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Abstract: Background: preterm and critically ill neonates often experience clinically suspected sepsis
during their prolonged hospitalization in the neonatal intensive care unit (NICU), which can be the
initial sign of final adverse outcomes. Therefore, we aimed to utilize machine learning approaches to
predict neonatal in-hospital mortality through data-driven learning. Methods: a total of 1095 neonates
who experienced clinically suspected sepsis in a tertiary-level NICU in Taiwan between August 2017
and July 2020 were enrolled. Clinically suspected sepsis was defined based on clinical features and
laboratory criteria and the administration of empiric antibiotics by clinicians. The variables used
for analysis included patient demographics, clinical features, laboratory data, and medications. The
machine learning methods used included deep neural network (DNN), k-nearest neighbors, support
vector machine, random forest, and extreme gradient boost. The performance of these models was
evaluated using the area under the receiver operating characteristic curve (AUC). Results: the final
in-hospital mortality of this cohort was 8.2% (90 neonates died). A total of 765 (69.8%) and 330 (30.2%)
patients were randomly assigned to the training and test sets, respectively. Regarding the efficacy
of the single model that most accurately predicted the outcome, DNN exhibited the greatest AUC
(0.923, 95% confidence interval [CI] 0.953–0.893) and the best accuracy (95.64%, 95% CI 96.76–94.52%),
Cohen’s kappa coefficient value (0.74, 95% CI 0.79–0.69) and Matthews correlation coefficient value
(0.75, 95% CI 0.80–0.70). The top three most influential variables in the DNN importance matrix plot
were the requirement of ventilator support at the onset of suspected sepsis, the feeding conditions,
and intravascular volume expansion. The model performance was indistinguishable between the
training and test sets. Conclusions: the DNN model was successfully established to predict in-
hospital mortality in neonates with clinically suspected sepsis, and the machine learning algorithm is
applicable for clinicians to gain insights and have better communication with families in advance.

Keywords: neonatal mortality; artificial intelligence; big data analysis; early prediction; machine
learning
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1. Introduction

In premature infants or high-risk neonates hospitalized in the neonatal intensive
care unit (NICU), substantial mortality may occur even though the patients overcome
the most critically ill moments during the perinatal periods [1,2]. These fragile patients
frequently encounter various unstable situations, some of which are due to immature
organ functions, and most of which come from various invasive pathogens [3,4]. These
patients are at a high risk of late-onset sepsis or clinical sepsis because of their underlying
chronic comorbidities and the presence of artificial devices, as well as their inadequate
immune defense and prolonged intubation and hospitalization [4–6]. The overall unad-
justed in-hospital mortality rate for hospitalized neonates in the NICU is reported to be
approximately 6.4–10.9% [1–3,7]. Clinically suspected sepsis, which is defined based on
clinically septic features, abnormal laboratory findings and judgments of clinicians when
empiric antibiotics should be used [8,9], is frequently encountered in the NICU.

During the more than three-month hospitalization course of extremely preterm
neonates, optimism bias and unexpected error may lead clinicians and the parents to
underestimate unstable situations of prematurity, which can delay important communi-
cation about the patient’s outcome [10,11]. Currently existing prognostic tools may aid,
but they cannot be applied to all hospitalized neonates in the NICU, and inputting the
data required for these tools is often time-consuming [12–15]. Recently, linear and non-
linear parameters for hospitalized patients have been modeled by machine learning (ML)
algorithms with increased computational capacity [16,17]. ML algorithms using routinely
collected data and electronic records have been demonstrated to predict the onset of sepsis,
mortality and morbidity in order to help clinicians make more appropriate treatment deci-
sions [16–19]. However, these ML algorithms have not been applied to neonates who are
struggling with their chronic comorbidities during their hospitalization. Among various
ML models, the deep neural network (DNN) method has the advantage of high interpreta-
tion, applicability, and good performance in handling big medical data, such as national
network databases or international databases [17]. In this study, we aimed to develop a
DNN-based multivariate regression model and validate it with six other ML algorithms
that can accurately predict the in-hospital mortality of neonates with clinically suspected
sepsis in the NICU.

2. Methods
2.1. Patients, Setting, and Study Design

We studied a consecutive population of all neonates hospitalized in the NICUs of
Chang Gung Memorial Hospital (CGMH) between August 2017 and July 2020, in whom
clinically suspected sepsis was documented during their hospitalization. The NICUs of
CGMH contain a total of three units and a total capacity of 49 beds equipped with ventilator
and 58 beds in special care nurseries. The annual number of admissions in these NICUs in
CGMH is approximately 800 neonates. The NICUs of CGMH are the largest tertiary-level
referral medical center in Taiwan and provide admission for approximately 30% of all
critically ill and premature infants in Taiwan.

Clinically suspected sepsis was based on clinical and laboratory diagnosis [8,9]. The
diagnostic criteria for “clinically suspected sepsis” included the following: (1) at least
one of the septic symptoms, including an unstable vital sign, including fever ≥ 38 ◦C or
hypothermia, apnea, increased oxygenation support, tachycardia or bradycardia, decreased
activity, vomiting or poor intake; and (2) positive for at least two of the following experi-
mental tests: abnormal white blood cell count (<5 × 106/L or > 20 × 106/L), immature to
total neutrophil ratio ≥ 0.1, platelet count ≤ 100 × 106/L, hemoglobin level ≤ 11.0 g/dL,
C-reactive protein level ≥ 6 mg/L. In these unstable events, a blood specimen and/or
sterile-site sample were obtained for culture, empirical antibiotics were prescribed, and
increased life support, including ventilator support, cardiac inotropic agents, or volume
expansion, was required. We prospectively followed all neonates with clinically suspected
sepsis until discharge or death. Neonates with severe congenital anomalies and those
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who died within the first week of life were excluded. Only the first unstable episode
experienced by each patient was analyzed. The neonates were randomly divided into a
training set to develop the ML models and a test set to evaluate these models. This study
was approved by the Institutional Review Board of Chang Gung Memorial Board, with a
waiver of informed consent (the certificate no. 201802021B0).

2.2. Study Variables and Data Pre-Processing

Baseline demographics, including birth weight, gestational age, gender, the mode of
delivery, prenatal and perinatal history and all comorbidities of the patients were collected.
Chronic comorbidities included neurological sequelae, bronchopulmonary dysplasia, con-
genital heart disease, cholestasis, renal function impairment, and gastrointestinal diseases.
Laboratory data such as white blood cell count, hemoglobin, platelet count, blood gas
analysis, C-reactive protein, electrolytes, bilirubin, and renal and hepatic function results
were measured at the onset of these unstable events. The onset of clinically suspected
sepsis was defined when the first septic evaluation, which included laboratory examination
and cultures from all potential sterile sites, was performed. The clinical symptoms included
vital signs, tachycardia or bradycardia, respiratory patterns, changes in feeding conditions,
medications, underlying chronic comorbidities, and the presence of artificial devices were
all recorded. The primary outcome was the NICU mortality, and the discontinuation of
critical care due to family requests to transfer to other hospitals was censored.

The outcomes of patients and some non-numerical variables were transferred to the
corresponding numerical data and codes. After the conversion, a new numerical dataset
which has 56 columns (55 variables and the outcome of all patients) was generated for the
feature selection process.

2.3. Scoring Function

The scoring function was used to estimate the output scores by inputting the variables
and the final outcomes were predicted based on the output scores. In this study, a DNN
model was designed and selected as the scoring function because it exhibits excellent
nonlinear computing capability and is a relatively mature technology [17]. All enrolled
neonates were randomly divided, with 70% used for the training set and 30% for the testing
set. Figure 1A shows the diagram of the DNN model, which includes the input layer, three
hidden layers and an output layer in this study. The neuron numbers in the three hidden
layers were 128, 64 and 32, respectively. In addition, a rectified linear unit (ReLU) was
selected as the activation function to avoid the vanishing gradient problem [20].

2.4. Feature Selection of Scoring Function

The Pearson product-moment correlation coefficients (PPMCCs) of each variable were
calculated and considered as the features of the neonates [21]. The feature selection process
was proceeded to test different PPMCC levels to pick and to group different variables of
the scoring function. Then, the scoring function of each PPMCC level was used to calculate
the output scores of the testing data. Finally, the output scores were analyzed by using
the receiver operating characteristic (ROC) curve to determine which PPMCC level could
achieve the best predictive ability.



J. Pers. Med. 2021, 11, 695 4 of 16
J. Pers. Med. 2021, 11, x FOR PEER REVIEW 4 of 14 
 

 

 

Figure 1. (A) Diagram of the deep neural networks multivariate regression model. (B) Diagram of the whole assay proce-

dure. (ReLU: a rectified linear unit) 

2.4. Feature Selection of Scoring Function 

The Pearson product-moment correlation coefficients (PPMCCs) of each variable 

were calculated and considered as the features of the neonates [21]. The feature selection 

process was proceeded to test different PPMCC levels to pick and to group different var-

iables of the scoring function. Then, the scoring function of each PPMCC level was used 

to calculate the output scores of the testing data. Finally, the output scores were analyzed 

by using the receiver operating characteristic (ROC) curve to determine which PPMCC 

level could achieve the best predictive ability. 

2.5. Assay Procedure 

The whole assay procedure is shown in Figure 1B. The 55 variables of patients were 

transformed into fully numerical data through the data preprocessing and were scored by 

Figure 1. (A) Diagram of the deep neural networks multivariate regression model. (B) Diagram of the whole assay
procedure. (ReLU: a rectified linear unit).



J. Pers. Med. 2021, 11, 695 5 of 16

2.5. Assay Procedure

The whole assay procedure is shown in Figure 1B. The 55 variables of patients were
transformed into fully numerical data through the data preprocessing and were scored
by the well-trained scoring function, such as DNN and other ML methods. Finally, if the
output score of a patient was higher than the cutoff value, which was determined by ROC
analysis of the scoring function, the probability of a bad outcome of the patient was truly
high under the present medical data. Based on such a situation, medical personnel could
seriously consider further medical treatments.

2.6. Statistical Analysis

Statistical analyses were performed using SPSS version 15.0 (SPSS®®, Chicago, IL,
USA) software. Categorical and continuous variables are expressed as proportions and the
medians (interquartile ranges, IQRs), respectively. Categorical variables were compared
by the χ2 test or Fisher’s exact test; odds ratios (ORs) and 95% confidence intervals (CIs)
were calculated. Continuous variables were compared by the Mann–Whitney U-test and
the t-test, depending on the distributions.

Machine Learning Procedures

In this study, a DNN model was proposed in the beginning, and then other six
ML algorithms, including k-nearest neighbors (k-NN), support vector machine (SVM),
random forest (RF), extreme gradient boost (XGB), Glmnet, and regression tree algorithm
(Treebag) using R software (version 4.0.3), were also used for comparison. The fine-
tuning of hyper-parameters, which was optimized by the five-fold cross-validations of five
individual runs, and then ML models were conducted by the R package, caret (version
6.0-86). The hyper-parameter sets of these ML algorithms were pre-defined in the caret
package, including the k in the KNN model, the mtry in the RF model, the sigma and cost
in the SVM model with the radial basis kernel function, etc. When each ML model was
constructed, all features were preselected based on the normalized feature importance
to exclude irrelevancy. Finally, the F1 score, accuracy, and AUCs were calculated on the
test set to measure the performance of all these models. To calculate the accuracy and
F1 score of these models, the best threshold point of the receiver operating characteristic
(ROC) curve was used to determine the probability of mortality. In addition, the Cohen’s
kappa coefficient and the Matthews correlation coefficient (MCC) values were calculated
to compare the performances of these models. All p values were two-sided, and the values
less than 0.05 were considered significant.

3. Results

During the three-year study period, a total of 2472 neonates were prospectively
observed, and 1095 neonates who had experienced clinically suspected sepsis and fulfilled
the inclusion criteria were enrolled and analyzed. We randomly assigned 765 (69.8%)
and 330 (30.2%) patients into the training and test sets, respectively. Among those with
clinically suspected sepsis, only 28.5% (n = 312) were blood culture-positive confirmed
neonatal sepsis, and all the others were blood culture-negative clinical sepsis. All these
neonates received a complete course of therapeutic antibiotics for at least 5–7 days or until
subsequent negative blood culture. These clinically suspected sepsis cases occurred at 19.0
(13.0–39.0) (median (interquartile range, IQR)) days of life. A total of 101 (9.2%) events
had no definite diagnosis. The final in-hospital mortality rate of this cohort was 8.2%
(90 neonates died) and was compatible between the training and test sets. The training
set and the test set were similar in all variables. Table 1 presents the demographics and
variables of the patients.
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Table 1. Patient demographics, characteristics, and clinical presentation of all neonates with suspected sepsis.

Characteristics All Study Subjects
(Total n = 1095)

The Training Set
(Total n = 765)

The Test Set
(Total n = 330) p Values

Cases demographics
Gestational age (weeks), median (IQR) 30.0 (27.0–35.0) 30.0 (27.0–35.0) 31.0 (27.8–36.0) 0.338
Birth weight (g), median (IQR) 1360 (1020–2150.0) 1355.0 (1040.0–2020.0) 1365 (897.5–2500.0) 0.758
Gender (male/female), n (%) 580 (53.0)/515 (47.0) 406 (53.1)/359 (46.9) 174 (52.7)/156 (47.3) 0.947
5 min Apgar score ≤ 7, n (%) 219 (20.0) 151 (19.7) 68 (20.6) 0.742
Inborn/outborn, n (%) 873 (79.9)/222 (20.1) 606 (79.2)/159 (20.8) 267 (80.9)/63 (19.1) 0.567
Birth by NSD/Cesarean section, n (%) 358 (32.7)/736 (67.3) 256 (33.5)/508 (66.5) 102 (30.9)/228 (69.1) 0.440
Respiratory distress syndrome (≥Gr II), n (%) 467 (42.6) 325 (42.5) 142 (43.0) 0.894
Perinatal asphyxia, n (%) 84 (7.7) 55 (7.2) 29 (8.9) 0.387

Underlying Chronic Comorbidities, n (%)
Neurological sequelae 202 (18.4) 146 (19.1) 56 (17.0) 0.445
Bronchopulmonary dysplasia 189 (17.3) 139 (18.2) 50 (15.2) 0.257
Complicated cardiovascular diseases 27 (2.5) 23 (3.0) 4 (1.2) 0.091
Symptomatic patent ductus arteriosus 356 (32.5) 258 (33.7) 98 (29.7) 0.206
Gastrointestinal sequelae 55 (5.0) 34 (4.4) 21 (6.4) 0.227
Renal disorders 8 (0.7) 6 (0.8) 2 (0.6) 0.753
Congenital anomalies 36 (6.5) 29 (8.4) 7 (5.6) 0.196
Presences of any chronic comorbidities 365 (33.3) 266 (34.8) 99 (30.0) 0.142

Day of life at onset of suspected sepsis (day) # 19.0 (13.0–39.0) 19.0 (14.0–37.0) 20.0 (10.0–41.3) 0.232
Previous antibiotic exposure, n (%) 662 (60.5) 472 (61.7) 190 (57.6) 0.202
Use of TPN and/or intrafat, n (%) 527 (48.1) 367 (47.8) 160 (48.5) 0.895
Use of central venous catheter, n (%) 741 (67.7) 521 (68.1) 220 (66.7) 0.673
Feeding situation *, n (%) 0.186

Nothing by mouth (NPO) 700 (63.9) 479 (62.6) 211 (63.9)
Half amount 353 (32.2) 259 (33.9) 94 (28.5)
Full amount 42 (3.8) 27 (3.5) 15 (4.5)

Ventilator requirement *, n (%) 0.123
O2 hood 260 (23.7) 197 (25.7) 63 (19.1)
Nasal cannula 45 (4.1) 34 (4.4) 11 (3.3)
Nasal continuous positive airway pressure 151 (13.8) 90 (11.8) 61 (18.5)
Nasal intermittent mandatory ventilation 174 (15.9) 124 (11.3) 50 (15.2)
Intubation with mechanical ventilation 380 (34.7) 260 (34.0) 120 (36.4)
On high frequency oscillatory ventilation 85 (7.8) 60 (7.8) 25 (7.6)
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Table 1. Cont.

Characteristics All Study Subjects
(Total n = 1095)

The Training Set
(Total n = 765)

The Test Set
(Total n = 330) p Values

Clinical features *, n (%)
Intravascular volume expansion 185 (16.9) 137 (17.9) 48 (14.5) 0.188
Requirement of cardiac inotropic agents 91 (8.3) 62 (8.1) 29 (8.8) 0.721
Metabolic acidosis 201 (18.4) 141 (18.4) 60 (18.2) 0.932
Coagulopathy 175 (16.0) 120 (15.7) 55 (16.7) 0.187
Requirement of blood transfusion ** 627 (57.3) 445 (58.2) 182 (55.2) 0.387

Laboratory data
Leukocytosis or leucopenia 269 (24.6) 193 (25.2) 76 (23.0) 0.491
Shift to left in WBC (immature > 20%) 65 (5.9) 48 (6.3) 17 (5.1) 0.577
Anemia (hemoglobin level < 11.5 g/dL) 717 (65.5) 501 (65.5) 216 (65.4) 0.991
Thrombocytopenia (platelet < 150,000/uL) 243 (22.2) 166 (21.7) 77 (23.3) 0.526
C-reactive protein (mg/dL), median (IQR) 11.3 (8.2–23.3) 11.4 (7.5–24.0) 11.3 (8.1–22.5) 0.456

NSD: normal spontaneous delivery; IQR: interquartile range; HFOV: high-frequency oscillatory ventilator; NTISS score: Neonatal Therapeutic Intervention Scoring System; TPN: total parenteral nutrition.
* At onset of suspected sepsis; ** Including leukocyte poor red blood cell and/or platelet transfusion. # Data are median (interquartile range) and analyzed by Mann–Whitney U-test. All other comparisons are
analyzed by χ2 test.
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3.1. Feature Selection of DNN Model

The feature selection process involved the evaluation of different PPMCC levels to
select different variables of the DNN model. Five different PPMCC levels were evaluated
to select five different groups of variables, which were separately used as the input of the
DNN model. The outputs of the DNN model were finally analyzed though the ROC curve
for each PPMCC level. Figure 2A,B show the results of feature extraction optimization. The
AUCs were 94.40 ± 0.49%, 92.72 ± 2.40%, 92.32 ± 3.45%, 91.52 ± 1.56% and 85.02 ± 2.57%
for PPMCC levels of higher than 0.00 (all 55 variables), 0.03 (38 variables), 0.05 (27 variables),
0.1 (15 variables) and 0.15 (eight variables), respectively. The maximum AUCs of the five
individual runs of DNN model for the five PPMCC levels are shown in Figure 2B.
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Figure 2. (A) Optimization of feature extraction. The feature extraction process was optimized
by testing different PPMCC levels to select different medical data as the variables of the scoring
function. The tested PPMCC levels were higher than 0.00, 0.03, 0.05, 0.1 and 0.15 corresponding to
areas under the ROC curves (AUCs) of 94.40 ± 0.49%, 92.72 ± 2.40%, 92.32 ± 3.45%, 91.52 ± 1.56%
and 85.02 ± 2.57%, respectively. The error indicates one standard deviation, which is the result of
five individual runs of each scoring function. (B) The maximum AUCs of the five individual runs of
each scoring function.PPMCC: The Pearson product-moment correlation coefficient; ROC: receiver
operating characteristic.
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3.2. Effectiveness Evaluation of the DNN Model

Nine effectiveness evaluation indexes including the AUC, sensitivity (precision or true
positive rate (TPR)), specificity, false-positive rate (FPR), false-negative rate (FNR), recall
(positive predictive value (PPV)), negative predictive value (NPV), F1 score, and accuracy
were used to evaluate the DNN model (Table 2). We found that a PPMCC value > 0.05
had the best performance in six of nine effectiveness evaluation indexes among the five
PPMCC levels. Therefore, 27 variables selected by a level, PPMCC > 0.05 were used as the
covariates to develop the DNN model and others.

3.3. Rank of Predictors in the Prediction Scoring Function

The 27 covariates and their weights in the DNN model (PPMCC > 0.05) are shown in
Table 3. The top three most influential variables in the DNN importance matrix plot were
the requirement of ventilator support at the onset of clinical suspected sepsis, the feeding
conditions, and intravascular volume expansion.

3.4. Classification Performance of DNN Model

We calculated the output scores of the test set using the DNN model. There were
330 patients in the testing set including 28 patients who died and 302 neonates who
survived until discharge. Neonates who died before discharge had a significantly higher
score than those who survived (0.93 vs. 0.04, p < 0.001; Figure 3A). The empirical and fitted
ROC curves for the DNN model using the testing dataset are 0.961 and 0.951, respectively,
which indicates that this DNN model can distinguish between neonates who died and
those who survived until discharge. When the cutoff value of the DNN model was 0.29,
the sensitivity and specificity were 89.29% and 95.36%, respectively.

3.5. Comparisons of the Performance of Various Machine Learning Methods

The following machine learning methods, including k-NN, SVM, RF, XGB, Glmnet,
and Treebag, with the same 27 variables as input covariates, were utilized to predict
in-hospital mortality (Figure 4). Regarding the efficacy of the single model that most
accurately predicted the outcome, DNN exhibited the greatest AUC (0.923, 95% confidence
interval [CI] 0.953–0.893) and the best accuracy (95.64%, 95% CI 96.76–94.52%), F1 score
(0.77, 95% CI 0.82–0.72), and MCC value (0.75, 95% CI 0.80–0.70). In addition, Cohen’s
kappa coefficient (Kappa) was used to balance the accuracy of categories to eliminate the
larger Hengda’s influence. We also found that the Kappa of the proposed DNN model was
highest among the seven tested models.
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Table 2. Effectiveness evaluation indexes of the scoring function.

PPMCC > 0.00 PPMCC > 0.03 PPMCC > 0.05 PPMCC > 0.10 PPMCC > 0.15

Area under ROC curve (AUC) 94.40 ± 0.49% 92.72 ± 2.40% 92.32 ± 3.45% 91.52 ± 1.56% 85.02 ± 2.57%
Sensitivity (true positive rate) 87.14 ± 3.19% 81.41 ± 2.99% 82.86 ± 5.30% 82.86 ± 1.60% 82.86 ± 4.66%
Specificity (true negative rate) 92.78 ± 3.18% 95.63 ± 2.61% 96.82 ± 1.58% 94.70 ± 2.12% 85.36 ± 4.14%
False-positive rate (FPR) 7.22 ± 3.18% 4.37 ± 2.61% 3.18 ± 1.58% 5.30 ± 2.12% 14.64 ± 4.14%
False-negative rate (FNR) 12.86 ± 3.19% 18.57 ± 2.99% 17.14 ± 5.30% 17.14 ± 1.60% 17.14 ± 4.66%
Positive predictive value (PPV or Recall) 52.27 ± 13.88% 65.71 ± 12.88% 72.18 ± 11.51% 60.29 ± 8.04% 35.23 ± 5.02%
Negative predictive value (NPV) 98.74 ± 0.27% 98.23 ± 0.26% 98.39 ± 0.48% 98.32 ± 0.12% 98.19 ± 0.42%
F1 score [ = 2×TPR×Recall/(TPR + Recall)] 0.67 ± 0.08% 0.72 ± 0.08% 0.77 ± 0.06% 0.69 ± 0.05% 0.49 ± 0.04%
Accuracy 92.30 ± 2.69% 94.42 ± 2.25% 95.64 ± 1.28% 93.70 ± 1.81% 85.15 ± 3.45%

PPMCC: Pearson product-moment correlation coefficients; ROC: receiver operating characteristic. Bold color indicates the best performance of the effectiveness index.

Table 3. The weights and importance of each covariate in the development of the final predictive model.

Variables Weights Variables Weights

Requirement of ventilator support 0.6016 Birth body weight (g) 0.0735
Feeding conditions 0.3938 Bronchopulmonary dysplasia 0.0628
Intravascular volume expansion 0.3623 PaO2 (mmHg) 0.0605
Shift to left in white blood cell (immature > 20%) 0.2397 Blood transfusion with fresh frozen plasma 0.0493
Requirement of cardiac inotropic agents 0.2258 PH value 0.0385
Peak end expiratory pressure 0.2201 Use of diuretics/bronchodilator 0.0333
Metabolic acidosis 0.2111 C-reactive protein 0.0331
Central venous catheter 0.1785 Previous antibiotic exposure * 0.0248
Apnea 0.1411 Perinatal asphyxia 0.0204
Apgar score at 5 min 0.1402 Thrombocytopenia 0.0068
PaCO2 (mmHg) 0.1372 Gender 0.0057
Presences of any chronic comorbidities 0.1358 On corticosteroid 0.0029
Previous positive sputum cultures * 0.1262 Fever 0.0022
Red blood cell count 0.1008

* within one month before the life-threatening events.
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Figure 4. Comparison of AUCs among machine learning models. DNN yielded the greatest AUC for single-model
prediction. The bar graph indicates the median value of the AUC of each model. K-NN: k-nearest neighbors algorithm;
RF: random forest; SVM: support vector machine; DNN: deep neural networks; XGB: eXtreme gradient boosting; Treebag:
regression tree algorithm; red color indicates the best performance.

4. Discussion

In the present study, we applied ML to predict the mortality of neonates with clinically
suspected sepsis during their hospitalization in the NICU. We found that the model devel-
oped using ML algorithms has much better predictive power than the traditional neonatal
severity scoring systems, which are limited by the inability to fully consider integrated
variables [13–15]. In the NICU, an episode of clinically suspected sepsis rarely directly
causes mortality but is often associated with antibiotic exposure, infectious complications,
prolonged ventilation and hospitalization and sometimes surgical intervention [22–24].
After neonates survive the most critically ill perinatal period, the combination of multiple
factors, chronic comorbidities and subsequent nosocomial infections usually contributes to
ultimate in-hospital mortality [25,26]. Therefore, it is often difficult to predict the final out-
comes of these high-risk neonates, and this ML-based predictive model can be applicable
in clinical practice.

Using ML approaches to predict NICU outcomes has emerged as a major research
trend in the past decade [16,27–30], although no study has focused on neonates with clini-
cally suspected sepsis. In the NICU, unproven culture-negative sepsis and clinical sepsis
are much more common than clinicians have previously thought, but they are scarcely
investigated [31–33]. Therefore, we included all these events in this study to encompass
all clinical sepsis and undiagnosed events. Although only half of all these events were



J. Pers. Med. 2021, 11, 695 13 of 16

positive blood culture confirmed sepsis, all patients received empirical antibiotics and expe-
rienced at least some adverse effects, including a reposition of the central venous catheter,
temporary cessation of feeding, and disturbance of the gut microbiota. As most perinatal
variables may not be sufficiently precise to predict patient outcomes [13,14,19,34–36], it is
necessary to develop an applicable model to allow clinicians to predict outcomes during
the long hospitalization course of neonates. Our DNN model has the advantage of combin-
ing all underlying characteristics, the event-specific variables, and objective data, which
contribute to increased accuracy and predictive power.

Several neonatal severity scores have been developed to predict the prognosis of criti-
cally ill neonates, such as the Neonatal therapeutic intervention scoring system (NTISS),
Score for Neonatal Acute Physiology II (SNAP II) and SNAPPE-II scores, and Modified
Sick Neonatal Score (MSNS) [13–15]. These scores have demonstrated accurate prediction
of mortality in the NICU (AUCs of approximately 0.86–0.91) [13,34]. However, these scores
were originally designed to assess the worst clinical status found in the first 24 h after
admission. Previous studies found various cutoff points of these scores with inconsistent
discrimination to have the highest predictive power, which reflected the influences of
different institutes, quality of care and therapeutic interventions (especially the NTISS
scores) [19,34–36]. In addition, these scores do not consider the factors of postnatal age
and nosocomial infections, which undoubtedly increase the risk of mortality [19,36–38].
Mesquita Ramirez et al. found that SNAP II and SNAPPE II only have moderate dis-
crimination in predicting mortality [38]. In contrast, our DNN model incorporates all
easily overlooked factors at the onset of critically ill events and overcome the problems of
complex input and calculation. Based on our DNN model, the probability of mortality can
be calculated immediately through the established electronic medical record system.

Other important advantages of this study are the strict comparisons between our DNN
model and six ML models and the various natural measures to compare these ML methods.
In the field of ML algorithms, which often automatically scrutinize huge amounts of data
and classify them into hundreds of unrelated categories, the evaluation process of the
classifiers and comparisons of different ML models are very important [39,40]. Accuracy
has been the most widely used for decades but is limited by misclassification among
classes and the lack of marginal distributions [41]. Kappa is used to measure interrater
reliability for qualitative items and to evaluate the agreement between the actual and
assigned classes [39]. As all these measures have limitations, we applied the AUC, accuracy,
F1 score, Kappa and MCC to compare all ML models. Among seven models, our DNN
model is convincing given the highest AUC, accuracy, F1 score, Kappa and MCC.

There are some limitations in the current study. The application of this DNN model
needs further external validation with data collected from other institutes or other coun-
tries since this is a single-center study, and some bias or issues of therapeutic policies
are inevitable. Second, the sample size in this study was only moderate, although it
was significantly larger than those in previous studies that analyzed neonatal severity
scores [27,34,37,38] and those using ML to analyze ICU data [16]. However, a standard
requirement of more than 5000 data points is preferred to establish a supervised ML with
acceptable performance [39]. Last, the mortality of this study cohort was a relatively low
percentage of only 8.2%, and the relative risk of the most important variables cannot be
obtained.

5. Conclusions

We successfully applied the ML approaches to predict final in-hospital mortality when
a high-risk neonate experiences clinically suspected sepsis in the NICU. We demonstrated
that some important features and parameters are important for final outcome prediction.
Further studies are warranted to investigate the real-time adjustment of mortality risk to
optimize treatment and improve the outcomes in the NICU.
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