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Abstract

Current high-sensitivity cancer screening methods, largely utilizing correlative biomarkers,

suffer from false positive rates that lead to unnecessary medical procedures and debatable

public health benefit overall. Detection of circulating tumor DNA (ctDNA), a causal bio-

marker, has the potential to revolutionize cancer screening. Thus far, the majority of ctDNA

studies have focused on detection of tumor-specific point mutations after cancer diagnosis

for the purpose of post-treatment surveillance. However, ctDNA point mutation detection

methods developed to date likely lack either the scope or analytical sensitivity necessary to

be useful for cancer screening, due to the low (<1%) ctDNA fraction derived from early

stage tumors. On the other hand, tumor-derived copy number variant (CNV) detection is

hypothetically a superior means of ctDNA-based cancer screening for many tumor types,

given that, relative to point mutations, each individual tumor CNV contributes a much larger

number of ctDNA fragments to the overall pool of circulating free DNA (cfDNA). A small

number of studies have demonstrated the potential of ctDNA CNV-based screening in select

cancer types. Here we perform an in silico assessment of the potential for ctDNA CNV-

based cancer screening across many common cancers, and suggest ctDNA CNV detection

shows promise as a broad cancer screening methodology.

Introduction

According to the National Cancer Institute, 5-year survival rates of cancer patients are the

highest when cancer is detected and treated at an early, localized, stage. Currently, there are a

number of different cancer-type specific biomarkers used to indirectly detect cancer at an

early stage; however most of them are associated with alarmingly high false positive rates

(FPRs). For example, ovarian cancer screening using the CA-125 biomarker [1] along with

transvaginal ultrasonography has a sensitivity of ~90% but a FPR of 57%[2]. Mammography

for breast cancer screening has a FPR of 40–60% over 10 years of screening [3], Cologuard1

for colorectal cancer screen has a FPR of 13.4% [4], and PSA for prostate cancer screening has

a FPR of 20–30% when the test aims to detect>80% of cancers [5]. False positive results, and
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sometimes screening methods themselves, tend to lead to invasive and uncomfortable proce-

dures that are associated with risk to otherwise healthy individuals; e.g. radiation exposure

during mammography and surgery or biopsy in the case of other tumor types. These unneces-

sary procedures, unfortunately, lead to adverse events in approximately 15% of cases [6]. High

false positive rates along with high adverse event rates for follow-up procedures place a signifi-

cant proportion of the healthy population at unnecessary risk. Thus, an alternative and highly

accurate non-invasive method for early cancer detection would both reduce the rate and

impact of false positive results on otherwise healthy individuals, and could lead to substantial

improvements in survival and quality of life of cancer patients. One possible approach is to uti-

lize circulating tumor DNA (ctDNA) as a causal, rather than correlative, biomarker for the

detection of cancer.

A series of studies have demonstrated the ability to detect tumor derived genetic aberrations

in circulating free DNA (cfDNA) [7–10]. Point mutation detection methodologies are either

unbiased but have modest sensitivity or are high sensitivity but must be customized to a cancer

patient based on their known tumor mutation profile–which is not possible for screening pur-

poses. Nevertheless, these methods are extremely useful for cancer treatment monitoring. The

major obstacle to the extension of cfDNA tests to cancer screening is the low fraction of

ctDNA within cfDNA at early stages. The fraction of ctDNA in the bloodstream varies depend-

ing on the cancer burden and the type of cancer but is usually <10% even at late stages, and is

generally below 1% ctDNA fraction at early stages when cancer screening offers the most clini-

cal benefit [8, 11–13]. For example, at 0.1% ctDNA fraction of total cfDNA, one can expect

only 1–5 ctDNA copies per point mutation per mL of blood [8]–a mutation fraction that is

below the error rate of modern next generation sequencing (NGS).

Copy number variations (CNVs), like point mutations, are common and causal for a large

proportion of cancer types [14, 15]. Unlike SNVs, tumor derived CNVs contribute to the total

cfDNA a much larger number of ctDNA fragments per CNV event (proportional to the size of

the CNV), and their detection is not bounded by the error rate of available sequencing instru-

ments but rather the throughput and biases of those instruments. Thus, detection of large cir-

culating tumor-derived CNVs via cfDNA sequencing is potentially a more viable approach to

cancer screening. Moreover, recent studies have found that CNV signatures are more likely to

be useful for determining the tissue of origin of a tumor, a characteristic that is important for

clinical follow-up in a broad cancer screening setting [16–18], primarily due to the fact that

somatic point mutations occur recurrently across disparate tumor types.

A few proof-of-concept studies have explored the possibility of tumor derived CNV detec-

tion in cfDNA, but these studies have focused on detection of CNVs from a known cancer

type and/or were performed on subjects with relatively high tumor loads [12, 13, 19, 20]. A

broad assessment of the utility of tumor derived CNV detection in cfDNA as a cancer screen-

ing tool has not yet been performed. In this light, we explore the potential for ctDNA CNV

detection for cancer screening by evaluating the ability to detect cancer and identify cancer

type via large tumor CNV events. We demonstrate that, for many tumor types, including those

not necessarily enriched with CNV events, it is theoretically possible to both accurately detect

and classify tumor types via large ctDNA detectable tumor-derived CNVs.

Results

Theoretical power for detecting ctDNA CNVs

Relatively recent findings of cancer in asymptomatic pregnant women undergoing non-inva-

sive prenatal testing (NIPT) highlight the potential of cfDNA sequencing for cancer screening

[21, 22]. NIPT tests are generally powered to detect large chromosomal aberrations, though it
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has been shown that smaller size CNV events, ~7 Mb in size, can be detected via NIPT testing

with greater than 95% sensitivity and specificity [23]. However, NIPT tests utilize low genomic

coverage (<1X) and are performed in a context where on average ~10% [24, 25] of the cfDNA

in a pregnant woman’s bloodstream is derived from the fetus. In contrast, ctDNA fractions

can be 1% or lower for early stage tumors [9]. Moreover, pathogenic cancer CNVs can range

anywhere from 1 Mb, to 5 Mb, to 100+ Mb. Therefore, we first determined the theoretical

sequencing depth requirements necessary to detect cancer derived CNV events in cfDNA at

relevant ctDNA fractions and cancer CNV event sizes.

To determine the relevant statistical model for ctDNA CNV detection, we collected and

sequenced cfDNA from 9 healthy donors. Sequence data was mapped to 10kb genomic

bins (S1 Fig), outlier bins removed (S2 Fig), bin counts corrected for GC content (S3 Fig)

(see Methods) and the distribution of bin counts fit to a negative binomial and Poisson

distribution (Fig 1A). Visual inspection and goodness of fit analysis determined that the

negative binomial distribution was the appropriate statistic for ctDNA CNV detection

(Χ-squared, p-value = 0.40).

Next, we determined the theoretical sequencing depth required for ctDNA CNV detection.

The relationship between CNV size, ctDNA fraction, and read depth was explored via the neg-

ative binomial statistical model. Variance and size parameters of the model were empirically

determined from healthy donor cfDNA sequencing as mentioned above (see Methods). As can

been seen in Fig 1B, assuming first that somatic CNVs are only a single copy gained or lost, at

10% ctDNA fraction, focal gene amplifications, i.e. CNVs as small as 1Mb, can be easily

detected with just a 1X coverage of the genome. At 1% ctDNA fraction, large focal CNVs [26],

i.e. CNVs of ~30Mb, are detectable at 3X genomic coverage. At 0.5% ctDNA fraction, chromo-

some arm level changes, i.e. CNVs of ~100Mb, are detectable at 3X genomic coverage. And at

0.1% ctDNA fraction, approximately 131X genomic coverage is required to detect 100Mb sin-

gle copy changes.

Cancer CNVs, especially amplifications, often exceed a single copy gained or lost [27]. The

sensitivity of ctDNA CNV detection increases substantially for highly amplified (�4 copies

gained) regions (Fig 1C). For example, at 0.5% ctDNA fraction and 3X genomic coverage, the

detection limit improves from ~100Mb when a single copy is gained to ~8Mb for gains of 4

copies. Similarly, ~100 Mb events become detectable at 10X genomic coverage at 0.1% ctDNA

Fig 1. Theoretical limits of ctDNA CNV detection. A) Density plot for healthy donor cfDNA sequencing reads mapped to 10kb genomic bins. A negative

binomial (red) and Poisson (blue) distribution was fit to the resultant data. B) The ctDNA CNV size limit of detection (in megabases) is plotted as a function of

sequencing depth for single copy change at various ctDNA fractions. C) Same as panel B but for four copies gained.

https://doi.org/10.1371/journal.pone.0180647.g001
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fraction. Thus, the necessary depth to detect cancer CNVs in ctDNA can vary widely from 1X

in the best case scenario (high ctDNA fraction + high copy number) where small gene level

events are detectable, to>100X in the worst case scenario (low ctDNA fraction and single

copy number changes), when only chromosome arm level events (~100 Mb) are detectable.

Simulation of ctDNA CNV data

Given that the limit of detection for ctDNA CNVs depends heavily on a variety of parameters,

we evaluated the potential of ctDNA CNV based cancer screening under the assumption of

best case (sensitivity to detect>5 Mb events) and worst case (sensitivity to detect only >100

Mb events) ctDNA CNV resolution scenarios. ctDNA detectable CNV profiles were simulated

from The Cancer Genome Atlas (TCGA) data. The human genome was divided into 5 and 100

Mb segments, and for each sample, the average copy number was determined for each seg-

ment. For example, if the primary data for a 5 Mb segment of a particular tumor sample

included just a 1 Mb subsection with 5 extra copies gained (i.e. 1 extra copy on average), that 5

Mb segment would be labeled as detectable in the best case scenario. Similarly, if the entirety

of the 5 Mb bin was spanned by a CNV event of 1 copy number gain, it would also be labeled

as detectable in the best case scenario. By the same token, in the worst case scenario, the aver-

age copy number of an entire 100 Mb segment must be equal to or exceed 3 copies (average of

one copy gained throughout the entire 100 Mb segment) for it to be deemed a detectable

event. While more complex event detection and change point detection methods are possible,

this approach should represent a lower bound for performance under the given assumptions

for ctDNA CNV event detectability.

The simulation was performed for 25 different cancer types (see Methods) but the results

we present here are for 11 major pan-cancer [17] solid tumor types: breast adenocarcinoma

(BRCA), lung adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), uterine cor-

pus endometrial carcinoma (UCEC), glioblastoma multiforme (GBM), head and neck squa-

mous cell carcinoma (HNSC), colon and rectal carcinoma (COAD, READ), bladder urothelial

carcinoma (BLCA), kidney renal clear cell carcinoma (KIRC), and ovarian serous carcinoma

(OV), for simplicity of visualization; full results are presented in supplemental materials. The

fraction of samples with at least one detectable event in the best (Fig 2A and 2B) and worst

(Fig 2C and 2D) case resolution scenarios is plotted in Fig 2.

Classification of cancers based on ctDNA CNV profiles

We utilized the simulated ctDNA CNV profiles to answer two questions: 1) Can ctDNA CNV

profiles be used to detect the presence of cancer in general (i.e. differentiate cancer samples

from normal samples)? 2) If cancer is detected, can the ctDNA CNV profile be used to deter-

mine the tissue of origin for follow-up screening? In order to avoid over-stating the perfor-

mance of this approach to cancer screening, we present results under best and worst case

sensitivity scenarios utilizing both simple and sophisticated classification methods.

First, we explored whether simple clustering of cancer samples based on ctDNA detectable

CNV events would be sufficient to discriminate cancer types from one another. Unsupervised

clustering utilizing an unfiltered set of all detectable genomic segments did not effectively sepa-

rate tumor types from one another (results not shown). Therefore, we performed clustering

utilizing only genomic segments deemed relevant for distinguishing tumor types from one

another in the random forest classification model described below. The resulting heat maps

demonstrate some degree of separation of disparate tumor types from one another in both the

5 Mb and 100 Mb ctDNA CNV resolution scenarios (Fig 3). Certain tumor types like GBM

and KIRC form cohesive, though not complete, blocks of clustered samples, while most others
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demonstrated a tendency to form close but intermixed clusters with other tumor types. These

results suggest that classification of tumor type by ctDNA CNV profile is feasible, but would

require more sophisticated methodology to account for CNV profile heterogeneity within

tumor types and similarity across tumor types [17].

Therefore, we evaluated the performance of a simple k nearest neighbor classification

approach (see Methods). This model was readily capable of identifying the presence of cancer

with a true positive rate (TPR) of 0.80 and a positive predictive value (PPV) of 0.999 at the 100

Mb ctDNA CNV resolution; suggesting that, in theory, even a low resolution ctDNA CNV

profile can be utilized to effectively detect the presence of cancer with a negligible false positive

rate (Fig 4A). At 5 Mb ctDNA CNV resolution, the performance remains unchanged (TPR

0.79, PPV 0.999), suggesting that low resolution ctDNA CNV profiling is sufficient if the goal

is to simply detect the presence of cancer (S1 Table).

When the nearest neighbor approach was utilized to determine cancer type, an overall accu-

racy of 0.69 was observed at 100 Mb resolution (Fig 4A). Again, the overall accuracy did not

improve with improved ctDNA CNV resolution (0.69 accuracy at 5 Mb resolution). Certain

CNV poor cancer types, such as pancreatic adenocarcinomas, prostate adenocarcinomas and

thyroid carcinomas formed a floor for accuracy that could not be improved with increased

ctDNA CNV detection resolution (Table 1 and S1 Table).

Finally, we utilized a random forest classification model to simulate the (near) optimal classifica-

tion performance of ctDNA detectable CNVs [28]. The random forest was also readily capable of

detecting the presence of cancer as expected: TPR of 0.854 and PPV of 0.997 at 100 Mb ctDNA

Fig 2. Percentage of cancer samples with ctDNA detectable CNV events. The fraction of samples with at least one detectable CNV event (top panels) or

two and more detectable CNV events (bottom panels) at 5 Mb (left panels) and 100 Mb (right panels) resolution are plotted per cancer type. All CNV events

were considered (black) as well as only those deemed important for cancer type discrimination by our random forest model (grey).

https://doi.org/10.1371/journal.pone.0180647.g002

Assessment of CNV detection for cancer screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0180647 July 7, 2017 5 / 18

https://doi.org/10.1371/journal.pone.0180647.g002
https://doi.org/10.1371/journal.pone.0180647


CNV resolution and TPR of 0.895 and PPV of 0.995 at 5 Mb resolution (Fig 4B). The genomic

regions deemed important by the random forest for cancer classification are presented in S2 Table.

Fig 3. Unsupervised cancer sample clustering with ctDNA detectable CNV events. Heat maps representing the results of

unsupervised clustering of cancer samples using 100 Mb resolution (top panel) and 5 Mb resolution (bottom panel) of ctDNA CNV

events. Deletions are depicted in blue and amplifications are depicted in red.

https://doi.org/10.1371/journal.pone.0180647.g003
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When the random forest was utilized to determine cancer type, the model had an overall

accuracy of 0.78 ± 0.0054 and 0.74 ± 0.0095 at ctDNA CNV resolution of 5Mb and 100Mb

respectively (Fig 4B). While there is an overall improvement in the performance of the model

across most cancer types when ctDNA CNV resolution is improved from 100 Mb to 5 Mb,

once again the improvement is not dramatic. ROC curves at 5Mb and 100Mb resolution are

plotted in Fig 5 for the 11 major solid tumor types, and demonstrate significant differences in

performance across tumor types. Certain cancer types, such as OV, BRCA, GBM and KIRC

are consistently and accurately (~95%) assigned to the correct tumor type regardless of ctDNA

CNV resolution. While others, apparently those of squamous histology, such as HNSC, LUSC,

and BLCA show a considerable improvement (~5% increase in accuracy) in classification

accuracy as ctDNA CNV detection resolution is improved. Thus, while cancer profiles can be

readily distinguished from normal profiles, determination of the tissue of origin shows vari-

ability in performance across tumor types and ctDNA CNV resolution.

The optimal performance for the different cancer types, based on the point on the ROC

curve nearest to 100% specificity and sensitivity is presented in Table 1 and S3 Table. Most

cancer types demonstrate a PPV of>80% at even coarse grain resolution (100Mb) outpacing

the PPV of diagnostic tests currently used in clinical practice. OV and GBM demonstrate the

best performance (>90% TPR and PPV) suggesting they are excellent candidates for ctDNA

CNV based screening applications. Many other tumor types, especially BRCA, UCEC, READ,

KIRC, and LUSC also demonstrate good TPR and PPV rates (Table 1).

Tumor misclassification

Finally, we investigated whether there were any underlying patterns to the tumor type misclas-

sifications. The misclassification heat maps at 5Mb and 100 Mb ctDNA CNV resolution are

Fig 4. Performance of the classification models. The predictive performance of the KNN model (left panel) and the random forest model (right panel) is

plotted. In general, random forest models outperform the KNN models. Positive predictive value (light gray) (PPV) remains stable across models and CNV

size resolution. Accuracy (black) and true positive rate (dark gray) (TPR) remain stable at 5Mb and 100Mb resolutions for the KNN model but increase at 5Mb

resolution for the random forest model.

https://doi.org/10.1371/journal.pone.0180647.g004
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displayed in Fig 6. Raw counts for misclassifications are presented in S4 Table. Many misclassi-

fications were overt errors—cancer samples being classified as normal samples (23.4% of

errors) or as breast invasive carcinomas (12.8% of errors). These errors are largely derived

from cancer types such as thyroid carcinoma that have very poor performance overall and

have flat CNV profiles that are difficult to distinguish from normal samples. Breast cancers

tend to be diverse with respect to their cell type of origin and contain molecularly distinct sub-

types [17], and thus may mimic CNV profiles of other tumor types. While breast cancer sam-

ples themselves were classified accurately, many errors were derived from other tumor types

being classified as breast cancer. Given that breast cancer was the largest sample set overall, the

imbalance of tumor samples per type is potentially driving this misclassification bias.

For cancer types without flat CNV profiles, misclassification tended to cluster based on tis-

sue of origin or molecular subtype. For example, squamous cell cancers like LUSC, HNSC,

ESCA and CESC show similar misclassification patterns and are often misclassified for one

Table 1. Performance of the KNN and random forest classification models for determination of cancer type.

K-Nearest Neighbor Random Forest

100 Mb 5 Mb 100 Mb 5 Mb

Sample Type TPR PPV TPR PPV TPR PPV TPR PPV

Thyroid carcinoma 0.088 0.182 0.105 0.245 0.200 0.521 0.291 0.558

Pancreatic adenocarcinoma 0.000 0.000 0.020 0.500 0.486 0.610 0.627 0.696

Uterine Corpus Endometrial Carcinoma 0.252 0.284 0.325 0.221 0.669 0.709 0.684 0.730

Stomach adenocarcinoma 0.357 0.303 0.232 0.277 0.758 0.777 0.817 0.824

Prostate adenocarcinoma 0.130 0.213 0.206 0.415 0.550 0.669 0.824 0.834

Colon adenocarcinoma 0.673 0.536 0.645 0.477 0.830 0.837 0.834 0.843

Bladder Urothelial Carcinoma 0.115 0.429 0.077 0.500 0.810 0.808 0.839 0.845

Kidney renal papillary cell carcinoma 0.574 0.684 0.618 0.627 0.875 0.881 0.841 0.848

Lung adenocarcinoma 0.113 0.536 0.135 0.400 0.822 0.830 0.853 0.857

Esophageal carcinoma 0.022 1.000 0.000 NA 0.795 0.805 0.854 0.853

Adrenocortical carcinoma 0.409 0.750 0.409 0.692 0.911 0.909 0.856 0.864

Head and Neck squamous cell carcinoma 0.280 0.298 0.333 0.352 0.834 0.840 0.872 0.876

Cervical squamous cell carcinoma

and endocervical adenocarcinoma

0.042 0.250 0.097 0.318 0.855 0.858 0.875 0.876

Kidney Chromophobe 0.882 0.789 0.882 0.682 0.879 0.888 0.879 0.889

Breast invasive carcinoma 0.665 0.365 0.482 0.519 0.862 0.865 0.881 0.883

Liver hepatocellular carcinoma 0.150 0.750 0.390 0.513 0.844 0.851 0.884 0.884

Rectum adenocarcinoma 0.027 0.250 0.000 0.000 0.916 0.916 0.886 0.889

Uterine Carcinosarcoma 0.000 NA 0.000 NA 0.893 0.886 0.893 0.885

Skin Cutaneous Melanoma 0.212 0.833 0.297 0.833 0.847 0.853 0.900 0.902

Kidney renal clear cell carcinoma 0.746 0.585 0.754 0.537 0.881 0.888 0.902 0.907

Lung squamous cell carcinoma 0.488 0.438 0.545 0.493 0.860 0.868 0.910 0.910

Brain Lower Grade Glioma 0.478 0.637 0.463 0.441 0.865 0.864 0.911 0.913

Pheochromocytoma and Paraganglioma 0.435 0.833 0.391 0.857 0.922 0.923 0.911 0.914

Glioblastoma multiforme 0.783 0.675 0.811 0.577 0.929 0.930 0.944 0.944

Ovarian serous cystadenocarcinoma 0.321 0.863 0.372 0.879 0.937 0.937 0.957 0.956

Normal 1.000 0.836 0.999 0.832 0.994 0.993 0.983 0.982

The performance of the KNN model and the optimal performance of the random forest model—based on the point on the ROC curve nearest to 100%

specificity and sensitivity—per cancer type are listed at the 100 Mb and 5 Mb segment size thresholds. PPV: Positive predictive value; TPR: True positive

rate.

https://doi.org/10.1371/journal.pone.0180647.t001
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Fig 5. Tumor classification performance. ROC curves at 5Mb (top panels) and 100Mb ctDNA CNV resolution (bottom panels) showing performance of

cancer detection (left panels) and cancer type determination (right panels) for 11 major types of solid tumors—breast adenocarcinoma (BRCA), lung

adenocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), uterine corpus endometrial carcinoma (UCEC), glioblastoma multiforme (GBM), head and

neck squamous cell carcinoma (HNSC), colon and rectal carcinoma (COAD, READ), bladder urothelial carcinoma (BLCA), kidney renal clear cell carcinoma

(KIRC), ovarian serous carcinoma (OV). A small overall increase in the AUC values when going from a 100 Mb resolution to 5 Mb resolution can be observed

for both detection of cancer and determination of cancer type.

https://doi.org/10.1371/journal.pone.0180647.g005
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Fig 6. Cancer type misclassification heatmap. The frequency of cross misclassifications is depicted in a heatmap for 5 Mb (panel A) and 100 Mb

(panel B) ctDNA CNV resolution. Columns correspond to the known cancer type and rows correspond to the predicted cancer type. Misclassification
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another. Tumors of the gastrointestinal tract, STAD, COAD, and READ are also often misclas-

sified for one another. Similarly, brain cancers GBM and LGG show a high degree of cross

misclassification. Cancers originating from the kidneys (KIRC, KIRP, and KICH) form a mis-

classification cluster with ACC and PCPG. These tissues originate from the intermediate

mesoderm, which potentially explains their cross misclassifications. Finally, tumors driven by

similar genetic mechanisms, e.g. OV and BRCA, were often misclassified for one another.

These results suggest that misclassification is often biologically driven and follow clinically

addressable patterns.

Discussion

The promise of improved cancer outcomes via early detection has been hampered by the high

false positive rates associated with modern cancer screening techniques. This is likely due to

the fact that many current cancer screening techniques rely on correlative rather than causal

biomarkers. On the other hand, ctDNA based cancer screening techniques have the potential

to be highly accurate due to the fact that they directly interrogate the causal genomic drivers of

tumorigenesis.

However, the unbiased nature of ctDNA sequencing can create challenges for clinical fol-

low-up given that individual cancer mutations, especially point mutations, are not quite as

cancer type specific as serum tumor markers. Since there is a large degree of overlap in the

recurrent point mutations that drive common cancer types [14, 15], point mutations tend to

be the least useful molecular determinant of tissue of origin [17]. When coupled with the chal-

lenges of mutation detection due to the low fraction of ctDNA amongst the total circulating

DNA pool, point mutation detection likely has limited practical application for cancer screen-

ing. On the other hand, we have demonstrated that even coarse resolution ctDNA CNV detec-

tion can be used to, theoretically, both detect the presence of cancer and predict the tissue of

origin. These ctDNA CNVs act as causal biomarkers for tumorigenesis. While the predictive

segments described herein were selected via an unbiased methodology, about 80% of the 5 Mb

segments deemed informative by the random forest model overlap with a recurrent pan-can-

cer or cancer-type specific amplification or deletion [26]. These segments contain known can-

cer genes including MYC, EGFR, ERBB2 CDKN2A, RB1 and STK11 (S5 Table). Thus, ctDNA

CNVs are a promising biomarker for cancer screening that reflect the underlying molecular

pathogenesis of cancer. It should be noted that other structural variant types could potentially

add to the predictive power of this approach, but would be more difficult to detect given the

short fragment size of ctDNA.

Our analyses also suggest that the sequencing depth required to achieve good biomarker

performance is not unreasonable. While the cost of sequencing has not dropped to the point

where such screening tests could be performed routinely and universally, it is feasible that

these tests could be performed in high risk populations. Moreover, we are likely to reach the

tipping point for sequencing costs that make universal screening feasible in the relatively near

future.

A combination of ctDNA CNV and point mutation detection is likely the optimal solu-

tion for true universal screening. Many of the tumor types that performed poorly in this

analysis, for example melanoma and pancreatic adenocarcinoma, are characterized by

highly recurrent point mutations (BRAF V600E for melanoma and KRAS activating muta-

tions for pancreatic adenocarcinoma) that could be detected via high sensitivity targeted

frequency is depicted by the darkness of each cell, with darker color reflected a higher misclassification frequency. Correct classifications are set to

0. White = 0% misclassification. Dark blue = 100% misclassification.

https://doi.org/10.1371/journal.pone.0180647.g006

Assessment of CNV detection for cancer screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0180647 July 7, 2017 11 / 18

https://doi.org/10.1371/journal.pone.0180647.g006
https://doi.org/10.1371/journal.pone.0180647


assays. Thus, a combination of ctDNA CNV and targeted point mutation detection has the

potential to be a very powerful cancer screening methodology. However, it is interesting to

note that the tumor types that could be most effectively identified via their ctDNA CNV

profile were not necessarily C-class (copy number variant driven) tumor types (as opposed

to M-class (point mutation driven)) as described in another pan-cancer study [29]. For

example, although KIRC is an M-class tumor, it was among the most effectively classified

tumor types based on its CNV profile. While KIRC is not broadly copy number aberrant,

loss of the short arm of chromosome 3 (3p) [30] containing genes like VHL, PBRM1, BAP1

and SETD2, is highly recurrent (90% of KIRC cases) and specific to KIRC. Thus, the prom-

ise of this approach is not necessarily limited to C-class tumor types.

Some potential challenges for the implementation of ctDNA CNV detection for early can-

cer screening are not fully addressed by this in silico analysis. For example, it will be necessary

to understand and override the issue of sample variability in order to achieve the accurate

identification of CNVs via ctDNA in practice. Moreover, it is presumed, but not known,

whether CNVs predictive of cancer are actually present in early stage tumors. The battery of

tumor profiles used in this analysis, derived from The Cancer Genome Atlas (http://

cancergenome.nih.gov/), contain many late stage tumors. Thus, the true power of this tech-

nique will not be known until prospective clinical trials are executed. The analyses presented

herein stand as a proof of concept that further studies have promise and should be attempted

in diverse and larger patient cohorts.

Methods

Theoretical power of ctDNA CNV detection

We collected blood from 9 healthy donors in Cell-Free DNA BCT Streck tubes. Study partici-

pants were enrolled and informed consent obtained under study IRB-15-6661 approved by the

Scripps Institutional Review Board. Plasma from blood samples was isolated by centrifugation

at 820g for 10 minutes, then a subsequent 10-minute centrifugation at 16000g to further

reduce cellular contamination. 8–10 ng/mL of cfDNA was isolated from the plasma using Qia-

gen’s Circulating Nucleic acid kit. cfDNA libraries were prepared and sequenced across 2

rapid mode flowcells of a HiSeq2500 to generate ~100 million 100bp paired end reads per sam-

ple. Reads were processed to remove adapter contamination using Trimmomatic [31], dupli-

cates reads were removed using Picard (http://broadinstitute.github.io/picard/) and finally,

reads were aligned to the human genome build hg38 using the BWA-mem algorithm [32]. The

genome was divided into adjacent 10 Kb bins and calculated read counts per bin were deter-

mined using HTSeq-Count [33].

To account for and remove genomic regions prone to mismapping and other biases, the

distribution of read counts for well-behaved genomic bins was determined using a robust Min-

imum Covariance Determinant estimator to determine a robust location and scale estimate of

the expected read counts per bin [34]. Briefly, the MCD method looks for the h (>n/2) obser-

vations (out of n) whose classical covariance matrix has the lowest possible determinant. The

estimate of location is then the average of these h points, whereas the estimate of scatter is their

covariance matrix, multiplied by a consistency factor. To identify outlier bins, we calculated

the Mahalanobis distance for each genomic bin based on the raw estimate of the location and

scatter and removed bins with a distance greater than 15 (S2B Fig). Out of the 275,645 total

bins 38,323 were marked as outliers using this approach.

Finally, to correct for GC bias, we modified the method proposed by Fan et. Al. [35] by fit-

ting a LOESS curve to estimate the relationship between read count and GC content of the

genomic bins. This relationship was utilized to normalize read counts for GC bias. The

Assessment of CNV detection for cancer screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0180647 July 7, 2017 12 / 18

http://cancergenome.nih.gov/
http://cancergenome.nih.gov/
http://broadinstitute.github.io/picard/
https://doi.org/10.1371/journal.pone.0180647


negative binomial and Poisson distribution was fit to these filtered and normalized read counts

per bin.

To calculate the theoretical limit of detecting CNVs we used the following representation of

the negative binomial probability mass function (pmf):

PðX ¼ kÞ ¼
r

r þm

� �r
Gðr þ kÞ

k!GðrÞ
m

r þm

� �k

Where r is referred to as the “dispersion parameter” or the “shape parameter” and m is the

mean of the distribution. The variance for this model is given by mþ m2

r

� �
. To determine the

variance, we empirically determined the values of m and r at different read depths by subsam-

pling the healthy donor cfDNA data. We then calculated the expected number of reads that

would align to a bin assuming it was either affected by one copy or 4 copy change. This was

done for ctDNA percentages representing a range of ctDNA burden observed in real samples.

The p-value for detection of an affected bin was calculated as the right tail of the negative bino-

mial pmf at the expected read count value calculated above. The p-value threshold for detec-

tion was set at 0.01.

Cancer ctDNA CNV simulation

We downloaded whole genome copy number variation data, generated by the Tumor Cancer

Genome Atlas Research Network (http://cancergenome.nih.gov/), for 25 different cancer

types: Adrenocortical carcinoma (ACC), Bladder Urothelial Carcinoma (BLCA), Brain Lower

Grade Glioma (LGG), Breast invasive carcinoma (BRCA), Cervical squamous cell carcinoma

and endocervical adenocarcinoma (CESC), Colon adenocarcinoma (COAD), Esophageal car-

cinoma (ESCA), Glioblastoma multiforme (GBM), Head and Neck squamous cell carcinoma

(HNSC), Kidney Chromophobe (KICH), Kidney renal clear cell carcinoma (KIRC), Kidney

renal papillary cell carcinoma (KIRP), Liver hepatocellular carcinoma (LIHC), Lung adenocar-

cinoma (LUAD), Lung squamous cell carcinoma (LUSC), Ovarian serous cystadenocarcinoma

(OV), Pancreatic adenocarcinoma (PAAD), Pheochromocytoma and Paraganglioma (PCPG),

Prostate adenocarcinoma (PRDA), Rectum adenocarcinoma (READ), Skin Cutaneous Mela-

noma (SKCM), Stomach adenocarcinoma (STAD), Thyroid carcinoma (THCA), Uterine Car-

cinosarcoma (UCS) and Uterine Corpus Endometrial Carcinoma (UCEC). The data was

accessed in December 2014 from http://gdac.broadinstitute.org/ (doi:10.7908/C19P30S6).

Specifically, we downloaded the segmentation files which contain information about the

copy number of segmented genomic data produced by various algorithms like GLAD and CBS

[36, 37]. CNVs in each sample were run through the SG-ADVISER CNV annotation pipeline

[38] and variants with an allele frequency of>1% in the 1000 Genomes [39] or the Wellderly

[40, 41] cohorts were filtered out to remove germline variants.

To model whether tumor-derived CNVs would be detectable within cfDNA at the 5 and

100 Mb resolution thresholds described in Results, we divided the human genome into the 5

and 100 Mb segments and for each of the segment calculated the average segment duplication

value. If the average segment duplication value exceeded 1 extra copy–that segment was consid-

ered detectable. For example, if a 5 Mb segment has 5 extra copies of a 1Mb subsection or 1

extra copy spanning the entire segment then the 5 Mb segment would be considered detectable.

This continuous numerical representation was then transformed using a Symbolic Aggregate

Approximation [42] to a discrete representation by mapping the average segment duplication

values to categorical values a cardinality of 5. In other words, the average segment duplication

value was simplified to represent segments with near normal copy number, 1 copy amplifica-

tion, 2 or more copy amplification, 1 copy deletion, or 2 copy deletion.
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Prediction methods

The transformed ctDNA CNV data was used to determine whether tumor profiles could be

differentiated from normal sample profiles and whether tumor profiles could be distinguished

from one another.

Simple clustering was done using a modified hamming distance metric where the distance

between samples was calculated as the sum of the deviation between their copy number values

at corresponding genomic segments. Segments with adjacent copy number values (i.e. normal

and 1 extra copy, 1 extra copy and 2 extra copies, etc.) were assigned a distance value of 0.5 and

larger divergence in copy number was set to a distance of 1. Hierarchical clustering was per-

formed in R. Clustering was performed using the distance calculated for only the genomic seg-

ments deemed as important for differentiation by the random forest model described below.

The standard k-Nearest Neighbor algorithm was performed using custom R code. The

modified hamming distance values described above where utilized to determined distances

between samples. For each test sample, the k nearest other samples, where k was set as the

square root of the total number of samples, were utilized to vote for the classification of the test

sample. The test sample was assigned the majority class among the k nearest neighbor samples.

All genomic segments were utilized for this prediction.

The discrete genomic segment values were utilized as predictors in a random forest model

with 10 fold cross-validation. The random forest consisted of 100 trees, and the optimal num-

ber of variables randomly sampled as candidates at each split in the trees was determined heu-

ristically. The ‘caret’ library in R was used to train the random forest models.

For the tumor misclassification heat maps, samples were clustered according to a custom

similarity metric S. Let A and B be two tumor samples with An and Bn being the number of

samples of tumor type A and B respectively. If α and β are the fraction of samples of A classi-

fied as B and the fraction of samples of B classified as A respectively, and N is the total number

of samples, the similarity S(A,B) between A and B can be defined as -

SðA;BÞ ¼
ðaþ bÞ
ðAnþBnÞ

N

Software

Data filtration and symbolic aggregate approximation transformations were performed using

custom scripts in python. All models and R calculations were performed using R v3.1.1. ROC

curves denoting the performance of the models were plotted using the library ‘pROC’. Heat

maps were plotted using the ‘gplots’ library.

Supporting information

S1 Fig. Scatter plot of the number of reads (log10) aligned to each 10Kb bin vs the genomic

location. Each chromosome is plotted in a separate panel.

(TIFF)

S2 Fig. a) Histogram of the Mahalanobis distance of each 10Kb bin from the central location

estimate. b) Scatter plot of the number of reads (log10) aligned to each 10 Kb bin vs the geno-

mic location after outliers were removed. Each chromosome is plotted in a separate panel.

(TIF)

S3 Fig. Scatter plot of read counts vs the GC percentage of each 10Kb bin. Blue line shows

the results of fitting a LOESS curve to the data.

(TIFF)
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S4 Fig. ROC curves for the random forest model at a) 5Mb resolution depicting the cancer

detection for each cancer type b) 100Mb resolution depicting the cancer detection for each

cancer type c) 5Mb resolution depicting the cancer type prediction for each cancer type d)

100Mb resolution depicting the cancer type prediction for each cancer type.

(TIF)

S1 Table. Performance of detecting cancer using KNN.

(XLSX)

S2 Table. Overall accuracy values for predicting cancer type using KNN.

(XLSX)

S3 Table. Optimal performance calculated as the elbow point on the ROC curves for ran-

dom forest models.

(XLSX)

S4 Table. Cancer classification and misclassification at 5 Mb segment size.

(XLSX)

S5 Table. Importance of bins in classification.

(XLSX)

Author Contributions

Conceptualization: AT.

Data curation: BM.

Formal analysis: BM EN.

Funding acquisition: AT.

Investigation: BM.

Methodology: AT BM.

Project administration: AT.

Resources: AT.

Software: BM.

Supervision: AT.

Visualization: BM EN.

Writing – original draft: AT BM.

Writing – review & editing: AT BM.

References
1. Suh KS, Park SW, Castro A, Patel H, Blake P, Liang M, et al. Ovarian cancer biomarkers for molecular

biosensors and translational medicine. Expert review of molecular diagnostics. 2010; 10(8):1069–83.

https://doi.org/10.1586/erm.10.87 PMID: 21080822.

2. Menon U, Gentry-Maharaj A, Hallett R, Ryan A, Burnell M, Sharma A, et al. Sensitivity and specificity of

multimodal and ultrasound screening for ovarian cancer, and stage distribution of detected cancers:

results of the prevalence screen of the UK Collaborative Trial of Ovarian Cancer Screening (UKC-

TOCS). The Lancet Oncology. 2009; 10(4):327–40. https://doi.org/10.1016/S1470-2045(09)70026-9

PMID: 19282241.

Assessment of CNV detection for cancer screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0180647 July 7, 2017 15 / 18

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180647.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180647.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180647.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180647.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180647.s008
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0180647.s009
https://doi.org/10.1586/erm.10.87
http://www.ncbi.nlm.nih.gov/pubmed/21080822
https://doi.org/10.1016/S1470-2045(09)70026-9
http://www.ncbi.nlm.nih.gov/pubmed/19282241
https://doi.org/10.1371/journal.pone.0180647


3. Hubbard RA, Kerlikowske K, Flowers CI, Yankaskas BC, Zhu W, Miglioretti DL. Cumulative probability

of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort

study. Annals of internal medicine. 2011; 155(8):481–92. https://doi.org/10.7326/0003-4819-155-8-

201110180-00004 PMID: 22007042; PubMed Central PMCID: PMC3209800.

4. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, et al. Multitarget stool DNA

testing for colorectal-cancer screening. The New England journal of medicine. 2014; 370(14):1287–97.

https://doi.org/10.1056/NEJMoa1311194 PMID: 24645800.

5. Punglia RS, D’Amico AV, Catalona WJ, Roehl KA, Kuntz KM. Effect of verification bias on screening for

prostate cancer by measurement of prostate-specific antigen. The New England journal of medicine.

2003; 349(4):335–42. https://doi.org/10.1056/NEJMoa021659 PMID: 12878740.

6. Buys SS, Partridge E, Black A, Johnson CC, Lamerato L, Isaacs C, et al. Effect of screening on ovarian

cancer mortality: the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Randomized

Controlled Trial. JAMA. 2011; 305(22):2295–303. https://doi.org/10.1001/jama.2011.766 PMID:

21642681.

7. Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA, et al. An ultrasensitive method for

quantitating circulating tumor DNA with broad patient coverage. Nature medicine. 2014; 20(5):548–54.

https://doi.org/10.1038/nm.3519 PMID: 24705333; PubMed Central PMCID: PMCPMC4016134.

8. Dawson SJ, Tsui DW, Murtaza M, Biggs H, Rueda OM, Chin SF, et al. Analysis of circulating tumor

DNA to monitor metastatic breast cancer. The New England journal of medicine. 2013; 368(13):1199–

209. https://doi.org/10.1056/NEJMoa1213261 PMID: 23484797.

9. Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N, et al. Detection of circulating tumor

DNA in early- and late-stage human malignancies. Science translational medicine. 2014; 6

(224):224ra24. https://doi.org/10.1126/scitranslmed.3007094 PMID: 24553385; PubMed Central

PMCID: PMCPMC4017867.

10. Crowley E, Di Nicolantonio F, Loupakis F, Bardelli A. Liquid biopsy: monitoring cancer-genetics in the

blood. Nat Rev Clin Oncol. 2013; 10(8):472–84. https://doi.org/10.1038/nrclinonc.2013.110 PMID:

23836314.

11. Heidary M, Auer M, Ulz P, Heitzer E, Petru E, Gasch C, et al. The dynamic range of circulating tumor

DNA in metastatic breast cancer. Breast Cancer Res. 2014; 16(4):421. https://doi.org/10.1186/s13058-

014-0421-y PMID: 25107527; PubMed Central PMCID: PMCPMC4303230.

12. Chan KC, Jiang P, Zheng YW, Liao GJ, Sun H, Wong J, et al. Cancer genome scanning in plasma:

detection of tumor-associated copy number aberrations, single-nucleotide variants, and tumoral hetero-

geneity by massively parallel sequencing. Clin Chem. 2013; 59(1):211–24. https://doi.org/10.1373/

clinchem.2012.196014 PMID: 23065472.

13. Leary RJ, Sausen M, Kinde I, Papadopoulos N, Carpten JD, Craig D, et al. Detection of chromosomal

alterations in the circulation of cancer patients with whole-genome sequencing. Science translational

medicine. 2012; 4(162):162ra54. https://doi.org/10.1126/scitranslmed.3004742 PMID: 23197571;

PubMed Central PMCID: PMC3641759.

14. Shlien A, Malkin D. Copy number variations and cancer. Genome medicine. 2009; 1(6):62. https://doi.

org/10.1186/gm62 PMID: 19566914; PubMed Central PMCID: PMC2703871.

15. Kandoth C, McLellan MD, Vandin F, Ye K, Niu B, Lu C, et al. Mutational landscape and significance

across 12 major cancer types. Nature. 2013; 502(7471):333–9. https://doi.org/10.1038/nature12634

PMID: 24132290; PubMed Central PMCID: PMC3927368.

16. Carrasco DR, Tonon G, Huang Y, Zhang Y, Sinha R, Feng B, et al. High-resolution genomic profiles

define distinct clinico-pathogenetic subgroups of multiple myeloma patients. Cancer Cell. 2006; 9

(4):313–25. https://doi.org/10.1016/j.ccr.2006.03.019 PMID: 16616336.

17. Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, et al. Multiplatform analysis of 12

cancer types reveals molecular classification within and across tissues of origin. Cell. 2014; 158

(4):929–44. https://doi.org/10.1016/j.cell.2014.06.049 PMID: 25109877; PubMed Central PMCID:

PMC4152462.

18. Hofree M, Shen JP, Carter H, Gross A, Ideker T. Network-based stratification of tumor mutations.

Nature methods. 2013; 10(11):1108–15. https://doi.org/10.1038/nmeth.2651 PMID: 24037242;

PubMed Central PMCID: PMCPMC3866081.

19. Heitzer E, Ulz P, Belic J, Gutschi S, Quehenberger F, Fischereder K, et al. Tumor-associated copy

number changes in the circulation of patients with prostate cancer identified through whole-genome

sequencing. Genome medicine. 2013; 5(4):30. https://doi.org/10.1186/gm434 PMID: 23561577;

PubMed Central PMCID: PMCPMC3707016.

20. Kirkizlar E, Zimmermann B, Constantin T, Swenerton R, Hoang B, Wayham N, et al. Detection of Clonal

and Subclonal Copy-Number Variants in Cell-Free DNA from Patients with Breast Cancer Using a

Assessment of CNV detection for cancer screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0180647 July 7, 2017 16 / 18

https://doi.org/10.7326/0003-4819-155-8-201110180-00004
https://doi.org/10.7326/0003-4819-155-8-201110180-00004
http://www.ncbi.nlm.nih.gov/pubmed/22007042
https://doi.org/10.1056/NEJMoa1311194
http://www.ncbi.nlm.nih.gov/pubmed/24645800
https://doi.org/10.1056/NEJMoa021659
http://www.ncbi.nlm.nih.gov/pubmed/12878740
https://doi.org/10.1001/jama.2011.766
http://www.ncbi.nlm.nih.gov/pubmed/21642681
https://doi.org/10.1038/nm.3519
http://www.ncbi.nlm.nih.gov/pubmed/24705333
https://doi.org/10.1056/NEJMoa1213261
http://www.ncbi.nlm.nih.gov/pubmed/23484797
https://doi.org/10.1126/scitranslmed.3007094
http://www.ncbi.nlm.nih.gov/pubmed/24553385
https://doi.org/10.1038/nrclinonc.2013.110
http://www.ncbi.nlm.nih.gov/pubmed/23836314
https://doi.org/10.1186/s13058-014-0421-y
https://doi.org/10.1186/s13058-014-0421-y
http://www.ncbi.nlm.nih.gov/pubmed/25107527
https://doi.org/10.1373/clinchem.2012.196014
https://doi.org/10.1373/clinchem.2012.196014
http://www.ncbi.nlm.nih.gov/pubmed/23065472
https://doi.org/10.1126/scitranslmed.3004742
http://www.ncbi.nlm.nih.gov/pubmed/23197571
https://doi.org/10.1186/gm62
https://doi.org/10.1186/gm62
http://www.ncbi.nlm.nih.gov/pubmed/19566914
https://doi.org/10.1038/nature12634
http://www.ncbi.nlm.nih.gov/pubmed/24132290
https://doi.org/10.1016/j.ccr.2006.03.019
http://www.ncbi.nlm.nih.gov/pubmed/16616336
https://doi.org/10.1016/j.cell.2014.06.049
http://www.ncbi.nlm.nih.gov/pubmed/25109877
https://doi.org/10.1038/nmeth.2651
http://www.ncbi.nlm.nih.gov/pubmed/24037242
https://doi.org/10.1186/gm434
http://www.ncbi.nlm.nih.gov/pubmed/23561577
https://doi.org/10.1371/journal.pone.0180647


Massively Multiplexed PCR Methodology. Transl Oncol. 2015; 8(5):407–16. https://doi.org/10.1016/j.

tranon.2015.08.004 PMID: 26500031; PubMed Central PMCID: PMCPMC4631096.

21. Bianchi DW, Chudova D, Sehnert AJ, Bhatt S, Murray K, Prosen TL, et al. Noninvasive Prenatal Testing

and Incidental Detection of Occult Maternal Malignancies. JAMA. 2015; 314(2):162–9. https://doi.org/

10.1001/jama.2015.7120 PMID: 26168314.

22. Amant F, Verheecke M, Wlodarska I, Dehaspe L, Brady P, Brison N, et al. Presymptomatic Identifica-

tion of Cancers in Pregnant Women During Noninvasive Prenatal Testing. JAMA Oncol. 2015; 1

(6):814–9. https://doi.org/10.1001/jamaoncol.2015.1883 PMID: 26355862.

23. Lefkowitz RB, Tynan JA, Liu T, Wu Y, Mazloom AR, Almasri E, et al. Clinical validation of a noninvasive

prenatal test for genomewide detection of fetal copy number variants. Am J Obstet Gynecol. 2016.

https://doi.org/10.1016/j.ajog.2016.02.030 PMID: 26899906.

24. Nygren AOH, Dean J, Jensen TJ, Kruse S, Kwong W, van den Boom D, et al. Quantification of Fetal

DNA by Use of Methylation-Based DNA Discrimination. Clinical Chemistry. 2010; 56(10):1627–35.

https://doi.org/10.1373/clinchem.2010.146290 PMID: 20729299

25. Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR. Non-invasive prenatal measurement

of the fetal genome. Nature. 2012; 487(7407):320–4. https://doi.org/10.1038/nature11251 PMID:

22763444; PubMed Central PMCID: PMC3561905.

26. Zack TI, Schumacher SE, Carter SL, Cherniack AD, Saksena G, Tabak B, et al. Pan-cancer patterns of

somatic copy number alteration. Nature genetics. 2013; 45(10):1134–40. https://doi.org/10.1038/ng.

2760 PMID: 24071852; PubMed Central PMCID: PMC3966983.

27. Beroukhim R, Mermel CH, Porter D, Wei G, Raychaudhuri S, Donovan J, et al. The landscape of

somatic copy-number alteration across human cancers. Nature. 2010; 463(7283):899–905. https://doi.

org/10.1038/nature08822 PMID: 20164920; PubMed Central PMCID: PMCPMC2826709.

28. Fernández-Delgado M, Cernadas E, Barro S, Amorim D. Do we Need Hundreds of Classifiers to Solve

Real World Classification Problems?. Journal of Machine Learning Research. 2014; 15:3133–81.

29. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of onco-

genic signatures across human cancers. Nature genetics. 2013; 45(10):1127–33. https://doi.org/10.

1038/ng.2762 PMID: 24071851; PubMed Central PMCID: PMC4320046.

30. Zbar B, Brauch H, Talmadge C, Linehan M. Loss of alleles of loci on the short arm of chromosome 3 in

renal cell carcinoma. Nature. 1987; 327(6124):721–4. https://doi.org/10.1038/327721a0 PMID:

2885753.

31. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinfor-

matics. 2014; 30(15):2114–20. https://doi.org/10.1093/bioinformatics/btu170 PMID: 24695404;

PubMed Central PMCID: PMCPMC4103590.

32. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics.

2009; 25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168; PubMed Cen-

tral PMCID: PMCPMC2705234.

33. Anders S, Pyl PT, Huber W. HTSeq—a Python framework to work with high-throughput sequencing

data. Bioinformatics. 2015; 31(2):166–9. https://doi.org/10.1093/bioinformatics/btu638 PMID:

25260700; PubMed Central PMCID: PMCPMC4287950.

34. Rousseeuw PJ, Hubert M. Robust statistics for outlier detection. Wiley Interdisciplinary Reviews: Data

Mining and Knowledge Discovery. 2011; 1(1):73–9. https://doi.org/10.1002/widm.2

35. Fan HC, Quake SR. Sensitivity of noninvasive prenatal detection of fetal aneuploidy from maternal

plasma using shotgun sequencing is limited only by counting statistics. PloS one. 2010; 5(5):e10439.

https://doi.org/10.1371/journal.pone.0010439 PMID: 20454671; PubMed Central PMCID:

PMCPMC2862719.

36. Hupe P, Stransky N, Thiery JP, Radvanyi F, Barillot E. Analysis of array CGH data: from signal ratio to

gain and loss of DNA regions. Bioinformatics. 2004; 20(18):3413–22. https://doi.org/10.1093/

bioinformatics/bth418 PMID: 15381628.

37. Olshen AB, Venkatraman ES, Lucito R, Wigler M. Circular binary segmentation for the analysis of

array-based DNA copy number data. Biostatistics. 2004; 5(4):557–72. https://doi.org/10.1093/

biostatistics/kxh008 PMID: 15475419.

38. Erikson GA, Deshpande N, Kesavan BG, Torkamani A. SG-ADVISER CNV: copy-number variant anno-

tation and interpretation. Genetics in medicine: official journal of the American College of Medical

Genetics. 2014. https://doi.org/10.1038/gim.2014.180 PMID: 25521334.

39. Genomes Project C, Abecasis GR, Auton A, Brooks LD, DePristo MA, Durbin RM, et al. An integrated

map of genetic variation from 1,092 human genomes. Nature. 2012; 491(7422):56–65. https://doi.org/

10.1038/nature11632 PMID: 23128226; PubMed Central PMCID: PMC3498066.

Assessment of CNV detection for cancer screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0180647 July 7, 2017 17 / 18

https://doi.org/10.1016/j.tranon.2015.08.004
https://doi.org/10.1016/j.tranon.2015.08.004
http://www.ncbi.nlm.nih.gov/pubmed/26500031
https://doi.org/10.1001/jama.2015.7120
https://doi.org/10.1001/jama.2015.7120
http://www.ncbi.nlm.nih.gov/pubmed/26168314
https://doi.org/10.1001/jamaoncol.2015.1883
http://www.ncbi.nlm.nih.gov/pubmed/26355862
https://doi.org/10.1016/j.ajog.2016.02.030
http://www.ncbi.nlm.nih.gov/pubmed/26899906
https://doi.org/10.1373/clinchem.2010.146290
http://www.ncbi.nlm.nih.gov/pubmed/20729299
https://doi.org/10.1038/nature11251
http://www.ncbi.nlm.nih.gov/pubmed/22763444
https://doi.org/10.1038/ng.2760
https://doi.org/10.1038/ng.2760
http://www.ncbi.nlm.nih.gov/pubmed/24071852
https://doi.org/10.1038/nature08822
https://doi.org/10.1038/nature08822
http://www.ncbi.nlm.nih.gov/pubmed/20164920
https://doi.org/10.1038/ng.2762
https://doi.org/10.1038/ng.2762
http://www.ncbi.nlm.nih.gov/pubmed/24071851
https://doi.org/10.1038/327721a0
http://www.ncbi.nlm.nih.gov/pubmed/2885753
https://doi.org/10.1093/bioinformatics/btu170
http://www.ncbi.nlm.nih.gov/pubmed/24695404
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btu638
http://www.ncbi.nlm.nih.gov/pubmed/25260700
https://doi.org/10.1002/widm.2
https://doi.org/10.1371/journal.pone.0010439
http://www.ncbi.nlm.nih.gov/pubmed/20454671
https://doi.org/10.1093/bioinformatics/bth418
https://doi.org/10.1093/bioinformatics/bth418
http://www.ncbi.nlm.nih.gov/pubmed/15381628
https://doi.org/10.1093/biostatistics/kxh008
https://doi.org/10.1093/biostatistics/kxh008
http://www.ncbi.nlm.nih.gov/pubmed/15475419
https://doi.org/10.1038/gim.2014.180
http://www.ncbi.nlm.nih.gov/pubmed/25521334
https://doi.org/10.1038/nature11632
https://doi.org/10.1038/nature11632
http://www.ncbi.nlm.nih.gov/pubmed/23128226
https://doi.org/10.1371/journal.pone.0180647


40. Borrell B. Sequencing projects bring age-old wisdom to genomics. Nature medicine. 2011; 17(11):1329.

https://doi.org/10.1038/nm1111-1329a PMID: 22064397.

41. Singleton MV, Guthery SL, Voelkerding KV, Chen K, Kennedy B, Margraf RL, et al. Phevor combines

multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals

and small nuclear families. American journal of human genetics. 2014; 94(4):599–610. https://doi.org/

10.1016/j.ajhg.2014.03.010 PMID: 24702956; PubMed Central PMCID: PMC3980410.

42. Lin J, Keogh E, Lonardi S, Chiu B. A Symbolic Representation of Time Series, with Implications for

Streaming Algorithms. In proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data

Mining and Knowledge Discovery. 2003.

Assessment of CNV detection for cancer screening

PLOS ONE | https://doi.org/10.1371/journal.pone.0180647 July 7, 2017 18 / 18

https://doi.org/10.1038/nm1111-1329a
http://www.ncbi.nlm.nih.gov/pubmed/22064397
https://doi.org/10.1016/j.ajhg.2014.03.010
https://doi.org/10.1016/j.ajhg.2014.03.010
http://www.ncbi.nlm.nih.gov/pubmed/24702956
https://doi.org/10.1371/journal.pone.0180647

