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This study aimed to develop and validate a prognostic nomogram for recurrence-free survival (RFS) after surgery
in the absence of adjuvant therapy to guide the selection for adjuvant imatinib therapy based on Residual Neural
Network (ResNet).
The ResNet model was developed based on contrast-enhanced computed tomography (CE-CT) in a training
cohort consisted of 80 patients pathologically diagnosed gastrointestinal sromal tumors (GISTs) and validated
in internal and external validation cohort respectively. Independent clinicopathologic factors were integrated
with the ResNet model to construct the individualized nomogram. The performance of the nomogramwas eval-
uated in regard to discrimination, calibration, and clinical usefulness.
The ResNet model was significantly associated with RFS. Integrable predictors in the individualized ResNet
nomogram included the tumor site, size, andmitotic count. Comparedwith modified NIH, AFIP, and clinicopath-
ologic nomogram, both ResNet nomogram and ResNet model showed a better discrimination capability with
AUCs of 0·947(95%CI, 0·910–0·984) for 3-year-RFS, 0·918(0·852–0·984) for 5-year-RFS, and AUCs of 0·912
(0·851–0·973) for 3-year-RFS, 0·887(0·816–0·960) for 5-year-RFS, respectively. Calibration curve shows the
good calibration of the nomogram in terms of the agreement between the estimated and the observed 3- and
5- year outcomes. Decision curve analysis showed that the ResNet nomogram had a higher overall net benefit.
In conclusion, we presented a deep learning-based prognostic nomogram to predict RFS after resection of local-
ized primary GISTs with excellent performance and could be a potential tool to select patients for adjuvant ima-
tinib therapy.
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1. Introduction

Gastrointestinal stromal tumors (GISTs) are mesenchymal neo-
plasms thatmostly originating from the gastrointestinal tractwith vary-
ing malignant potential which ranges from the benign lesion to fatal
sarcoma [1]. Adjuvant treatment with the tyrosine kinase inhibitor
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imatinib is recommended for the patients with high risk of recurrence
[1]. However, underestimation of recurrence riskmight have a negative
impact on recurrence-free survival (RFS) due to the inadequacies of
treatment [2]. Besides, for patients with an underestimated risk of re-
currence, a longitudinal follow-up may not be scheduled. Conversely,
patients with low-risk likely to be cured by surgery, rather than receiv-
ing further benefits, may suffer toxic effects and unnecessary costs from
adjuvant treatment [3]. Thus, accurate assessment of the recurrence risk
is vital for the management of GISTs that underwent curative resection.
Although the risk stratification standards have been revised and im-
proved, their predictive accuracy is roughly similar [1]. New proposed
systems have not been widely applied due to the lack of powerful evi-
dence, sufficient applicability, and particularly substantial performance.
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Research in context

Evidence before this study

We searched articles with the following terms: “(Deep learning OR
Radiomics OR ResNet) AND (GISTs OR Gastrointestinal stromal
tumors) AND (prognosis OR survival) AND (prediction OR predic-
tive OR predict)” on PudMed and Web of Science. The articles
were not limited to English language publications and didn’t have
date restriction. This search did not identify any study to predict
the recurrence risk of GISTs patients by deep learning model.

Added value of this study

To our knowledge, this is the first study to predict the recurrence
risk of GISTs patients by deep learning technique. Artificial intelli-
gence (AI) has become a hot topic. Radiomics is a typical and ef-
fective case of medical application but relies on multi-step
pipelines. Deep learning, as one of the power algorithms of AI,
can simplify the procedure by traditional radiomics approach and
strongly supports the translation from AI into clinical application.
Here, we developed and validated a prognostic nomogram based
on a deep learning approach to predict the recurrence-free survival
(RFS) of GISTswith satisfactory performance,whichmay be a po-
tential tool to predict the RFS for GISTs after complete resection,
avoiding excessive therapy or missing the optimal timing.

Implications of all the available evidence

Our deep learning-basedmodel, combinedwith existing evidence,
proved that radiomics with deep learning approach did have a bet-
ter prediction on RFS of GISTs patients. It might contribute to per-
sonalizedmedicine,whichmay be a potential tool in the search for
clinical decision support that is individualized and effective. In the
future work, it may be better to validate in additional cohorts and
verify in randomized controlled trials.
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On the other hand, Artificial intelligence (AI) has become a hot topic
with reports of breakthroughs not only in industry, finance, but also
the medical care support. Radiomics, as a typical and effective case of
medical application of AI [4–16], can utilize diggable data via high-
throughput extraction of quantitative features based onmedical images,
but it relies on multi-step pipelines using traditional machine learning
techniques. Deep learning, as one of the power algorithms of AI, can
simplify the procedure by learning predictive features directly and
strongly supports the translation from AI into clinical application
[5,17–23].

In this study, we aim to develop and validate a deep learning-based
prognostic nomogram to predict the recurrence risk after curative re-
section of a localized primary GIST in the absence of adjuvant imatinib
therapy.

2. Materials and methods

2.1. Patients enrollment

Three independent cohorts consisted of 147 patients with GISTs
pathologically diagnosed were enrolled in the study. Eighty cases
as the training cohort and 35 cases as internal validation cohort
were obtained in our center from January 2005 to December 2015.
Moreover, we included one external validation cohort that com-
prised 32 cases from Guangdong General Hospital with the same
criteria between January 2008 to December 2015. Ethical approvals
were obtained for this retrospective analysis in two participating
centers, and the patient informed consent requirements were
waved.

Inclusion criteria: (1) localized primary GIST patients underwent
surgical resection with curative intent; (2) GISTs confirmed by
postoperative pathology and immunohistochemistry examinations;
(3) contrast-enhanced computed tomography (CE-CT) was performed
within 15 days before the surgery; (4) complete clinical and pathologi-
cal datawere available. Exclusion criteria: (1) patients received imatinib
therapy or other tyrosine kinase inhibitor before and after surgery;
(2) presence of metastases at diagnosis; (3) patients with tumor rup-
tured before or during the operation.

Flow diagram for extracting eligible patients was presented in
the Fig. S1. Patients were postoperatively followed up with abdom-
inal CTs every 6–12 months for the first 3 years and then annually.
The follow-up duration was measured from the time of operation to
the last follow-up date, and the survival status at the last follow-
up was recorded. We defined RFS as the time to recurrence at
any site.

2.2. Image acquisition and ROI annotation

After a non-contrast CT scan (Scanner: SIEMENS 64-MDCT or GE
Healthcare, Hino) with a thickness of 2·0 mm, a dynamic contrast-
enhanced scan was performed, with 90 to 100 ml iodine contrast me-
dium (Ultravist 370, Bayer Schering Pharma, Germany) injected intra-
venously at a rate of 3·0 to 3·5 ml/s. Arterial phase image of contrast-
enhanced abdominal CT with manual region of interest (ROI) was se-
lected for analysis. ROI was delineated with the whole data in a blind
fashion by two radiologists with 12 (reader 1,W.X.) and 7 years (reader
2, X.X.Z.) of experience in the interpretation of abdominal CT. The anno-
tation results were assessed with satisfactory inter- and intra- observer
reliability in our previous study [13]. All outcomes were based on the
annotations of the first reader.

2.3. Image pre-processing

Image intensities were rescaled within [0, …,255] by a soft-tissue
window of [−110,190]HU to increase the contrast of soft tissues as
well as show more details about abdominal organs. Small patches
(28 × 28 voxels) with tumor were extracted. To extract patches, a
bounding rectangle derived from the tumor segmentation was drawn
around the tumor. This ensured that the entire tumor areawas captured
as well as a portion of the tumor margin. The patches that tumor area
less than 50th percentile patch area were discarded.

Patch samples from the same patient were kept together when ran-
domizing into training cohort, internal validation cohort, and external
validation cohort. We augmented the training data by introducing ran-
dom rotations, translations, shearing, zooming, and flipping (horizontal
and vertical), generating “new” training data. The augmentation tech-
nique allows us to further increase the size of our training cohort. For
every epoch, we augmented the training data before inputting it into
the neural network. Augmentation was only performed on the training
cohort, not on the internal validation cohort, or the external validation
cohort. Data augmentation was performed in real time in order to min-
imize memory usage.

2.4. Residual neural network

Residual neural network [24] (ResNet) is applied to train the image
data and build our neural network model. There are 10 identity blocks
and 2 convolution blocks. Each identity block has 2 convolutional layers.
Batch normalization (BN) and rectified linear units (ReLu) are adopted
after every convolutional layer. Batch standardization forces network
activation to follow a unit Gaussian distribution after each update to



Fig. 1. Residual neural network. (A) Network architecture. (B) Identity block: each identity block has 2 convolutional layers.(C) Convolutional block: each convolution block has 3
convolutional layers and a projection shortcut (convolution with a stride of 2). The weights are initialized with a normal distribution in convolutional layers. ReLu rectified linear units.
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prevent internal covariate migration and overfitting. The shortcut is
directly used because the input and output are of the same dimensions.
As the Fig. 1 shows.
2.5. Implementation details

Our implementation was based on the Keras package with the
TensorFlow library as the backend. During training, the probability of
each patch sample belonging to the recrudescence or none class was
computed with a sigmoid classifier. The weight of the network was
optimized via Rmsprop algorithmwith a mini-batch size of 32. The ob-
jective function used was binary cross-entropy. The initial learning
rate was set to 0·001. The learning rate was reduced to 0·2 of its
value after 50 consecutive epochs without an improvement of the vali-
dation loss.

At the end of training phase, the model was reverted back to the
model with the lowest validation loss up until that point in training.
The final model was the one with lowest validation loss at any point
during training. Kernel weight was initialized randomly using the
Glorot uniform initializer. Biases was initialized with zero. We ran
our code on a graphics processing unit to exploit its computational
speed. Our algorithm was trained on a NVIDIA TITAN X graphics pro-
cessing unit.
Table 1
Clinical pathological characteristics and followed- up results of patients in different cohorts.⁎

Variables Training cohort(n = 80) Internal val

Low-score(%) High- score(%) P-value Low- score

Gender 0.655
Male 32(78.0) 9(22.0) 12(66.7)
Female 32(82.1) 7(17.9) 12(70.6)
Age(mean ± SD,years) 53.83 ± 12.59 59.94 ± 12.37 0.086 51.58 ± 12
Tumor site 0.144
Gastric 50(84.7) 9(15.3) 19(65.5)
Non-gastric 14(66.7) 7(33.3) 5(83.3)
Tumor size(cm) 4.78 ± 2.71 11.34 ± 5.11 b 0.0001* 4.79 ± 3.13
Mitotic count 0.073
≤5/50HPFs 49(86.0) 8(14.0) 21(84.0)
N5/50HPFs 15(65.2) 8(34.8) 3(30.0)
Recurrence b 0.0001*

Absent 62(95.4) 3(4.6) 22(88.0)
Present 2(13.3) 13(86.7) 2(20.0)

Independent samples t-test was applied in continuous variables. Chi-Squared test was applied
SD standard deviation, HPF high-power field.
⁎ P value b0.05.
2.6. Performance assessment of ResNet model

We assessed the prognostic accuracy of the risk prediction in both
training cohort and validation cohort (internal and external validation
cohorts) using time-dependent receiver operator characteristics (ROC)
analysis at different follow-up times. The GISTs patients were classified
in to high and low risk score groups. The thresholds of classification
were identified by using X-title [25]. We evaluated the potential associ-
ation of the ResNet model with RFS in the training cohort and validated
it in validation cohort by using Kaplan-Meier survival analysis.
2.7. Development and evaluation an individualized nomogram

To testify the incremental value of the ResNetmodel to the indepen-
dent clinicopathological factors for individualized assessment of RFS,we
developed a ResNet nomogram and a clinicopathologic nomogram in
the whole cohort based on the multivariate Cox analysis [26]. The cali-
bration was applied to compare the predicted survival with the actual
survival [27]. The Net Reclassification Improvement (NRI) was calcu-
lated to quantify the improvement of usefulness with the addition of
ResNet model [28]. To determine the clinical usefulness of our ResNet
model, a decision curve analysis (DCA) which quantify the net benefits
at different threshold probabilities was conducted [29].
idation cohort(n = 35) External validation cohort(n = 32)

(%) High- score(%) P-value Low- score(%) High- score(%) P-value

0.803 1.000
6(33.3) 8(88.9) 1(11.1)
5(29.4) 19(82.6) 4(17.4)

.12 63.82 ± 10.99 0.007* 62.41 ± 11.38 59.00 ± 9.03 0.533
0.709 0.673

10(34.5) 22(84.6) 4(15.4)
1(16.7) 5(83.3) 1(16.7)
9.54 ± 4.77 0.009* 6.03 ± 3.05 10.50 ± 5.27 0.012*

0.007* 0.642
4(16.0) 17(89.5) 2(10.5)
7(70.0) 10(76.9) 3(23.1)

b 0.0001* 0.011*

3(12.0) 23(95.8) 1(4.2)
8(80.0) 4(50.0) 4(50.0)

in categorical variables.



Fig. 2. ResNetmodel risk predictionmeasured by time-dependent ROC curves and Kaplan-Meier survival. (A-B) Training cohort. (C-D) Internal validation cohort. (E-F) External validation
cohort. The prognostic accuracy is evaluated by the AUCs 3 and 5 years in training, internal, and external validation cohorts. P-values are calculated by the log-rank test. ROC receiver op-
erator characteristic, AUC area under the curve.
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The discrimination performance of ResNet nomogramwas assessed
compared with ResNet model, modified National Institutes of Health
(NIH) criteria [30], Armed Forces Institute of Pathology (AFIP) criteria
[31], and clinicopathologic nomogram on the basis of ROC curves and
AUCvalues. The Akaike information criterion (AIC)was used to evaluate
the risk of overfitting.

2.8. Statistical analysis

t-test and chi-square were applied for continuous variables and cat-
egorical variables separately. The Kaplan-Meier method and log-rank
test were performed to estimate the RFS of GISTs. And the Cox propor-
tional hazards model was used for multivariate analyses. We evaluated
the prognostic accuracy of our model using time-dependent receiver
operator characteristics (ROC) analysis. Statistical analyses were con-
ducted with R software (version 3·5·1) and SPSS software (version
22·0). We used 10 packages of R software, which were survminer, sur-
vival, timeROC, rms, VIM, nomogramEX, Hmisc, Formula, ggplot2, and
rmda. A two-sided P value b0·05 was considered significant.

3. Results

3.1. Patient characteristics

A total of 147 GISTs patients' contrast-enhanced abdominal CT im-
ages were applied in this study. Patient characteristics in the training,
internal validation and external validation cohorts were presented in
Table 1. The median (interquartile rang [IQR]) survival times for RFS
were 57(13–163) months in training cohort, 59(11–137) months in in-
ternal validation cohort, and 53(28–119) months in external validation
cohort, respectively.

3.2. Model performance and validation

The ResNet model was significantly associated with the RFS
(Table S1). In training cohort, AUC at 3 years is 0·951 (95% CI:
0·901–0·999), while AUC at 5 years is 0·945 (95%CI: 0·887–0·999)
(Fig. 2A). In internal validation cohort, AUC at 3 years is 0·869 (95% CI:
0·747–0·991), while AUC at 5 years is 0·816 (95%CI: 0·628–0·999)
(Fig. 2C). In external validation cohort, AUC at 3 years is 0·722 (95% CI:
0·453–0·991), while AUC at 5 years is 0·923 (95%CI: 0·812–0·999)
(Fig. 2E).
Fig. 3. ResNet nomogram for RFS and calibration curve. (A) ResNet nomogram for RFS. This no
indicators: tumor site, size, and mitotic count. The probability of each predictor can be conve
predictor in total points axis, we can find the patient's probability of RFS at the bottom of the
on the x-axis, and the observed tumor relapse rate is plotted on the y-axis. Yellow dotted line
the actual outcome. Solid line represents estimated outcome of the model, a closer alignment
solid lines represent the estimations of 3-year RFS and 5-year RFS, respectively. RFS recurrence
The optimum cutoffs generated by the X-tile plot was 0·9819.
Accordingly, patients were classified into a low risk score group
(scoreb0·9819) and a high risk score group (score ≥ 0·9819).

In the training cohort, the 3-year RFS and 5-year RFS were 98·44%
and 51·56%, respectively, for the low score group; 37·50% and
18·75%, respectively, for the high score group (all Pb0·0001) (Fig. 2B).
In the internal validation cohort, the 3-year RFS and 5-year RFS were
100·00% and 58·33%, respectively, for the low score group; 54·55%
and 27·27%, respectively, for the high score group. (all Pb0·0001)
(Fig. 2D). In the external validation cohort, the 3-year RFS and 5-year
RFS were 88·89% and 44·44%, respectively, for the low score group; In
high score group, the 3-year RFS was 80·00%, and there is no 5-year
RFS patient. (all Pb0·0002) (Fig. 2F).

3.3. Assessment of Incremental Value of model in Individual RFS
Performance

Three statistically significant clinicopathologic indicators were ob-
tained: the tumor site, size, and mitotic count (Table S1, 2). The ResNet
and clinicopathologic nomogramswere presented in Fig. 3A and Fig. S2,
respectively. The calibration curves of the nomograms were shown in
Fig. 3B and Fig. S3. This curve showed the good calibration of the nomo-
gram in terms of the agreement between the estimated and the ob-
served 3- and 5- year outcomes. The inclusion of the ResNet model in
the clinicopathologic nomogram yielded a total NRI of 0·605(95% CI:
0·243-0·966; p = 0·001) for RFS, indicating that improved classifica-
tion accuracy for survival outcomes.

Comparedwithmodified NIH, AFIP, and clinicopathologic nomogram
in the whole cohort, both the ResNet nomogram and ResNet model
showed a better predictive capability in 3- and 5-year RFS in ROC curves
(Fig. 4 A, B). For 3-year RFS, the AUCs of ResNet nomogram, ResNet
model, clinicopathologic nomogram, modified NIH, AFIP were 0·947
(95%CI:0·910–0·984), 0·912 (0·851–0·973), 0·852(0·783–0·921),
0·822(0·765–0·879), 0·812(0·726–0·898), respectively. The AUC re-
sults of 5-year RFS of these models were 0.918(95%CI:0·852–0·984),
0·887 (0·816–0·960), 0·772(0·679–0·865), 0·754(0·667–0·841),
0·739(0·643–0·835), respectively (Table 2).

According to the decision curve analysis, ResNet nomogramwas su-
perior to the current risk predicted criteria and clinicopathologic nomo-
gram over most of the range of rational threshold probabilities,
indicating the incremental value of ResNet model in the individualized
prognostic prediction. (Fig. 5).
mogram was developed integrating with ResNet model and significant clinicopathologic
rted into the points axis at the top of the nomogram. After adding up the points of each
nomogram. (B) Calibration curves of ResNet nomogram for RFS. Estimated RFS is plotted
represents a perfect estimated outcome by an ideal model and perfectly association with
of which with the yellow dotted line represents a better performance. The blue and red
-free survival, ResNet Residual Neural Network.



Fig. 4. Receiver operating characteristic (ROC) curves of predictive performances of differentmethods. (A) ROC curve of 3-year RFS prediction. (B) ROC curve of 5-year RFS prediction. The
curves of five colors represent different methods: green, ResNet nomogram; blue, ResNet model; red, clinicopathologic nomogram; purple, modified NIH; yellow, AFIP. ROC receiver
operator characteristic, RFS recurrence-free survival, ResNet Residual Neural Network, NIH National Institutes of Health, AFIP Armed Forces Institute of Pathology.
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4. Discussion

We presented a deep learning-based prognostic model of GISTs,
which can successfully classify those patients into high and low pre-
dicted score groups with significant differences in RFS and was demon-
strated to be an independent risk factor of prognosis in the patientswith
GISTs. Our ResNet nomogram performed better than the modified NIH,
AFIP, and clinicopathologic nomogram and showed incremental value
of ResNet model for individualized RFS estimation. The nomogram
might be useful for the selection of GISTs patients for adjuvant imatinib
therapy.

As described previously, accurately evaluating the risk of GIST recur-
rence after surgery is very important to determine the appropriateness
of adjuvant treatment and the intensity of postoperative surveillance.
However, current schemes of risk-stratification can't explain all the bio-
logical behavior and clinical outcomes of GISTs. Mitotic count is the
most important prognostic factor for GISTs in these criteria, but its reli-
ability is controversial. Mitotic count relies on the subjective identifica-
tion by pathologists, so the number detected may be affected by
different visual field of microscopes, tissue fixation, and sampling
[3,32]. The quantified analysis in CT features using deep learning tech-
nique could eliminate the subjective factors to certain extent, and it
might work as a complement of subjective pathology results. Tumor
size is another important independent prognostic factor for GISTs, pa-
tients with larger tumor size aremore likely to have an adverse progno-
sis. However, some small GISTs may also be aggressive [33,34]. The
Table 2
Performance of Models: the values of AUC and AIC.

Model 3 years Disease-free survival

AUC (95% CI)

ResNet nomogram 0.947(0.910–0.984)
ResNet model 0.912 (0.851–0.973)
Clinicopathologic nomogram 0.852(0.783–0.921)
Modified NIH 0.822(0.765–0.879)
AFIP 0.812(0.726–0.898)

ResNet Residual neural network, NIH National Institutes of Health, AFIP Armed Forces Institute
application of AI in medical data such as the radiomics approach could
well capture the intratumoral heterogeneity andmight have the poten-
tial to perform better preoperatively in some cases with small size [13].
Additionally, the same as mitotic count, tumor size also has potential
variability. Because when the specimen is measured in relation to fixa-
tion, tumor size could be affected. In our nomogram, the weight of
ResNet model is greater than both mitotic count and tumor size.

Risk criteria for GISTs have always been being revised due to the ex-
ploration of new significant variables [30,31]. New integrating ap-
proaches of prognostic factors could also increase the accuracy of
prognostic prediction [35–37] such as the nomogram and non-linear
model. However, these criteriamainly depend on different combination
of the traditional clinicopathological factors such as the tumor size, site,
and, mitotic count, which means they can't improve the performance
distinctly [1]. The deep learning approach based on medical images
couldn't only provide a novel prognostic multi-feature factor, but also
a powerful and efficient algorithmic technique. The comparison results
in our study demonstrated the discrimination of deep learning model
was not only superior to the modified NIH and AFIP criteria, but also
to the nomogram integrating the significant clinicopathologic factors.

Radiomics signature has been demonstrated in various studies,
which could assess the biological behavior of a tumor comprehensively
and potentially improve the accuracy of diagnosis, prognosis, and pre-
diction [7–16]. Deep learning can simplify the multi-step pipeline of
conventional radiomics by training and testing the predictive features
directly from the images with greater reproducibility. Convolutional
5 years Disease-free survival

AIC AUC (95% CI) AIC

1411.883 0.918(0.852–0.984) 1411.883
1416.413 0.887(0.816–0.960) 1416.413
1417.826 0.772(0.679–0.865) 1417.826
1418.545 0.754(0.667–0.841) 1418.545
1420.848 0.739(0.643–0.835) 1420.848

of Pathology, AIC Akaike information criterion.



Fig. 5. Decision curve analysis for each method. The y-axis measures the net benefit. The net benefit is calculated by adding up the true positive results and subtracting the false positive
results, weighting the latter by a factor relevant to the relative harm of an undetected caner comparedwith the harmof unnecessary treatment. The ResNet nomogram has the highest net
benefit compared to both the other methods and simple strategies such as follow-up of all patients (grey line) or no patients (horizontal black line) across the full range of threshold
probabilities at which a patient would choose to undergo imaging follow-up. ResNet Residual Neural Network, NIHNational Institutes of Health, AFIP Armed Forces Institute of Pathology.
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neural networks (CNNs) is a typical network for learning hierarchical
representations of imaging data [38]. Neural networks are inspired by
the connectivity pattern between neurons in biological processes,
transforming input image through a series of chained convolutional
layers and then resulting in output vector of class probability. Compared
to conventional machine learning classification, it can obtain higher ac-
curacy butwith relatively little pre-processing. Residual neural network
won the 2015 Large Scale Visual Recognition Challenge in image classi-
fication and substantially superior to previous network of deep learning
[24]. ResNet permanently utilizes shortcut connections between shal-
low and deep networks to adjust training error rate and improve the ac-
curacy of classification. To date, ResNet has been used more and more
due to its utility and simplicity [22,39,40].

The need for a large size of training data is one of the challenges of
deep learning. The low incidence of GISTs might lead to the insufficient
training data. Therefore, in the study, we extractedmultiple image sam-
ples from one patient using patch pre-processing. In addition, the data
augmentation was also used to increase the size of training data and
prevent overfitting. Furthermore, the architecture we choose was rela-
tively simple, and the satisfactory results in our study demonstrated
that it was complex enough to learn the predictive features. The ResNet
with simple architecture and short time consumption might make the
proposed method more likely to be applied in GISTs filed. In addition,
nomogram provided an individual and quantitative approach for clinic
application by integrating theResNetmodel and other risk factors. Com-
bined ResNet nomogram acquired better discrimination performance
than either the ResNet model or the clinicopathologic nomogram
alone with positive NRI.

Automatic image segmentation is one of the applications of deep
learning, but still under developing. Therefore, in this study, we used
the manual annotation of tumor ROI rather than deep learning algo-
rithm. Moreover, our ROI annotations by handwere obtained a satisfac-
tory inter- and intraobserver assessment in previous study [13], make
the subsequent analysis more reliable.

There are several limitations in this study. First, our data were col-
lected retrospectively, and further prospective research is needed. Sec-
ond, relatively small sample size is also a limiting factor in deep
learning, but data pre-processing using patches and data augmentation
were performed to increase size of the training cohort. Moreover, the
simple architecture of ResNet we applied also benefited the small
input data. Third, the process of model development may be time-
consuming, but this ResNet nomogram can be programmed into
accessible software or websites, which could easily facilitate its clinical
application. Nevertheless, to our knowledge, this is the first study to
predict the recurrence risk of GISTs patients by deep learning technique,
which might supply a valuable reference for deep learning application
in gastrointestinal tumor. More cohort validation and more integrable
factors such as KIT and PDGFRA mutations should be considered in fu-
ture research [1,41].

In this study,we developed a ResNetmodel to predict the recurrence
risk of the GISTs with satisfactory performance. Compared with a
radiomics approach, our deep learning model don't need pre-
engineered features processing. This model may have the potential to
become an applicable image biomarker or integrable factor to improve
the accuracy of risk prediction for GISTs. Incorporating the ResNet
model and clinicopathologic risk factors into an easy-to-use nomogram
wasmore likely to predict the individual RFS for patients after complete
resection of localized primary GISTs, consequently avoiding excessive
targeted therapy or missing the optimal timing.
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