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Abstract
Psychosocial stress is known to cause an increased incidence of coronary heart disease. In addition, multiple other diseases like
cancer and diabetes mellitus have been related to stress and are mainly based on excessive formation of reactive oxygen species
(ROS) in mitochondria. The molecular interactions between stress and ROS, however, are still unknown. Here we describe the
missing molecular link between stress and an increased cellular ROS, based on the regulation of cytochrome c oxidase (COX). In
normal healthy cells, the “allosteric ATP inhibition of COX” decreases the oxygen uptake of mitochondria at high ATP/ADP
ratios and keeps the mitochondrial membrane potential (ΔΨm) low. Above ΔΨm values of 140 mV, the production of ROS in
mitochondria increases exponentially. Stress signals like hypoxia, stress hormones, and high glutamate or glucose in neurons
increase the cytosolic Ca2+ concentration which activates a mitochondrial phosphatase that dephosphorylates COX. This de-
phosphorylated COX exhibits no allosteric ATP inhibition; consequently, an increase of ΔΨm and ROS formation takes place.
The excess production of mitochondrial ROS causes apoptosis or multiple diseases.
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Introduction

Psychosocial stress is known to cause cardiovascular dis-
eases including increased heart rate, high blood pressure,
energy mobilization, decreased insulin sensitivity, and en-
dothelial dysfunction [1]. In a multi-cohort study involv-
ing 90,164 individuals, the risk of coronary heart disease
was 41% higher in individuals with the two work
stressors effort–reward imbalance and job strain [2].
Although the molecular basis of these diseases is very
complex, the role of oxidative distress [3], in particular
increased reactive oxygen species (ROS) production in

mitochondria, seems to predominate [4–7]. Furthermore,
multiple other diseases like cancer, hypertension, athero-
sclerosis, ischemia/reperfusion injury, neurodegenerative
diseases like Alzheimer’s disease and Parkinson’s disease,
rheumatoid arthritis, diabetes mellitus, and mitochondrial
diseases have also been related to excessive ROS produc-
tion in cells [8–11]. But, the detailed molecular sequence
of reactions relating psychosocial stress as well as other
stressors (hypoxia, xenobiotica, stress hormones, etc.) to
increased ROS generation in mitochondria remained un-
clear. ROS mainly include the superoxide radical anion
•O2

− (half-life ≈ 5 s), hydrogen peroxide H2O2, and the
hydroxyl radical •OH (half-life ≈ 10−9 s, formed by the
Haber–Weiss reaction: •O2

− + H2O2→ O2 + •OH + OH−,
catalyzed by Fe3+-ions). In cells, the mitochondrially pro-
duced •O2

− is rapidly converted into H2O2 by the action
of superoxide dismutases present in the matrix and the
intermembrane space [12].

Here we describe a molecular mechanism, which repre-
sents the missing link between psychosocial stress/other
stressors and the generation of cellular distress [3], based on
excessive ROS production in mitochondria. This mechanism
includes a stress-induced increase of cytosolic calcium,
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followed by dephosphorylation of cytochrome c oxidase
(COX), loss of “allosteric ATP inhibition of COX,” increase
of mitochondrial membrane potentialΔΨm, and the formation
of ROS.

ROS have signaling functions

ROS (mainly •O2
− and hydrogen peroxide H2O2) are pro-

duced in cells by various oxidases that react with molecular
oxygen, e.g., NADPH oxidases and xanthine oxidase. Go
et al. [13] have listed 31 human cellular oxidases generating
H2O2. Cytochrome c oxidase, however, is the exception and
does not release ROS during the reduction of O2 to two mol-
ecules of H2O [14]. ROS are efficiently quenched in normal
cells by the antioxidative defense systems including superox-
ide dismutases, glutathione peroxidase, and catalase [15, 16].
However, small amounts of ROS do have signaling functions
in cells, e.g., acting in the maintenance of physiological
functions—a process termed redox biology [4]. In a review,
the mechanisms and targets of ROS impacting on cell-
signaling proteins (NF-κB, MAPKs, Keap1-Nrf2-ARE, and
PI3K-Akt), ion channels and transporters (Ca(2+) and mPTP),
and modifying protein kinase and ubiquitination/proteasome
system have been described [17]. The influence of ROS on
metabolic processes such as proteasome function, autophagy,
and general inflammatory signaling is discussed by Forrester
et al. [18]. In various cancers, ROS have pro-tumorigenic
signaling and thus maintain resistance to apoptosis [19]. In
normal relaxed cells, low amounts of harmless ROS are main-
tained by similar activities of its generating and degrading
enzymes.

ROS generation in mitochondria

Almost all energy consumed by aerobic organisms, including
heat production and the synthesis of ATP, is produced by
fireless burning of food with molecular oxygen (O2). ATP is
synthesized by oxidative phosphorylation in mitochondria,
including the respiratory chain which is composed of com-
plexes I (NADH dehydrogenase), II (succinate dehydroge-
nase), III (ubiquinol:cytochrome c oxidoreductase or cyto-
chrome bc1), IV (COX), and the two-electron carriers: ubiqui-
none and cytochrome c. Electron transport in complexes I, III,
and IV is coupled with the translocation of protons across the
inner mitochondrial membrane from the matrix into the inter-
membrane space creating a membrane potential ΔΨm and a
pH gradientΔpHm (predominantlyΔΨm), which are used by
complex V (ATP synthase) to produce ATP from ADP and
phosphate. The oxygen accepting enzyme of the respiratory
chain is COX, the rate-limiting step of mitochondrial respira-
tion in vivo [20, 21].

High amounts of ROS are produced in mitochondria under
certain conditions, in particular after ischemia and reperfusion
in the heart and brain [22]. ROS production occurs in partic-
ular at high NADH/NAD+ ratios and at a high mitochondrial
membrane potential ΔΨm [23, 24]. In addition to various
other sites in mitochondria, ROS are mainly produced from
complexes I and III [24–28]. Overproduction of ROS could
lead to oxidative damage of lipids, DNA, and proteins [29,
30].

In isolated mitochondria from rat liver or pigeon heart re-
spiring with NAD-linked substrates or succinate, approxi-
mately 2% of the total oxygen utilization at state 4 leads to
the generation of H2O2 [31]. At respiratory state 4, all of the
phosphate acceptor, i.e., ADP, is converted into ATP and the
isolated mitochondria develop a ΔΨm of 180–200 mV [32,
33]. At the active state 3, where ADP is still available, ΔΨm

has a lower value. Above 140 mV, however, the production of
ROS increases exponentially with increasing ΔΨm, as mea-
sured in isolated mitochondria [34–36], and with the purified
and reconstituted complex III [37]. HighΔΨm values, accom-
panied by an increased deleterious ROS production, can be
decreased by uncoupler of oxidative phosphorylation. In fact,
the use of uncouplers has been proposed as a powerful anti-
aging strategy [38] and as a cytoprotective strategy under con-
ditions of oxidative stress including diabetes, drug-resistance
in tumor cells, ischemia-reperfusion injury, or aging [39].
These results prove the influence of highΔΨm on deleterious
mitochondrial ROS production.

In contrast to isolated mitochondria, the mitochondria of
relaxed cells in vivo have lowΔΨm values, i.e., between 100
and 130 mV (references in [40]), at which only very low
amounts of ROS are produced [36]. In vivo mitochondria
are submerged within 2–10 mM ATP with ATP/ADP ratios
of 100–1000 of “free nucleotides,” as calculated from 31P-
NMR measurements [41]. This means that in vivo the ATP/
ADP ratio is always above the half-maximal inhibition of
COX activity by the “allosteric ATP inhibition of COX” (see
below), which is ATP/ADP = 28 [42, 43]. The frequently cited
high number of 2% of total oxygen utilization in mitochondria
leading to H2O2 (ROS) generation [31] corresponds to isolat-
ed mitochondria without the allosteric ATP inhibition of
COX. The exact value of the low cellular ROS production
in vivo, however, is difficult to estimate [23, 44].

Allosteric ATP inhibition of COX

The unique properties of COX account for its regulatory func-
tions. These are tissue- and developmental-specific isoforms
of 6 of the 10 nuclear-encoded “supernumerary” subunits [45,
46], which are tightly bound to three mitochondrially synthe-
sized catalytic subunits I–III [14]; reversible phosphorylation
[47–49] and acetylation [50]; binding of various other proteins
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[51] including the formation of “respirasomes” [52–55]; and
reversal binding of small molecules and ions such as ADP or
ATP [56], diiodothyronine [57], and calcium or sodium [58].

The kinetic analysis of oxygen uptake of COX at increas-
ing ferrocytochrome c concentrations in the presence of ADP
and ATP revealed a sigmoidal shape of the curve with com-
plete inhibition of activity at high ATP/ADP ratios and low
amounts of substrate, contrasting the hyperbolic curve in the
presence of ADP or without additions [43]. These nucleotides
bind to the matrix domain of the transmembraneous subunit
IV [42, 43, 59], representing one of the ten ADP-binding sites
in COX from the heart, seven of which are exchanged by ATP
at high ATP/ADP ratios [60]. The sigmoidal shape of the
kinetics indicates cooperativity of two binding sites for
ferrocytochrome c (Hill coefficient 2 [43]), suggested to be
located at the two monomers of a dimeric enzyme. The X-ray
crystal structure of bovine heart COX revealed a homodimeric
enzyme [61]. Each COX monomer contains only one cyto-
chrome c binding site [62]. This “allosteric ATP inhibition of
COX” keepsΔΨm at low values (< 130 mV), due to feedback
inhibition of COX activity by ATP at high ATP/ADP ratios.
High ATP/ADP ratios already exist at low ΔΨm, because the
rate of ATP synthesis by ATP synthase is saturated and max-
imal at 100–120 mV [63]. Therefore, further increase ofΔΨm

by proton pumping of complexes I, III, and IVof the respira-
tory chain is inhibited by the ATP inhibition of COX, the rate-
limiting enzyme of the respiratory chain in vivo [20, 21]. High
ATP/ADP ratios of 100–1000 were measured in vivo by 31P-
NMR in relaxed cells [41]. The inhibitory effect of ATP on
ΔΨm has also been measured directly in isolated rat liver
mitochondria using a tetraphenyl phosphonium electrode
[64]. The low ROS production in mitochondria of living cells
under relaxed conditions [23] is thus explained by the alloste-
ric ATP inhibition of COX [45, 46, 65, 66].

The allosteric ATP inhibition of COX, however, is not al-
ways found with isolated mitochondria and is usually lost
during purification of the enzyme [67]. It could be restored
by incubation of purified COX with protein kinase A (PKA)
and cAMP and can be abolished by incubating again with
Ca2+ and protein phosphatase 1 [68, 69]. The phosphorylation
site at COX was identified towards the intermembrane side of
subunit I [68], which contains heme a and the oxygen binding
site heme a3/CuB [14]. The reversible switching on of this
mechanism by cAMP and switching off by Ca2+ was also
shown recently using intact isolated rat heart mitochondria
[70]. The results with intact mitochondria coincide with the
data obtained previously using isolated enzyme [68, 69].

In addition to ATP inhibition of COX activity by the phos-
phorylated enzyme (postulated phosphorylation site: Ser-441
in subunit I [68]), COX activity is also inhibited by its sub-
strate cytochrome c when it is phosphorylated at serine-47.
After dephosphorylation of cytochrome c during ischemia,
this attenuation of COX activity is abolished [71].

Stress and calcium signaling

Calcium represents a universally important messenger in all
multicellular life [72]. The cytosolic concentration of calcium
in normal resting cells is very low (about 0.1μM) and is more
than 10,000 times lower than its concentration in blood plasma
(about 2 mM). Numerous extracellular signals from hormones
to growth factors are transduced to intracellular [Ca2+]i spikes
that are amplitude and frequency encoded [73–75]. In addition,
they are highly localized within cells [76].

The low cytosolic Ca2+ concentration of about 0.1 μM in
normal relaxed cells is generally correlatedwith a lowΔΨm of
100–120mV ([references in [41]). Multiple stress signals such
as hypoxia, stress hormones, and various chemicals have been
shown to increaseΔΨm to high values via increased cytosolic
Ca2+ concentrations. This increase of ΔΨm, which occurs
often transient, is named “hyperpolarization” of ΔΨm.
Numerous studies have demonstrated the hyperpolarization
of ΔΨm by various compounds [77]. The neurotoxic effect
of high glucose in diabetes mellitus was studied by Vincent
et al. [78] in human SHSY5Y neurons, rat sensory neurons,
and Schwann cells. After exposure to 20 mM glucose, an
initial transient hyperpolarization of ΔΨm was measured,
followed by an increase of ROS, and finally neuronal death.
Mitochondrial hyperpolarization represents an early and re-
versible step in T cell activation and apoptosis [79].
Transient highΔΨm values have also been described by syn-
thetic cannabinoids in human proximal tubule cells [80], by
statins (lovastatin and simvastatin), which increased theΔΨm

in HepG2 and Huh7 human hepatocarcinoma cells and
HCC4006 human lung adenocarcinoma cells [81], and by
honokiol, which induced in bladder cancer cells and increase
ofΔΨm and ROS formation, and at high doses apoptotic cell
death [82]. Hyperpolarization of ΔΨm was furthermore
shown with protamine sulfate [83] and graphene oxide (a
marker for air pollution) [84].

All these compounds increase primarily the cytosolic Ca2+

concentration, followed by mitochondrial ROS formation and
eventually followed by apoptosis and cell death. But also psy-
chosocial stress results in the increase of cytosolic Ca2+ con-
centration, as shown in isolated cardiomyocytes [85], in plate-
lets [86], hippocampal-derived HT22 cells [87], urothelial
cells [88], and cardiomyocytes [89]. The neurotoxic effect of
glutamate in neurons via the N-methyl-D-aspartat-receptor
was related to an increase of cytosolic Ca2+ and the formation
of ROS [90, 91].

In the sequence of reactions between stress and multiple
diseases, shown in Fig. 1, the step between the increase of
cytosolic Ca2+ and hyperpolarization of ΔΨm was so far un-
known in the current literature [5, 6, 92]. The above-reviewed
data explains how stress could induce excessive production of
ROS in mitochondria by switching off the allosteric ATP in-
hibition of COX, which under relaxed conditions, keepsΔΨm
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at low values (below 130 mV). The increase of cytosolic Ca2+

concentration by various stress signals from 0.1 to 1–10 μM
[73] activates a protein phosphatase which dephosphorylates
COX and switches off the allosteric ATP inhibition [68, 69],
followed by hyperpolarization ofΔΨm and increased produc-
tion of ROS.

From these results, we conclude that the health in all higher
organisms is based on the maintenance of a low mitochondrial
membrane potentialΔΨm via the “allosteric ATP inhibition of
COX,” which prevents the formation of high and deleterious
amounts of ROS. All types of stress signals which increase the
cytosolic Ca2+ concentration, dephosphorylate COX, and
switch off the allosteric ATP inhibition, leading to an in-
creased ROS production via increasing theΔΨm, thus finally
resulting in apoptosis, or in the long run to multiple diseases.

Near-infrared light suppresses stroke infarct
via inhibition of COX activity

The physiological significance of the “allosteric ATP inhibi-
tion of COX” was recently verified by experiments of
Hüttemann and coworkers, who discovered inhibition of
COX activity by near-infrared light of 750- and 950-nmwave-
length. The near-infrared light reduced the mitochondrial
membrane potential (ΔΨm), attenuated mitochondrial super-
oxide production (ROS), and in turn neuronal death of cul-
tured HT22 cells following glutamate exposure and oxygen-
glucose deprivation [93]. In living animals of a rat stroke
model with a longitudinal analysis of brain injury using mag-
netic resonance imaging, a sustained reduction in infarct vol-
ume following ischemic stroke was found after exposure to
near-infrared light [94].

These results with living rats coincide with the conclusion
derived from results on the allosteric ATP inhibition of COX

that attenuation of COX activity prevents the increase ofΔΨm

to values resulting in deleterious mitochondrial ROS produc-
tion. Another way to decrease ΔΨm and ROS generation in
mitochondria is by using uncoupler of oxidative phosphory-
lation, which induces a backflow of translocated protons at the
inner mitochondrial membrane [95].

Conclusion

The “allosteric ATP inhibition of COX” is based on the feed-
back inhibition of COX by ATP, which binds to the matrix
side of the “supernumerary” subunit IV. This subunit is lack-
ing in bacteria [96], but it became essential during the evolu-
tion of higher organisms, which are characterized by the con-
tinuous change between active (state 3 of mitochondrial res-
piration) and resting state (state 4 of mitochondrial respira-
tion), where ΔΨm increases. The allosteric ATP inhibition of
COX represents an essential mechanism of higher aerobic
organisms to avoid the increase of ΔΨm and thus the forma-
tion of deleterious ROS during rest. Without this mechanism,
long-living organisms would suffer from various diseases and
would die early due to accelerated aging.
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