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The advancement of single-cell sequencing technology in recent years has provided an opportunity to
reconstruct gene regulatory networks (GRNs) with the data from thousands of single cells in one sample.
This uncovers regulatory interactions in cells and speeds up the discoveries of regulatory mechanisms in
diseases and biological processes. Therefore, more methods have been proposed to reconstruct GRNs
using single-cell sequencing data. In this review, we introduce technologies for sequencing single-cell
genome, transcriptome, and epigenome. At the same time, we present an overview of current GRN recon-
struction strategies utilizing different single-cell sequencing data. Bioinformatics tools were grouped by
their input data type and mathematical principles for reader’s convenience, and the fundamental math-
ematics inherent in each group will be discussed. Furthermore, the adaptabilities and limitations of these
different methods will also be summarized and compared, with the hope to facilitate researchers recog-
nizing the most suitable tools for them.

� 2020 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
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Gene regulatory networks (GRNs), which describe the regula-
tory connections between transcription factors (TFs) and their tar-
get genes, help researchers to investigate the gene regulatory
circuits and underlying mechanisms in various diseases and bio-
logical processes. A simple model of gene transcriptional regula-
tion includes two key events: (1) an active TF binds to a cis-
regulatory element such as a gene promoter; (2) such binding acti-
vates/suppresses the expression of the gene, which leads to the
increase/decrease of the gene’s RNA level. By integrating high-
throughput omics data detecting the above two events in
genome-wide scale, various powerful methods have been devel-
oped for reconstructing GRNs [44,53,68,85]. The recent develop-
ment of technology makes it possible to sequence the single-cell
genome, transcriptome, and epigenome. This provides rich data-
sets for GRN analyses. However, the inference of GRNs from
single-cell sequencing data raises new challenges for method
development. One of the main challenges is the underlying phe-
nomenon of missing data. For single-cell transcriptome sequenc-
ing, the starting amount of RNAs extracted from single cells are
often very low, genes with low or moderate expression are thus
being omitted from the followed processing and sequencing steps
due to inadequate sensitivities. Moreover, stochastic inherence and
cell-to-cell variability of gene expression also result in aggravated
noises [37,54]. For single-cell genome or epigenome sequencing,
each DNAmolecule in a diploid genome has only one or two oppor-
tunities to be sequenced. When only thousands of distinct reads
can be detected per cell, it is impossible to cover all sites in the
genome. Therefore, single-cell genome and epigenome sequencing
suffer data omission even worse than that of transcriptome
sequencing. Despite the challenges mentioned, dozens of methods
have been developed to predict GRNs from single-cell sequencing
data [12,20,31,35,83]. However, selecting the proper tool according
to one’s needs is not an easy task for biological/biomedical
researchers, as they are usually not very familiar with the mathe-
matical reasoning behind these tools. Thus, understanding the
basic principles of the algorithms implemented in these tools and
their adaptabilities facilitates researchers making suitable choices
according to their needs. In the following sections, we will be intro-
ducing, grouping, and discussing current GRN reconstruction
strategies. This would also help tool developers to improve their
tools by comparing the advantages and disadvantages of different
methods. This review focuses on the representative and popular
GRN inference approaches which utilize single-cell sequencing
data especially on those with multi-omics data integration that
can likely improve their performances (Table 1).
1. Single-cell sequencing for GRN reconstruction

Different from bulk sequencing that averages signals from a
bulk of cells, single-cell sequencing isolates single cells from cell
populations and labels DNA molecules derived from every single
cell with unique barcodes before next-generation sequencing
[25]. Single-cell RNA sequencing (scRNA-seq), the most popular
single-cell sequencing technology, sequences RNA molecules in
each cell and quantifies their expression levels. It can capture gene
expression stochasticity and dynamics while revealing
transcriptome-wide cell-to-cell variability at a high resolution
[83]. With thousands of genes in hundreds to thousands of single
cells being measured by scRNA-seq, TF-gene interactions could
be inferred based on the dependency of their expression. Thus,
scRNA-seq data becomes one of the major data sources for GRN
construction. Single-cell epigenome sequencing is another way to
explore the regulatory relationship between TF and gene. Single-
cell assay for transposase-accessible chromatin with sequencing
(scATAC-seq) [16] detects the chromatin accessibility in single
cells. scATAC-seq allows the identification of DNA regulatory ele-
ments within accessible genomic DNA regions in single cells. Sim-
ilarly, single-cell chromatin immunocleavage sequencing (scChIC-
seq) profiles histone modifications such as H3K4me3 in single
cells, some of which detect DNA regulatory regions during gene
regulations, for example, regions associated with transcription
activations [57]. Meanwhile other single-cell sequencing tech-
niques such as single-cell reduced representation bisulfite
sequencing (scRRBS) [39], single-cell whole-genome bisulfite
sequencing (scWGBS) [34], genome-wide CpG island (CGI) methy-
lation sequencing for single cells (scCGI-seq) [41] and single-cell
bisulfite sequencing (scBs-seq) [22] were developed for detecting
DNA methylation profiles throughout single-cell genomes. With
these single-cell epigenome data, GRN could be reconstructed by
inferring TFs that bind to the genes with open or active DNA regu-
latory elements and epigenetic modifications, which indicates
potential direct regulations between the TFs and the target genes.
In addition, single-cell genome sequencing that detects genomic
variations among single cells is a powerful tool to explore genetic
heterogeneity and reconstruct cell lineage hierarchies of complex
samples, such as tumor tissues. Mutations located at genomic
DNA regulatory elements are also an important inducer of disease
and affect the underlying gene regulatory network [73], thus the
information of genomic variations in single cells is also valuable
for GRN reconstruction. Another method screening genetic pertur-
bation pool after clustered regularly interspaced short palindromic
repeats (CRISPR)- mediated gene inactivation is called Perturb-seq
or CROP-seq, which is very useful for reverse genetics and thus
GRN constructions when combined with scRNA-seq [28]. It can
also be used to verify inferred GRNs by perturbing selected TFs in
the network.

Furthermore, there are techniques able to detect more than one
type of single-cell omics profiles simultaneously. For example,
single-cell genome and transcriptome sequencing (G&T-seq) [67],
gDNA-mRNA sequencing (DR-Seq) [27] and single-cell transcrip-
togenomics (SCTG) [62] are techniques examining transcriptome
and genome sequences in the same single-cell at the same time.
Single-cell DNA methylome and transcriptome sequencing
(scMT-seq) [49] and (scM&T-seq) [4] are able to detect methylome
and transcriptome in parallel to explore the cellular connections
between epigenetic variation and transcriptional regulation.
Single-nucleus chromatin accessibility and mRNA expression
sequencing (SNARE-seq) [19] draws the combined map of chro-
matin accessibility and mRNA expression in the same cell.



Table 1
Summary of bioinformatics tools for GRN reconstruction from single-cell sequencing data.

Data Methods Name Reference Data dimension
(cell*gene)

Adaptability

scRNA-seq
alone

ODE-based SCODE [70] mESC:456*100
Fibroblast:405*100
hESC:758*100

Reduced computational complexity; assume all cells are on the same trajectory; the linear relationship between change rate
of target gene and expression of input is assumed; require expression data with temporal information.

GRISLI [5] Embryonic:373*40
Hescs:758*49

Consider multiple trajectories; assume that each gene is regulated by only a few TFs; expression change rate of target gene
and TFs is assumed to be linearly related; require expression data with temporal information.

InferenceSnapshot [78] HSCs:597*18 Directly extract temporal information from single-cell snapshot data; reconstruct more complicated network; limited ODE-
based models are considered; the accuracy of the final network may be affected by the initial coarse GRN generated from
GENIE3; limit to small-sized GRNs.

Regression-
based

GENIE3 [97] E. coli:907*4297 Not require temporal information; explain more complicated underlying GRNs; fast running when using parallel
computation.

SINCERITIES [80] THP-1:960*45 Low computational complexity; parallel computation is available; the relationship between distributional distance of the
regulators and target gene is assumed to be linear; require expression data with temporal information.

Correlation
\information-
based

LEAP [90] Dendritic:564*557 Fast and efficient algorithm; identify more interactions; relationships between all genes are assumed to be linear; require
expression data with temporal information.

PIDC [18] MEP:681*87
Embryonic:3934*20
Hematopoietic:442*46

Not require temporal information; consider more complicated information from data; influenced by the choice of data
discretization methods and MI estimators; high computational complexity but could be relieved by Julia.

Scribe [86] C. elegans:184442*265 Consider more complicated structure of underlying GRN; assume that underlying processes can be described by a first-order
Markov process; high computational complexity; require expression data with temporal information.

Boolean
network

SCNS toolkit [74] mESC:3934*42 When applied to different stages of cell population, it can be used to reveal the developmental trajectory of the whole organ
from the single-cell level, but the increase of gene number will significantly increase the computation, and it is limited in
small-size GRNs.

scRNA-seq
with genome

Motif SCENIC [2] Mouse
brain:3005*151
Human
neurons:3083*259
Human brain:466*259

GRN can be reconstructed to identify cell states at the same time, which means that it can be applied to data sets with
complex cell states.

scRNA-seq with
scATAC-seq

SOM LinkedSOMs [52] Mouse pre-B:
128*12380 (scRNA-
seq) +
227*25466 (scATAC-
seq)

Provide a framework for integration of different types of data; SOM may spend a long time to converge.

NMF Coupled NMF [30] mESCs:
463*21973 (scRNA-
seq) +
415*23180 (scATAC-
seq)

Provide a framework for integration of different types of data; the expression of a subset of genes is assumed to be linearly
predicted from the status of chromatin regions; quickly converge but no convergence properties are established.

CCA Seurat v3 [91] Mouse visual cortex:
14249*34617 (scRNA-
seq) +
2420*? (scATAC-seq)

Provide a framework for integration of different types of data; the output of this method is an integrated expression matrix
that could be used in any single-cell GRN inference method.
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Fig. 1. Single-cell sequencing technologies that investigate gene regulatory mechanisms.
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Single-cell nucleosome occupancy and methylome sequencing
(scNOMe-seq) measures chromatin accessibility and endogenous
DNA methylation in single cells [82]. Some technologies can even
measure three types of molecules in single cells. For instance,
single-cell nucleosome, methylation and transcription sequencing
(scNMT-seq) detects chromatin accessibility, DNA methylation
and transcriptome profiling in parallel [21]. Single-cell triple omics
sequencing (scTrio-seq) [48] combines single-cell genome, methy-
lome and transcriptome. These methods explore how the hetero-
geneity of genome and epigenome affects transcriptional
heterogeneity in the same cells, thus probably enable GRN infer-
ence using computational methods originally designed for inte-
grating bulk sequencing of multiple omics [88].

These single-cell omics and multi-omics technologies give us
new opportunities to investigate complex gene regulatory mech-
anisms in a single-cell resolution (Fig. 1). In short, sequencing
data of single-cell genome, transcriptome and epigenome pro-
vides distinct information for GRN inference. In the following
sections, we will discuss several popular strategies and algo-
rithms that incorporate various single-cell sequencing data to
construct GRNs (Fig. 2).
2. Methods for scRNA-seq data alone

Tools designed for GRN reconstruction from scRNA-seq data
alone have been reviewed and evaluated elsewhere [12,20,83].
The performance of these tools was compared using simulated
and real scRNA-seq data, and results in these studies revealed
that there is no one method well accepted to be the best. This
may be because different methods are suitable for different
types and sources of data. Moreover, in these reviews, the math-
ematical concepts and basic algorithms implicit in these tools
were not discussed in depth. In this section, we introduce four
major categories of popular algorithms for inferring GRNs from
scRNA-seq data alone: (1) the ordinary differential equation
(ODE)-based model, (2) the regression-based model, (3) the
correlation/information-based mode and (4) the Boolean net-
work. For each group, the mathematical principle of the algo-
rithm and the representative tools are described to bridge the
knowledge gap between method developers and biological/
biomedical researchers.

There are two types of scRNA-seq data – with and without
temporal information. In a biological process, condition or exper-
iment, cells can be collected from tissues or cell cultures. These
cells could be in a process of change or in a steady state. For
instance, cells might undergo differentiation, drug treatments,
environmental changes, etc., and transit from one condition to
another. In these processes, single-cell snapshot data can be
obtained by collecting cells at a certain time point. Although
each single cell represents a static state at this single time point,
cells may have different stochastic behaviors during the same
process [32], some sort of temporal information is still retained
in this snapshot of cells. Such temporal information, called
pseudo-time, can be inferred by the cell trajectory analysis
[89,93]. Based on scRNA-seq data, cells could be ordered along
the trajectory of the cell transition process [38], which repre-
sents the pseudo-time series. When cells are collected from tis-
sues without any treatment or cells under pooled CRISPR
screening, these cells are in a relatively static state or in a large
number of independent processes. Cell populations in these sam-
ples do not show temporal relationships as those mentioned
above. Therefore, when choosing the method/tool to reconstruct



Fig. 2. The summary of gene regulatory network inference from single-cell sequencing data.
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a GRN, we need to first determine whether there is temporal
information in the single-cell sample, as some methods are
designed specifically to work with temporal information, and
others are more suitable for those without. While, there are also
some methods can analyze both types of data.
2.1. ODE-based model

Provided with expression data with temporal information, ODE
has been applied to describe expression dynamics and infer GRNs,
which is generally formulated as
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dy
dt

¼ f xð Þ; ð1Þ

where x and y represent the expression data of TFs and a target,
respectively, and both are time series related to time t. The task is
to find the function f xð Þ and describe the expression change rate
of target y, which also depicts how target y is regulated by TFs x.

Assumed that the expression change rate of target y linearly
depends on the expression of TFs x, equation (1) is reduced to a
simple linear ODE:

dy
dt

¼ a1x1 þ a2x2 þ � � � anxn: ð2Þ

If parameters a1; a2; � � � ; an and the initial values of t and y in
equation (2) are provided, equation (2) can be solved by integra-
tion. However, the parameters are usually unknown in practice.
Hence, the major task is to find the parameters a�

1; a
�
2; � � � ; a�n for

equation (2) such that the error between estimation
y a�

1; a
�
2; � � � ; a�n

� �
and observation by is minimal [6]. These parameters

are also able to imply the regulatory relationships between the tar-
get and TF, whose observed expression data are x1; x2; � � � ; xn. Sev-
eral algorithms for solving this problem have been investigated
by using least squares [63,107], two-stage methods [45], and so
on [64,104].

2.1.1. SCODE
SCODE is a bioinformatics tool designed for scRNA-seq data by

using the linear ODEs with pseudo-time series to describe expres-
sion dynamics and infer GRNs [70]. Two important assumptions
are made in the SCODE: (1) all cells are on the same trajectory, that
is, all cells are differentiating into the same cell type, and (2) the
expression change rate of each TF linearly depends on expression
profiles of themselves. Thus, the expression dynamics of TFs can
be described for all differentiating cells along the pseudo-time ser-
ies by using the linear ODEs:

dxc

dt
¼ Axc; ð3Þ

where xc :¼ x1; x2; � � � ; xT½ �>c denotes the expression of T TFs in cell
c at time tc , and the square matrix A represents the regulatory
network among TFs. More precisely, the ODE (3) for each ele-
ment xi in vector xc can be reformulated in the form of equation
(2):

dxi
dt

¼ Ai�xc ¼ Ai1x1 þ Ai2x2 þ � � �AiTxT ;

where dxi=dt represents the expression change rate of the ith TF.
The task of the ODE-based model is to estimate the matrix A such
that the expression change rate of the ith TF at the time tc can be
approximately described by all TFs’ expression levels.

A major challenge of the ODE-based models is the expensive
computational complexity caused by the high dimensionality of
samples and genes. To reduce the computational complexity,
SCODE alternatively solves an ODE with low-dimensional data by
assuming that the high-dimensional data can be linearly expressed
in a low-dimensional subspace [70]. In details, suppose that xc can
be expressed as a linear regression of a low-dimensional subspace

xc ¼ Wzc; ð4Þ
where W 2 RT�D with D � T , and zc obeys an ODE

dzc
dt

¼ Bzc: ð5Þ

Then the equation (3) is reduced to

dxc

dt
¼ WBWþxc;
where Wþ denotes the pseudo-inverse matrix of W , and thus, A can
be generated by

A ¼ WBWþ:

Solving the ODE (5) in a low-dimensional subspace instead of
the ODE (3), the SCODE algorithm significantly reduces the compu-
tational complexity and consumes much less running time than
the traditional ODE (3). Thus, this method is capable of dealing
with large networks, for instance, a network with 5000 genes
[83]. However, the linear relationship in ODE might be too simple
to describe the regulatory relationships between TFs. In addition,
SCODE cannot directly infer GRN from single-cell expression data
without temporal information [70]. For example, a tissue sample
containing various cell types going through different biological
processes is not suitable to be analyzed by this method.

2.1.2. GRISLI
GRISLI is another bioinformatics tool for single-cell pseudo-

time-series data based on linear ODE [5], where the expression
dynamics are modeled by ODE (3) as in SCODE. While, different
from SCODE, GRISLI designs a fast algorithm via solving a linear
regression with a response as dxc=dt in ODE (3) instead of integrat-
ing the ODE. The inferred GRN is assumed to be sparse, that is,
most of elements in matrix A are zero, due to the biological
assumption that each gene is regulated by only a few TFs.

Breaking the assumption in SCODE that all cells are in the same
trajectory, GRISLI believes that different cells could evolve on dif-
ferent trajectories and focuses on those cells whose trajectories
are close to each other. First, the expression change rate, also
described as velocity, between cell c and cell e at two close
pseudo-time points tc and te is estimated by

bv c;e ¼ xc � xe

tc � te
:

Considering that some data points might live in the past (t < tc)
or the future (t > tc) of a given data point xc; tcð Þ, the final estimator
of velocity bv c of cell c is defined as a weighted average of all veloc-
ities between cell c and those cells closed to it, which is written as

bv c ¼ 1
2

P
ejte>tc K xe; te; xc; tcð Þbv c;eP

ejte>tc K xe; te;xc; tcð Þ þ 1
2

P
ejte<tc K xe; te;xc; tcð Þbv c;eP

ejte<tc K xe; te;xc; tcð Þ ;

where the spatio-temporal kernel K xe; te; xc; tcð Þ measures the sig-
nificance of a point to the velocity estimation. The velocity matrixbV :¼ bv1; bv2; � � � ; bvC½ � 2 RG�C is then estimated with corresponding
expression data X :¼ x1;x2; � � � ;xC½ � 2 RG�C , where G and C are the
numbers of genes and cells, respectively.

The following procedures are repeated to obtain the frequency

of nonzero elements in the estimated matrix bA: (1) data X
�
;V
�� �

are generated by randomly subsampling and multiplying each
row i of X by a random number; see section Methods in [5] for
details; (2) the Lasso regression [94],

min
Aj�2RG

���eV j� � Aj� eX ���2
þ kkAj�k1;

is then solved for each row j to obtain a sparse matrix bA, where k � k
and k � k1 denote sum of squared values and absolute values, respec-
tively, of all elements in the vector. The penalty parameter k is set to
satisfy the required number of nonzero entries in the row vector of
A. After repetition of above procedures, the final GRN can be
inferred based on the area score [43] or the original stability selec-
tion score [72] calculated from the frequency of occurred regulatory

links (nonzero elements in the estimated matrix bA).
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As GRISLI describes expression dynamics by linear ODE as
SCODE does, the problem is transformed as a sparse regression
under the assumption that inferred GRN is sparse. GRISLI is more
efficient to estimate the matrix A via solving a convex optimization
problem rather than integrating the ODE, and more genes (but less
than 1000 genes) can be considered in practice [83]. Moreover, it
allows cells to be on different trajectories, which suits for more
realistic and general cases. For example, cells may differentiate
into two types of cells simultaneously. However, the same as
SCODE, GRISLI cannot reconstruct the GRN directly from scRNA-
seq data without temporal information.

2.1.3. InferenceSnapshot
InferenceSnapshot is a modular skeleton to extract the temporal

information and capture gene expression dynamics directly from
scRNA-seq snapshot data [78]. By combining the diffusion map
algorithm for dimensionality reduction [23] and ad hoc algorithm
for clustering, the low-dimensional data can be obtained and sep-
arated into several branches with different cellular processes.
Pseudo-time series is generated by using theWanderlust algorithm
[7] to order single cells along discrete paths that represent pseudo-
time variables. Two types of ODE-based models are used to
describe the interactions between M TFs xi i ¼ 1; � � � ;Mð Þ and target
gene y, representing AND and OR logic gates when combining reg-
ulatory effects of TFs, which are respectively formulated as

dy
dt

¼ a
YM
m¼1

f m xm tð Þ; hmð Þ � ly;

dy
dt

¼ a
XM
m¼1

f m xm tð Þ; hmð Þ � ly;

where a and l denote the production rate and decay rate of target
gene expression, respectively, and

f x tð Þ;j; bð Þ :¼
xb

xbþjb ; if x is activating;
jb

xbþjb ; if x is inhibiting:

(

Markov chain Monte Carlo based method is used to estimate the
parameters in ODE-based models mentioned above. In the model
selection process, a coarse GRN is generated by GENIE3 [97] as
prior knowledge, and Bayes’ factors are computed to select the
ODE model from Bayesian model comparison through thermody-
namic integration [17].

InferenceSnapshot makes it possible to extract pseudo-time
series from snapshot data directly and allows the analysis of data
with multiple trajectories. Using the nonlinear function and differ-
ent logic to combine regulatory effects of multiple TFs, InferenceS-
napshot can be used to describe more complicated networks and
nonlinear expression relationships, but difficult to be scaled up
to large networks due to high computational complexity of ODE
and Bayesian models (e.g., a network with 18 genes is considered
in the original study) [78]. Moreover, the accuracy of the final net-
work may be affected by the initial coarse GRN generated from
GENIE3.

2.2. Regression-based model

Different from the ODE that considers expression change rate,
the regression-based model is built on the assumption that the
expression of a target gene can be predicted by the expression of
TFs regulating it. Regression is one of the most commonly used
methods to search for a suitable prediction function f to character-
ize the underlying networks. For example, if the expression data of
gene y can be predicted by the expression data of TFs x, then those
TFs jointly regulates gene y. Hence, the regression model is written
as

y ¼ f xð Þ þ e; ð6Þ
where e denotes the noise in data. The function f in the regression
model can be either linear or non-linear, depending on the assump-
tion of the structure of the target network.

A significant benefit of the regression model is that it is simple
to understand and convenient to apply to the complicated biolog-
ical system [83,84]. When the prediction function f is provided
according to the biological process or data observation, ordinary
least squares is a popular method used to solve the regression
model (6) to estimate the coefficients involved in f , which aims
to minimize the sum of squared errors between the prediction
and the true data, that is,

min kf xð Þ � yk2: ð7Þ
The most common form of regression is linear regression and

the associated linear least squares method. Furthermore, the struc-
ture of the GRNs can be characterized by adding an associated pen-
alty function p in the regression model to improve the accuracy
and stability of prediction, that is,

min kf xð Þ � yk2 þ kp xð Þ:
For example, ridge regression uses the l2 penalty (i.e.,

p xð Þ ¼ kxk2) to measure the magnitude of coefficients [46]; Lasso
regression employs the l1 penalty (i.e., p xð Þ ¼ kxk1) to induce the
sparsity of variables [94]. Moreover, the low-order penalized Lasso
[84] and fused Lasso have been used in GRN inference [79].

Another important benefit of the regression model is the exclu-
sive development of optimization algorithms. Several popular and
efficient numerical algorithms have been proposed to solve the
least squares problem (7) and the ridge regression problem such
as gradient descent methods, Newton-type methods and
Levenberg-Marquardt method [9,51,76]. Many state-of-the-art
algorithms have been designed and applied to solve the Lasso-
type regression models such as proximal/projected gradient meth-
ods, alternative direction method with multipliers, block coordi-
nate descent methods and augmented Lagrange methods
[13,50,103]. Furthermore, with non-linear functions, other
regression-based methods like tree-based method [97] are also
applied to fit expression data.

2.2.1. GENIE3
Gene network inference with ensemble of trees (GENIE3) is a

tree-based method to reconstruct GRNs [97]. Although it was orig-
inally designed for bulk transcriptomes, it has also been used in
scRNA-seq data [83] because of its good performance in GRN
reconstruction from bulk transcriptomes [68]. The input expres-
sion data is an N � G matrix, where the expression of G genes are
quantified in N experiments (or cells). GENIE3 assumes that the
expression of each gene could be described as a function of the
expression of some TFs, which means the selected TFs could regu-
late the target gene. Thus, the inference of GRNs is decomposed
into G different regression problem for all target genes.

Denote the expression of gene j and all genes except gene j in
the kth experiment (or cell) by xj;k and x�j;k, respectively. The major
objective of GENIE3 is to find a suitable function f j for gene j such
that

xj;k ¼ f j x�j;k
� �þ ek;8k 2 1;N½ �;

where ek represents a random noise with zero mean. Regression
tree [15] is a good candidate to seek such function and identify
those TFs that could be used to predict the expression of gene j.
Based on regression tree, random forests [14] is able to reduce the



1932 X. Hu et al. / Computational and Structural Biotechnology Journal 18 (2020) 1925–1938
variance and improve the performance [42]. In addition, random
forests is able to avoid the overfitting phenomenon and requires lit-
tle tuning parameters. Consequently, random forests is applied in
GENIE3 for each gene to identify the TFs used to predict.

In random forests, m variables (e.g., TFs) are randomly selected
from G variables as split candidates at each node, and K single
regression trees are built by K bootstrapping. Importance measure
(IM) is defined to quantify how relevant each TF (input gene) is to
the target gene (output gene) and is computed for each single
regression tree. The attribute IM is extended by averaging the
IMs over K regression trees in random forests; see section Methods
in [97] for details. By ranking G IMs from every single ensembled
tree and aggregating them to get global interaction ranking, the
final GRN is inferred by setting a threshold to define the regulatory
links.

Benefitting from the fact that few assumptions are required in
random forests, GENIE3 owns ability to explain more complex reg-
ulatory relationships in GRNs when comparing with linear regres-
sion. GENIE3 is a good choice for scRNA-seq data without temporal
information, while it might perform worse than other methods if
scRNA-seq data contains temporal information. In addition, it
may be harder for GENIE3 to infer large networks when it is
needed to build G� K regression trees one by one, while the com-
putational difficulty can be relieved by parallel computation. For
example, a large network (e.g., with 5000 genes) could still be
inferred in practice [83].

2.2.2. SINCERITIES
Single-cell regularized inference using timestamped expression

profiles (SINCERITIES) applies regularized linear regression and
partial correlation analysis to reconstruct GRNs based on temporal
changes in the distributions of gene expression [80]. This method
assumes the expression change of a target gene linearly depends
on the expression changes of TFs at a time delay.

Such temporal changes in the expression of each gene is
measured by the distance of gene expression distributions
between two subsequent time points, which is called as the
distributional distance (DD). Kolmogorov-Smirnov distance is

used to compute the DDs of all genes [69] and dDDj;l denotes
the normalized DD of gene j at time window l. Based on the
assumption mentioned above, SINCERITIES reconstructs GRNs
by solving G linear regressions for G genes. More precisely,
the linear regression for target gene j at time window lþ 1 is
formulated as:

dDDj;lþ1 ¼ A1;j
dDD1;l þ A2;j

dDD2;l þ � � � þ AG;j
dDDG;l;

where Aj :¼ A1;j;A2;j; � � � ;AG;j
� �> represents the coefficients in linear

regression. Since the number of genes is larger than the number
of time windows in general, SINCERITIES applies an l2 norm
penalized linear regression (ridge regression) [46] to overcome
the difficulty of solving the underdetermined equations for target
gene j, that is,

min
Aj

kYj � XAjk2 þ kkAjk2;

where

Yj :¼ dDDj;2;dDDj;3; �� � ;dDDj;n�1

h i>
and X :¼

dDD1;1
dDD2;1 � � � dDDG;1dDD1;2
dDD2;2 � � � dDDG;2

..

.dDD1;n�2

..

.dDD2;n�2

� � � ..
.

� � � dDDG;n�2

266664
377775:

After ranking the absolute values of the coefficients of all possi-
ble edges, the inferred GRN could be obtained by setting a thresh-
old for the ranked value. The sign of the regulatory edge between
each pair of TF and target is determined by the sign of the corre-
sponding partial correlation.

SINCERITIES reconstructs the GRNs with low computational
complexity and suits for high-dimensional data (e.g., a network
with 5000 genes) [80,83]. As the regressions for all genes are inde-
pendent of each other, the running time could be depleted by
employing parallel computation technique. However, temporal
information is required in this method, and the relationship
between temporal changes in the expression of TFs and target gene
may not be linear as assumed to be.

2.3. Correlation/information-based model

The regulatory links in GRNs can also be determined by measur-
ing the relationship between the expression of target genes and
TFs. The Pearson’s correlation, is the simplest statistic to character-
ize the association between X and Y:

qX;Y :¼ cov X;Yð Þ
rXrY

¼ E X � lX

� �
Y � lY

� �� �
rXrY

;

where lX and rX denote the mean and variance of variable X,
respectively, cov X;Yð Þ represents the covariance between X and Y ,
and E �ð Þ denotes the expectation.

However, the Pearson’s correlation is too naive to characterize
the complicated regulatory relationship in GRNs. For example, if
genes i and j are not connected but both connected to gene k, the
correlation between i and j is still possible to be high. Partial corre-
lation [58] could be used to avoid the effect of other genes. It can be
quickly obtained by computing the correlation between the resid-
uals from two corresponding linear regressions, which means that
the linear relationship is assumed.

In information theory, the entropy H Xð Þ is used to measure the
uncertainty of random variable X. If the random variable Y is
known, one may define another concept called conditional entropy
H XjYð Þ [24]. These two basic concepts are defined as

H Xð Þ :¼ �
X
x2X

p xð Þ logp xð Þ

and

H XjYð Þ :¼ �
X

x2X;y2Y
p x; yð Þ logp x; yð Þ

p yð Þ ;

respectively.
By considering the distributions of genes, mutual information

(MI) has the ability to quantify the dependence between two genes
based on their distributions. MI for two random variables X and Y
is formulated as

I X;Yð Þ :¼
X
x2X

X
y2Y

p x; yð Þ log p x; yð Þ
p xð Þp yð Þ

� �
¼ H Xð Þ � H XjYð Þ:

The second equality shows the relationship between MI and
entropy. From the formula mentioned above, MI measures the
reduction in uncertainty of a random variable X when the knowl-
edge of variable Y is known. Considering the effect from a third
variable Z, conditional MI is used to measure the reduction in the
uncertainty of X due to knowledge of Y when Z is given [24], which
is formulated as

I X;Y jZð Þ :¼
X
z2Z

p zð Þ
X
x2X

X
y2Y

p x; yjzð Þ log p x; yjzð Þ
p xjzð Þp yjzð Þ

� �
:

However, the estimation of MI and conditional MI involves data
discretization and estimation of empirical probability distributions
[18], and thus different choices of discretization method and esti-
mator for MI would affect the performance of MI-based method
[26,98,109].
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The inferred regulatory link is more reliable when the value of
measurements is larger. After computing these measurements
mentioned above for all genes, those links with lower values could
be removed by choosing a threshold to infer the final GRNs.

2.3.1. LEAP
Lag-based expression association for pseudo-time series (LEAP)

is a correlation-based algorithm to infer the GRNs for pseudo-time-
series data [90]. As LEAP is developed based on the Pearson’s cor-
relation, the linear relationship between a pair of genes is always
assumed [61].

Given expression data xi;t of gene i at time t 2 1;2; � � � ; Tf g, the
series Xi;l :¼ xi;lþ1; xi;lþ2; � � � ; xi;lþs

	 

for gene i is extracted by setting

windows of size s, where the lag l 2 0;1; � � � ; T � sf g. Instead of
Pearson’s correlation, LEAP uses maximum absolute correlation
(MAC) to measure the regulatory relationship:

q�
ij :¼ max

l2 0;1;���;T�sf g
jqijlj;

where qijl denotes the Pearson’s correlation between gene i at lag 0
(Xi;0) and gene j at lag l (Xi;l). The directional regulatory relationship
could be inferred by the value l� ¼ arg max

l2 0;1;���;T�sf g
jqijlj and the corre-

sponding MAC value q�
ij: (1) if l�–0, the MAC value q�

ij > 0 and
q�

ij < 0 represents that the gene i activates and inhibits gene j,

respectively; (2) if l� ¼ 0; gene i, and j are both regulated by a third
gene. Finally, the statistical significance can be calculated based on
the false discovery rate [8].

The LEAP provides a strategy to find the regulatory links
between genes and define their directional relationship by com-
puted measurements. However, the relationships between all
genes are assumed to be linear, where it might not satisfy for most
cases. As the temporal information is considered in the method,
pseudo-time-series data is required to infer GRNs. In practice, this
correlation-based model generally consumes less time because the
measurements can be directly computed by the analytical formu-
las, and it works for a large network. For example, a network with
5000 genes is considered in [83].

2.3.2. PIDC
Partial information decomposition and context (PIDC) is an

information-based algorithm to infer the regulatory relationship
between genes [18]. Partial information decomposition (PID) is
used to decompose the multivariate MI, where unique information
UniqueZ X;Yð Þ is the portion of information provided only by Y
[100]. To quantify the information between multiple genes in
GRNs, PIDC defines a newmeasurement called proportional unique
contribution (PUC) between genes X and Y , which is the sum of the
ratio UniqueZ X;Yð Þ=I X;Yð Þ for all other genes Z in set S. The ratio
eliminates the impact from the quantity of MI, and the computa-
tion of PUC could be formulated as

uX;Y :¼
X

Z2Sn X;Yf g

UniqueZ X;Yð Þ
I X;Yð Þ þ

X
Z2Sn X;Yf g

UniqueZ Y;Xð Þ
I X;Yð Þ :

A global threshold for PUC scores might bias the result of the
inferred GRNs due to the distributions of PUC scores differ between
genes [18]. The confidence of a regulatory link between a pair of
genes could be calculated by the empirical probability distribution
estimated from PUC scores; see section Results in [18] for details.

The PIDC provides an approach to quantify the relationship
between a pair of genes considering the effect of other related
genes in GRNs. It extracts more information from the expression
data. However, the data discretization and MI estimators are
required in this method, which might impede the computation of
PUC scores. The performance of PIDC might be influenced by the
choice of data discretization methods and MI estimators [18].
Although the method owns high complexity, the problem could
be relieved by implementing in Julia programming language to
speed up [10]. Moreover, it is capable of dealing with a large net-
work (e.g., with 5000 genes) in practice [83].

2.3.3. Scribe
Scribe is another information-based toolkit designed for data-

sets with temporal information to infer causality relationship
between genes. It relies on restricted directed information (RDI)
[87] to measure the information transmitted from potential regu-
lators to downstream targets. The GRNs can be correctly recon-
structed based on the assumption that the underlying processes
can be described by a first-order Markov process, which is true
in most biological processes [87]. To measure information trans-
ferred from the regulator X at time t � d to Y at time t with time
delay d when the information of Y at time t � 1 is given, the com-
putation of RDI is formulated in the form of conditional MI:

RDId X ! Yð Þ :¼ I Xt�d;Yt jYt�1ð Þ:
Furthermore, conditional RDI (cRDI) is considered to remove

the arbitrary effect from other potential regulators Z, and thus
the computation of cRDI can be formulated as:

RDId1 X ! YjZt�d2

� �
:¼ I Xt�d1 ;Yt jYt�1; Zt�d2

� �
:

To correct the sampling bias in computation and improve the
performance, uniformized RDI and cRDI scores are computed by
replacing the original empirical distribution of the samples with
a uniform distribution [86]. The final GRN is generated by the
RDI-based scores and further refined by context likelihood of relat-
edness algorithm [33] with graph regularization method; see sec-
tion STAR Methods in [86] for details.

Scribe extracts more intrinsic information from single-cell
expression data by considering arbitrary effect delay from regula-
tor X to target Y and the effect from other potential regulators Z.
It quantifies the regulatory causality between X and Y based on
the time information. Also, Scribe can detect both linear and
non-linear causality in GRNs [86]. However, as the RDI is one type
of conditional MI, the Scribe involves the estimation of RDI-based
measurements, which might be time-consuming. In practice, a net-
work with 1000 genes can be reconstructed by this method [83]. In
addition, scRNA-seq data with temporal information is required
because the time information is needed. As several methods men-
tioned above, Scribe can analyze pseudo-time series and RNA
velocity.

2.4. Boolean network

Unlike the continuous expression values of the nodes in ODE,
Boolean network describes the interaction of genes with discrete
values for their states along with discrete time points. The nodes
and edges of the network represent genes and regulatory relation-
ships between them, respectively. To represent the expression sta-
tus of genes, the numeric "1" or "0" is used to denote the state of
nodes as "on" or "off". In order to characterize the dynamics of
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the network, Boolean functions with three main operations: AND,
OR and NOT are built to update the successive state for each node,
where the operators represent the regulatory manners of TFs to
their targets. The final successful model can be obtained by verify-
ing the dynamic sequence of system states and comparing with
biological evidence. A drawback of Boolean network is that the
computation consumes more time when more possible networks
are needed to be considered with an increasing number of genes.
Thus, the method is limited in a small number of genes in real prac-
tice (generally smaller than 100) [35,65]. The method would be
sensitive to dropouts since the binarization of expression data is
required before modeling [35,106]. The example showed below
simply illustrates the Boolean network for three nodes.

Example 1. Consider the following network with three nodes as
X1, X2 and X3 (the Fig. 3 there)

The Boolean update functions can be presented as follow:

X1 t þ 1ð Þ ¼ NOT X2 tð Þ;
X2 t þ 1ð Þ ¼ X1 tð Þ;
X3 t þ 1ð Þ ¼ X1 tð Þ AND X2 tð Þ;
where X1 tð Þ denotes the state of the node X1 at the time t.

2.4.1. SCNS toolkit
Single cell network synthesis toolkit (SCNS toolkit) is a Boolean

network-based toolkit for scRNA-seq data with temporal informa-
tion to reconstruct and analyze GRNs. The diffusion map method
[23] is used to identify the developmental trajectories in gene
expression data from different cell stages [74].

The SCNS toolkit firstly discretizes the single-cell gene expres-
sion into binary states, where "1" and "0" represent that a gene
is expressed or not respectively. According to the Boolean update
functions that represent connections of a possible network, the
vector bearing "1" or "0" states of all genes at an early time point
can transit into the state vector of the next time point. State vectors
at two adjacent time points could be connected to form a state
transition graph. Boolean functions that fit the state series best
are being chosen when the network is being reconstructed; see
section Implementation in [102] for details.

The SCNS toolkit provides insights into the developmental pro-
cesses and the interactions between genes in GRNs across time. It
considers regulatory logic when reconstructing the GRNs. Yet the
method for data discretization in SCNS toolkit might influence
the further inference of GRNs. As we mentioned above, the Boolean
network-based method can only deal with the small-scale GRNs in
real-life computation.

3. Methods for scRNA-seq data with genome

Although scRNA-seq data are widely used for GRN reconstruc-
tion, the performance of current tools on this data type is still
unsatisfactory [20,83]. This is because, with similarity to those
designed for bulk RNA-seq, these tools are all based on the
assumption that the expression relationships between a target
gene and its TFs imply transcriptional regulations among them.
However, the observed associations between TFs and genes may
be due to other biological events or even randomness rather than
transcriptional regulations. Given the stochastic variation of gene
expression in single cells, the dropouts and technical variations
of scRNA-seq data, the signal-to-noise ratio of scRNA-seq is even
lower than that of bulk RNA-seq. Besides, based on scRNA-seq data
alone, it is also difficult to distinguish between direct and indirect
regulations. To overcome these issues and improve the perfor-
mance of GRN inference, integration of additional data is consid-
ered as an improved way. Genome sequences bearing the
genomic regulatory codes can be exploited to guide the identifica-
tion of potential TF binding. A TF binding motif located at the DNA
regulatory element of a gene indicates a potential direct regulation
between them.

Single-cell regulatory network inference and clustering (SCE-
NIC) is one of such tools [2]. It incorporates the promoter
sequences extracted from the reference genome to search direct
connection between TFs and their target among the coexpression
network modules built by GENIE3 [97] or GRNBoost [2]. By remov-
ing the indirect targets lacking enriched motif detected using
RcisTarget [2], SCENIC dramatically reduces the false connections
in the GRN inferred from scRNA-seq alone [2]. It also quantifies
the subnetwork activity in each cell by the AUCell algorithm [2],
which allows the comparison of the activities of cell-specific net-
works among different cell types and subpopulations. It enables
the combination of coexpression networks with cis-regulatory
analysis, leading to a better exploration of GRNs and cell states.
Thus, the datasets with complex cell states can also achieve good
performances. When dealing with very large datasets, GRNBoost,
a variant of GENIE3, can advance the efficiency and reduces the
time used in GRN reconstructions. The SCENIC provides a strategy
to discover interactions between TFs and target genes, yet the
inference of the coexpression network might affect the further
analysis. The SCENIC might perform better with other methods
when it is inferring coexpression networks.

However, when the majority of associated genetic variants
locates in regulatory regions of patient genomes in diseases like
cancer [73], the reference genome is unable to reflect the hetero-
geneity of regulatory codes in cell populations. Regulatory variants
in different cell subpopulations may drive the regulations on
diverse patterns of gene expression. Thus, integration of scRNA-
seq and single-cell genome sequencing will be a better strategy
to understand the heterogeneity of GRNs in a tumor cell popula-
tion. Although technologies, such as G&T-seq [67] and DR-seq
[27], allow parallel sequencing of the genome and transcriptome
in the same single cell, the high cost of sequencing covering the
whole genomes for thousands of single cells and relatively low res-
olution of the technique have limited the popularization of this
approach. Thus, so far, no bioinformatics tools were especially
designed for this analysis. However, it is still worthy to develop
such tool especially for cancer research, when targeted genome
sequencing may dramatically reduce the sequencing cost by select-
ing genes and genomic regions of interests [75].
4. Methods for scRNA-seq data with single-cell epigenomes

Fortunately, the development of single-cell epigenomic tech-
nologies, such as scATAC-seq, allows the identification of DNA reg-
ulatory elements in single cells at a reasonable cost. Open
chromatin regions detected by scATAC-seq often contain active
DNA regulatory elements for TF binding and gene regulations
[16]. Thus, scATAC-seq is able to identify direct regulations in
GRNs. The integration of bulk RNA-seq and bulk ATAC-seq (or
other epigenomic data) has been proved to improve the accuracy
of GRN inference significantly [1,84,99]. This approach is also
applicable to single-cell sequencing data. However, due to cell-
type/condition specificity of transcriptome and epigenome pro-
files, the integration of bulk RNA-seq with bulk ATAC-seq/ChIP-
seq usually requires that the two data sets are derived from the
same cell type and in the same condition. Although several tech-
nologies allow sequencing transcriptome and epigenome simulta-
neously in the same cell [4,19,49], researchers often conduct
scRNA-seq and single-cell epigenome separately, so the major
challenge for the integration approach is how to match the cell
clusters of the same cell type, condition or cell state for the two
sequencing data types respectively. Since scATAC-seq is more com-
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monly used for single-cell epigenome profiling than other tech-
niques like scChIC-seq, three bioinformatics tools have been intro-
duced to combine scRNA-seq and scATAC-seq data for GRN
reconstruction. These methods can analyze more than ten thou-
sand genes, and they are applicable to high-dimensional matrices
during multi-omics data integration (Table 1).

4.1. SOM

Self-organizing map (SOM), also known as the Kohonen net-
work, is an unsupervised learning method for clustering and visu-
alization [55,56]. The main structure of SOM is separated into two
parts: an input layer and a competitive layer (also as output layer).
The competitive layer is generally a two-dimensional array of out-
put nodes that are assumed to be a regular hexagonal or rectangu-
lar grid.

Denote n nodes in input layer by

X :¼ x1; x2; � � � ; xm½ � 2 Rm�n;

where xu 2 Rn is the uth input vector (e.g. the uth sample in expres-
sion data). Each unit i in competitive layer is connected to input
layer by a weight vector

wi :¼ wi1;wi2; � � � ;win½ �> 2 Rn;

where wij denotes the weight for the connection between unit i and
node j (e.g., gene j) in input layer. The iterative computation in SOM
involves searching a winning unit k in competitive layer based on
the minimal Euclidean distance

k ¼ argmin
i

kwi � xuk2

or the maximal inner product

k ¼ argmax
i

w>
i xu:

Given a random initial weight vector wi 0ð Þ for each unit i, the
weights for the neighborhood of winning unit k are updated by

wi lþ 1ð Þ ¼ wi lð Þ þ g lð Þhki lð Þ xu �wi lð Þ½ �;8i 2 Ok;

with a learning rate g lð Þ, where Ok denotes a set of unit k’s neighbor-
hood (based on the structure in the competitive layer), and hki lð Þ is
the neighborhood function for unit k; see [56] for more details.

The SOMhas the ability tomapdata froma high dimension space
to a low dimension one. Although the convergence of the algorithm
has been proved under some conditions, the SOM might converge
until hundreds of thousands of iterations [11]. Thus, SOM is compu-
tationally expensive compared with other clustering methods.

4.1.1. LinkedSOMs
Linked self-organizing maps (LinkedSOMs) is a bioinformatics

tool developed to infer GRNs by integrating scRNA-seq and
scATAC-seq data. The input data for LinkedSOMs are the gene
expression data and chromatin data, while the pseudo-time is
not required. Two SOMs with the output set of SOM units are avail-
able after training the scRNA-seq and scATAC-seq data separately.
K-means clustering [36] is then performed to determine centroids
among units, and the cluster of the units, called metaclusters, are
built around these centroids based on Akaike information criterion
score [3]. To link gene expression and chromatin accessibility,
GREAT algorithm [71] is implemented to obtain the linked SOM
metaclusters (LMs). The underlying GRNs are then inferred after
gene ontology analysis and motif analysis on these LMs; see sec-
tion Methods in [52] for details.

Training two SOMs for scRNA-seq and scATAC-seq datasets
makes LinkedSOMs time-consuming as mentioned above, though
it can still analyze large datasets. Even though the original study
of LinkedSOMs focuses on integrating scRNA-seq and scATAC-seq
data, it is also applicable to multi-omics data analysis incorporat-
ing other single-cell sequencing data.
4.2. NMF

Nonnegative matrix factorizations (NMF) aims to decompose a
nonnegative matrix X2 Rn�m into two nonnegative matrices
W2 Rn�r and H2 Rr�m such that X 	 WH [59]. The approach to find
W and H is by solving the minimization problem

min
W;H
0

kX�WHk2F ;

where k � kF denotes the Frobenius norm. Via the NMF, the matrix X
could be approximately represented as linear combinations of r col-
umn vectors in feature matrix W with assignment weight matrix H.
The NMF method has been widely applied to GRN inference
[77,105,108]. Many methods are developed to solve the NMF prob-
lem, such as simple multiplicative update method [60] and pro-
jected gradient method [66]. To the best of our knowledge, the
convergence properties of the projected gradient method have been
proved, while the convergence properties of simple multiplicative
update method are still not clear [66,92].
4.2.1. Coupled NMF
Coupled nonnegative matrix factorizations (coupled NMF) is an

NMF-based approach to reconstruct GRNs via integrative analysis
of scRNA-seq and scATAC-seq data. The main assumption in cou-
pled NMF is that the expression of a subset of genes (detected by
scRNA-seq) can be linearly predicted from the status of chromatin
regions (detected by scATAC-seq).

Coupled NMF aims to cluster the cells in each dataset with
information from another one by developing a new optimization
problem based on NMF. Denote the scRNA-seq and scATAC-seq
data by X and O, respectively. Borrowing the idea from NMF and
introducing the coupling matrix A to connect the clusters W1 and
W2 of two datasets, the coupled NMF is formulated as

min
W1 ;H1 ;W2 ;H2
0

1
2
kO�W1H1k2F þ

d1
2
kX�W2H2k2F � d2tr W>

2 AW1
� �

þ d3 jW1j jj2F þ jW2j jj2F
� �

;

where dk k ¼ 1;2;3ð Þ are the penalty parameters in this optimiza-
tion problem. The trace term tr W>

2 AW1
� �

owns ability to induce
the consistency of features W2 with linear transformed features
AW1. The last term in objective function controls the growth of
W1 andW2 [30]. Before solving the coupled NMFmentioned above,
the coupling matrix A is firstly obtained by performing the regres-
sion model on the paired gene expression and chromatin accessi-
bility data. The coupled NMF is then solved by a modified
multiplicative update algorithm [30]. The method finally generates
the cluster-specific expression of genes and accessibilities of regu-
latory elements, where the cluster-specific expression of genes can
be predicted from the cluster-specific accessibilities of regulatory
elements by AW1. After gene ontology analysis and motif analysis
on each cluster, in the end the final GRNs can be reconstructed, see
section Materials and Methods in [30] for details.

Similar to LinkedSOMs discussed above, other single-cell multi-
omics data can also be applied in this approach to analyze and infer
the GRNs with coupled NMF. Although the numerical behavior of
coupled NMF was showed [30], the convergence properties have
not been established yet.
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4.3. CCA

Canonical correlation analysis (CCA) is a method to project two
different datasets into a correlated low-dimensional space by max-
imizing the correlation between two linear combinations of the
features in each dataset [47]. Denote two datasets by X and O.
Introducing the linear combinations as U :¼ Xu and V :¼ Ov with
two canonical correlation vectors (CCVs) u and v, the CCA can be
described as pursuing the maximum correlation of linear combina-
tions U and V:

max
u;v

corr U;Vð Þ:

Supposed that the columns of X and O have been centered and
scaled, the problem can be re-written as

max
u;v

u>X>Ov

s:t: u>X>Xu � 1;
v>O>Ov � 1:

The solution (u and v) of CCA can be obtained by solving a stan-
dard eigenvalue problem [47,96]. When it comes to high-
dimensional application, its performance achieves a better result
if it treats the covariance matrices of X and O as diagonal matrices
[29,95]. By replacing the X>X and O>O with the identity matrices,
the modified optimization problem called diagonal CCA is reformu-
lated as

max
u;v

u>X>Ov

s:t: kuk2 � 1;

kvk2 � 1;

and it can be solved by penalized matrix decomposition [101].
4.3.1. Seurat v3
Seurat v3 is a bioinformatics framework that can infer GRNs

from scRNA-seq and scATAC-seq data based on CCA. Denote the
scRNA-seq and scATAC-seq data by X and O, respectively. The CCVs
u and v are generated by performing diagonalized CCA with stan-
dard singular value decomposition method, which is followed by
l2-normalization on CCVs to eliminate global differences in scale
across datasets. For each cell in one dataset, its K-nearest neighbors
(KNNs) in another dataset can be identified in the shared low-
dimensional space based on the l2-normalized CCV. If a pair of cells
from each dataset is contained in each other’s KNN, the pair of cells
is defined as the mutual nearest neighbor (MNN), also called
anchor [40,91]. Then the anchors are scored and filtered to allevi-
ate the effects of any incorrectly identified anchors. After convert-
ing scATAC-seq data into a predicted gene expression matrix [81],
an integrated expression matrix for scRNA-seq and scATAC-seq is
finally computed with the strategy in batch correction [40]. The
GRNs can be inferred with this expression matrix as input via
any single-cell GRN inference method; see section Method Details
in [91].

The Seurat v3 focuses on the integration of scRNA-seq with dif-
ferent single-cell technologies including scATAC-seq. It generates
an integrated expression matrix in the end, which can be the input
in further downstream analysis like GRN inference with any single-
cell analytic method. Moreover, the approach in Seurat v3 is
extended to assemble multiple datasets, and this would provide
a deeper insight into single cells. In addition, based on the principle
of CCA and KNN, the Seurat v3 is capable of dealing with high-
dimensional datasets.
5. Conclusions

With the development of various single-cell sequencing tech-
nologies nowadays, more and more methods for GRNs inference
from single-cell sequencing data are proposed [12,20,31,35,83].
Understanding the mathematical background of each method
might help researchers use these methods appropriately in differ-
ent cases. It also benefits the tool developer to design new tools
with comprehensive considerations. This review introduces vari-
ous single-cell sequencing data available for GRN reconstruction.
Then mathematical principles and adaptabilities of several popular
algorithms that have been applied to scRNA-seq data alone or inte-
grative multiple single-cell data are discussed. For each represen-
tative tool, the acceptable data type and underlying assumption
are emphasized to point out the specific circumstance where the
method could be applied.

As the proverb says, "Essentially, all models are wrong, but
some models are useful". Although comparisons on several tools
that work on scRNA-seq data have been performed with simulated
data and real data in several published reviews [20,83], it is still
difficult to conclude which method is the best. First, in general, it
seems that there is no method that significantly outperforms
others in all datasets, especially on real datasets. Second, since
GRNs are highly condition-specific and largely unknown, the GRNs
inferred by these tools from real scRNA-seq data are hard to be
well evaluated. Current comparisons on their performance are usu-
ally based on "gold standard" of non-specific networks or very lim-
ited known network connections under the benchmarking data.
While methods for integrative multiple single-cell data have the
same issues. Thus, we only discuss their adaptabilities and limita-
tions based on their basic algorithm here. Further comparison on
the accuracy of GRNs that they predict from real data requires
more good benchmarking data and corresponding verified gold
standard networks, which is not available now.

We also point out that the future direction of method develop-
ment would be the integration of multiple single-cell sequencing
data. Integrations of single-cell multi-omics could reduce the
impacts of noise and enhance the performance by cross-
validating the regulatory connections in GRNs through multiple
datasets. More integrative tools will emerge when more types of
single-cell data, such as proteome, metabolome, cell image, et al.,
become prevalent in the future. They will depict gene regulatory
mechanisms underlying disease and biological processes more
accurately, and provide a more comprehensive map of GRNs cover-
ing multiple biological molecules and regulatory layers. In addition
to the integration of multiple data types, combining multiple algo-
rithms and tools has also been shown to improve the accuracy of
network inference from bulk-cell data [68]. We speculate that
the same phenomenon will occur for single-cell data. Thus, new
tools considering multiple algorithms may further improve the
prediction of GRNs from single-cell sequencing data.
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