter and
enables proper replication-independent nucleosome assembly
(Fillingham et al, 2009). Using ChIP, we tested whether
H3K56Ac affected Rtt106 binding to the HTA1-HTB1 promoter
(Figure 7C). Consistent with our mChIP, conventional
ChIP revealed that Rtt106 binding to this promoter is reduced
in the absence of rtt109, the enzyme responsible for
the H3K56Ac mark (Figure 7D). This reduced binding of
Rtt106 to the HTA1-HTB1 promoter is also observed in a
H3K56R strain background (Figure 7E). Taken together,
these pieces of data support a model where Rtt106 interacts
with chromatin via Asf1/HIR in most cases. Moreover, its
association with chromatin is more prominent when
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histone H3/H4 is previously acetylated at K56, which results in
the proper assembly of nucleosomes at the HTA1-HTB1
promoter.

mChIP for other proteins

The solubility and stability of protein complexes can be a
problem in AP-MS experiments. The spindle pole body is a
very large macromolecule between 300 and 500 MDa and acts
as the only microtubule organizing center in budding yeast
(reviewed in Jaspersen and Winey, 2004). Not surprisingly,
such a macromolecule is refractory to common AP-MS
protocols, forcing traditional biochemical approaches to be
employed. For instance, classical purification of the spindle
pole body by gradient centrifugation followed by MS analysis
revealed most of the components of this large organelle.
Unfortunately, this technique is not suitable for large-scale
studies because it requires extensive manipulations and 40 l of
yeast culture (Wigge et al, 1998). As part of our study, several
proteins associated with the spindle pole body were used as
baits for mChIP-MS. They were successfully analyzed without
the need for further optimization of the method (Figure 3D).
Interestingly, some proteins not previously linked to the
spindle pole body (e.g., the putative lysine methyltransferase
Set5 or the poorly characterized peptidyl proline isomerase
Fpr2) were found to co-purify with spindle pole body
components by mChIP (Supplementary Table S4). Numerous
spindle pole body components are phosphorylated and those
PTMs are essential for proper spindle pole body function
(Donaldson and Kilmartin, 1996; Stirling and Stark, 1996). The
mChIP data obtained for the spindle pole body raise the
possibility that other PTMs such as lysine methylation might
also be critical for this organelle’s function.

We aimed to characterize chromatin-associated proteins
that were poorly studied by AP-MS. In doing so, however, we
were also successful in studying proteins that possess other
functions. One such example is Crp1, a poorly characterized
nuclear protein (Huh et al, 2003) reported to bind cruciform
DNA (Rass and Kemper, 2002). The known interaction
partners of Crp1 include Pep4 and Prc1, which are two
proteins involved in vacuolar degradation (Van Den Hazel
et al, 1996). mChIP-MS of Crp1-TAP successfully detected Pep4
and Prc1. In addition, mChIP-MS identified another vacuolar
proteinase Prb1, the glycogen synthases Gsy1 and Gsy2, as
well as the phosphatase Glc7 and its targeting subunit Pig2
(Figure 3E). Surprisingly, six proteins associated with
Crp1-TAP (Glc7, Pep4, Gsy2, Pig2, Htd2 and Prb1) are required
for proper glycogen accumulation (Francois and Parrou,
2001), which suggests that Crp1 may have a critical role in
this process. Interestingly, Crp1 is an ortholog to the
mammalian AMP-activated protein kinase b-2 subunit, which
is known to directly bind glycogen and coordinate cellular
metabolism in response to energy demands (Polekhina et al,
2003). Mutations in the AMPK genes in human have been
reported to result in improper glycogen accumulation and
numerous diseases (Arad et al, 2002). Although the exact
role of Crp1 in the glycogen synthesis pathway is still
undefined, our results clearly reinforce the need for further
study of this gene.

Discussion

In this study, we report the characterization of the protein
interactomes of 102 chromatin-associated proteins. This was
performed using the mChIP-MS procedure, which we devel-
oped to facilitate the purification of chromatin-bound protein
networks (Lambert et al, 2009). The application of mChIP-MS
to these baits resulted in a substantial increase in the number
of nodes in the network, as compared with conventional
approaches (Figure 2). Many transcription factors notoriously
difficult to study by conventional AP-MS methods were
successfully analyzed by mChIP-MS (Supplementary Table
S1). An example of this success is demonstrated in our study
using mChIP of cell cycle regulators involved in START
(Figure 4). In this study, we were able to recapitulate the
majority of the protein–protein interactions discovered over
the past 10 years for the cell cycle transcription factors SBFand
MBF, as well as to considerably expand the network. For
instance, the previously hypothesized (Ferrezuelo et al, 2009)
association between Mcm1 and Bck2 was re-affirmed with the
detection of four unique peptides for Bck2 after Mcm1 mChIP-
MS analysis (Supplementary Table S4). Physical interactions
between transcription factors are recognized as critical
components of their regulation (Walhout, 2006). The ability
of the mChIP-MS approach to identify these lower abundance
interactions can be attributed to a reduction in sample loss as a
consequence of maintaining chromatin in solution, a reduc-
tion in the number of processing steps as a consequence of
using an efficient single-step AP, and, finally, a fourfold
reduction in the mass of cells required per purification.
Therefore, the mChIP procedure has proven to be an efficient
high-throughput method for studying numerous types of baits
associated with chromatin.

By design, our mChIP approach enables the identification of
pure protein–protein and chromatin-mediated protein–protein
interactions (Lambert et al, 2009). Our final data set contains
both direct and indirect protein associations, which produces a
more holistic view of these bait interactomes. For instance,
extensive literature links the process of histone H2B ubiqui-
tination (requiring the action of Rad6, Bre1 and Lge1; Hwang
et al, 2003) to the trimethylation of histone H3 on lysine 4
(H3K4) (performed by the Set1-containing COMPASS com-
plex; Wood et al, 2003). In particular, ubiquitination of histone
H2B on lysine 123 was observed only when the E2 ubiquitin
ligase Rad6, the E3 ubiquitin ligase Bre1 and their interaction
partner, Lge1 (Hwang et al, 2003), were present. Deleting one
of these factors resulted in the abrogation of both histone H2B
ubiquitination and H3K4 trimethylation (Hwang et al, 2003;
Wood et al, 2003). Recent work reported that Swd2, a subunit
of the COMPASS complex, is recruited to chromatin in a
manner that requires histone H2B ubiquitination (Lu et al,
2007), which suggests a direct physical link between Rad6/
Bre1/Lge1, histone H2B ubiquitination and the COMPASS
complex. Our mChIP-MS analysis of Bre1 and Lge1 identified
COMPASS components, whereas the reciprocal mChIP-MS of
Set1 and Swd3 (two COMPASS components) identified Bre1
and Lge1 (Supplementary Table S4). These physical associa-
tions are in accordance with the known links between histone
H2B ubiquitination and H3K4 trimethylation, and show that
the study of large macromolecular complexes containing both
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direct and indirect associations can be very informative. This is
especially relevant in light of recent work that challenged the
classical linear view of chromatin architecture in favor of
three-dimensional models containing numerous intra- and
inter-chromosomal interactions (Fraser, 2006; Schoenfelder
et al, 2010a). For instance, the estrogen receptor has been
recently shown to cause extensive chromatin looping to bring
together gene enhancers and their transcription start sites
(Fullwood et al, 2009). More generally, co-regulated genes
were also shown to physically interact and to associate with
‘transcription factories’, which are regions enriched for highly
phosphorylated (i.e., active) RNAPII (Schoenfelder et al,
2010b). It is now clear that chromatin architecture is not
random, but rather adopts preferred three-dimensional con-
formations, which are now being discovered (Duan et al,
2010). Thus, our ability to study protein complexes associated
with DNA in their native environment should prove invaluable
for the study of chromatin.

mChIP-MS analyses of well-characterized proteins, such as
the nucleosome assembly factor Asf1, also revealed numerous
novel protein associations. For instance, the association
between Asf1 and transcription factors (e.g., Pho2, Pdr1) is
likely indirect and is lost in the absence of hir1 (Supplementary
Table S6). Interestingly, Asf1 and Pho2 have been previously
localized to the PHO5 promoter, and both proteins are essential
for proper PHO5 activation (Adkins et al, 2007). Moreover,
nucleosome assembly at PHO5 was found to be delayed in the
absence of Hir1 (Schermer et al, 2005), which raises the
possibility of a direct action of HIR in the association between
Asf1 and Pho2. It is unknown whether Pho2, a transcription
factor, can directly recruit Asf1 via Hir1 to PHO5 in order to
properly evict nucleosomes and thus promote PHO5 expres-
sion. More generally, we found that the HIR requirement for
mediating Asf1 interactions was reflected in the HIR require-
ment for Asf1 to recruit the H3/H4 chaperone Rtt106.

Even though most open reading frames in Saccharomyces
cerevisiae have been analyzed by AP-MS, our study detected
numerous novel protein–protein interactions for many baits
associated with chromatin. These discoveries reinforce the
need to further analyze protein–protein interactions in model
organisms, such as budding yeast, using novel techniques
designed for a specific class of baits. For example, proteins
associated with membranes would greatly benefit from
improved protocols. Going forward we foresee the develop-
ment of these new protocols, technical improvements of
affinity reagents and improved sensitivity of MSs, which will
contribute to the detection of many more protein–protein
interactions.

Materials and methods

Yeast strains, plasmids and genetics methods

All yeast strains and plasmids used in this study are listed in
Supplementary Table S7. Growth media and strains were prepared
following standard practices. Strains from the TAP collection were
obtained from Open Biosystems (Huntsville, AL). Genomic deletions
and epitope-tag integrations that were made for this study were
designed with PCR-amplified cassettes, as described previously
(Longtine et al, 1998; Puig et al, 2001) and confirmed by either PCR
analysis or immunoblotting for tag expression.

Modified chromatin immunopurification

Modified chromatin immunopurification was performed as per
reference (Lambert et al, 2009). Briefly, one-step affinity immunopur-
ification was performed using TAP-tagged proteins and M-270 epoxy
Dynabeads (Invitrogen) coated with rabbit IgG (Sigma-Aldrich),
according to the manufacturer’s instructions. Briefly, 700 ml of cultured
yeast cells grown in yeast, peptone, dextrose (YPD) medium to an OD600

of B1 were pelleted and washed with water. Cells were resuspended in
a lysis buffer (100 mM HEPES, pH 8.0, 20 mM magnesium acetate, 10%
glycerol (v/v), 10 mM EGTA, 0.1 mM EDTA with fresh protease
inhibitors mixture (Roche) and phosphatase inhibitors mixture
(Roche)), frozen in liquid nitrogen in small droplets, and lysed using
a coffee grinder half-filled with dry ice for 1 min. The dry ice from the
ground cells was allowed to evaporate, and the resulting whole-cell
extract was sonicated three times for 30 s with at least 1 min on ice
between each pulse. Nonidet P-40 was added to a final concentration of
0.4%, and the sample was mixed by hand for 30 s. The extract was
gently clarified by centrifugation at 1800 g for 10 min (41C), and the
supernatant was transferred into a fresh tube. In some cases, 75 units of
Benzonase (Sigma-Aldrich) were added per ml of protein extract to
completely remove DNA. Freshly prepared rabbit IgG-coated Dyna-
beads were added (200ml per sample), and the samples were incubated
with end-over-end rotation for 3 h at 41C. Using a Dynal MPC-S magnet
(Invitrogen), the beads were collected on the side of the sample tubes,
and the supernatant was discarded. The beads were washed three times
in fresh tubes by resuspension and transfer in 1 ml of ice-cold wash
buffer (100 mM HEPES, pH 7.4, 20 mM magnesium acetate, 10%
glycerol (v/v), 10 mM EGTA, 0.1 mM EDTA, 0.5% Nonidet P-40).
Finally, the beads were resuspended in 1 ml of elution buffer (0.5 M
NH4OH pH 411, 0.5 mM EDTA) and incubated with end-over-end
rotation for 20 min at room temperature. The protein eluates were
transferred into fresh tubes and were evaporated to dryness using a
SpeedVac with no heat. The protein sample was resuspended in 1�
loading buffer (50 mM Tris–HCl, pH 8, 2% SDS, 100 mM DTT, 10%
glycerol) and resolved on a NuPAGE 4–12% SDS–PAGE gel, unless
mentioned otherwise. For protein visualization, the gels were silver
stained or stained with Coomassie blue. For western blot analysis, the
proteins were transferred onto a nitrocellulose membrane, blocked in
5% non-fat milk in TBST (20 mM Tris-base, 150 mM NaCl, 0.1% Tween
20), and then probed with anti-TAP (Open Biosystems), anti-H3
(Abcam), anti-H3K56Ac (Upstate), H3K4Me3 (Cell Signalling Technol-
ogies), anti-actin (Abcam) or anti-myc antibodies (Roche).

MS analysis

Gel bands were excised, reduced, alkylated, and digested as described
previously (Lambert et al, 2009). Briefly, peptide solutions were dried
in a SpeedVac and stored at �201C until the mass spectrometric
analysis. LC-MS/MS was performed by dissolving the peptide samples
in 5% formic acid and loading them into a 200 mm� 5-cm precolumn
packed in-house with 5mm ReproSil-Pur C18-AQ beads (Dr Maisch
HPLC GmbH) using a micro Agilent 1100 HPLC system (Agilent
Technologies). The peptides were desalted on line with 95% water, 5%
acetonitrile, 0.1% formic acid (v/v) for 10 min at 10ml/min. The flow
rate was then split before the precolumn to produce a flow rate of
B200 nl/min at the column. Following their elution from the
precolumn, the peptides were directed to a 75 mm� 5 cm analytical
column packed with 5 mm ReproSil-Pur C18-AQ beads. The peptides
were eluted using a 1-h gradient (5–80% acetonitrile with 0.1% formic
acid) into an LTQ linear ion trap mass spectrometer (Thermo-
Electron). MS/MS spectra were acquired in a data-dependant acquisi-
tion mode that automatically selected and fragmented the five most
intense peaks from each MS spectrum generated. Peak lists were
generated from the MS/MS .raw file using Mascot Distiller 2.0.0.0
(Matrix Science) to produce a .mgf file with default parameters, except
that for each MS/MS individual peak lists were generated assuming a
þ 2 and a þ 3 charge. All .mgf files from one sample were merged into
a single file and then analyzed and matched to the 6298 S. cerevisiae
protein sequences in the SGD (released April 2007), using the Mascot
2.1.04 database search engine (Matrix Science) with trypsin as the
digestion enzyme, carbamidomethylation of cysteine as a fixed
modification and methionine oxidation as a variable modification.
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Peptide and MS/MS mass tolerances were set at ±3 and ±0.8 Da,
respectively, with one miss-cleavage allowed and the significance
threshold set to 0.01 (P40.01). Finally, an ion score cutoff of 30 was
chosen to produce a false-positive rate of o1% in the MS data (Elias
et al, 2005). A protein hit required at least two ‘bold red peptides,’ i.e.,
the most logical assignment of the peptide in the database selected.
Furthermore, when peptides matched to more than one database entry,
only the highest scoring protein was considered.

Raw mChIP-MS data curation

Manual curation of raw protein association data generated by mChIP-
MS was performed using a two-step process. At first, a list of common
background contaminant was generated from multiple mChIP-MS
experiments from untagged yeast cells. These background proteins are
highly abundant and involved in housekeeping roles, such as
metabolic processes and ribosomal biogenesis. This list was further
supplemented by an exhaustive list of ribosomal proteins curated from
the SGD (www.yeastgenome.org) annotated as ‘structural constituent
of ribosome’ (GO:0003735) (Supplementary Table S3). All ribosomal
proteins were added to background contaminant, as ribosomes are
large macromolecule and as such, not all subunits were observed in
the mChIP-MS untagged controls. These background proteins were
removed from all raw mChIP-MS association data.

Next, we applied another curation step designed to remove preys
present at high frequency in the mChIP-MS association data but
without relevance to chromatin biology. To do so, the number of times
that a given prey was detected by mChIP-MS in the complete data set,
referred to as ‘mChIP abundance factor’, was computed. Then each
prey that was observed in three or more mChIP-MS experiments was
manually curated based on two additional criteria: molecular function
and localization. Molecular functions that were targeted include
protein folding, mRNA export, fatty acid biosynthesis, ribosome
biogenesis and RNA processing, as well as proteins located to the
mitochondria and preribosome. The SGD was used to determine the
molecular functions and localization of mChIP preys. In this way, 170
proteins were identified as not relevant to chromatin biology, labeled
as non-specific mChIP binders and removed from the final mChIP-MS
association data (Supplementary Table S4, bottom table). The
resulting curated mChIP-MS data set has been submitted to the IMEx
(http://imex.sf.net) consortium through IntAct (Kerrien et al, 2007)
and assigned the identifier IM-14085.

Supplementary information

Supplementary information is available at the Molecular Systems
Biology website (www.nature.com/msb).
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