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ABSTRACT
Introduction  Falls remain one of the most prevalent 
adverse events in hospitals and are associated with 
substantial negative health impacts and costs. Approaches 
to assess patients’ fall risk have been implemented in 
hospitals internationally, ranging from brief screening 
questions to multifactorial risk assessments and complex 
prediction models, despite a lack of clear evidence of 
effect in reducing falls in acute hospital environments. 
The increasing digitisation of hospital systems provides 
new opportunities to understand and predict falls using 
routinely recorded data, with potential to integrate 
fall prediction models into real-time or near-real-time 
computerised decision support for clinical teams seeking 
to mitigate fall risk. However, the use of non-traditional 
approaches to fall risk prediction, including machine 
learning using integrated electronic medical records, has 
not yet been reviewed relative to more traditional fall 
prediction models. This scoping review will summarise 
methodologies used to develop existing hospital fall 
prediction models, including reporting quality assessment.
Methods and analysis  This scoping review will follow 
the Arksey and O’Malley framework and its recent 
advances, and will be reported using Preferred Reporting 
Items for Systematic Reviews and Meta-Analyses 
extension for Scoping Reviews recommendations. Four 
electronic databases (CINAHL via EBSCOhost, PubMed, 
IEEE Xplore and Embase) will be initially searched for 
studies up to 12 November 2020, and searches may be 
updated prior to final reporting. Additional studies will be 
identified by reference list review and citation analysis of 
included studies. No restriction will be placed on the date 
or language of identified studies. Screening of search 
results and extraction of data will be performed by two 
independent reviewers. Reporting quality will be assessed 
by the adherence to the Transparent Reporting of a 
multivariable prediction model for Individual Prognosis Or 
Diagnosis.
Ethics and dissemination  Ethical approval is not 
required for this study. Findings will be disseminated 
through peer-reviewed publication and scientific 
conferences.

INTRODUCTION
Falls are one of the most reported adverse 
events in hospitals internationally and are 
associated with significant disease burden 
and costs.1 A 2015 audit of inpatient falls in 
the UK reported 6.63 falls per 1000 occupied 
bed days in acute care hospitals,2 up from 

4.8 in 2005–2006,3 despite concerted efforts 
and substantial investment in patient safety 
measures. Falls have been reported to be 
associated with additional length of stay and 
operational costs internationally, including in 
the USA,4 Canada5 and Australia.6 7

Multifactorial assessments and associated 
interventions may reduce falls, suggesting 
that at least some proportion of hospital falls 
are preventable.1 8 9 However, evidence for 
these approaches may be setting-dependent, 
with clinical trial evidence supporting only 
fall prevention approaches that incorporate 
fall risk assessment in subacute care hospital 
rehabilitation settings for older adults10 but 
not in conventional acute care hospital ward 
settings.11 This has caused some to question 
the value of current approaches to assessing 
fall risk and targeting fall prevention inter-
ventions in acute care hospital settings.12 A 
recent non-inferiority trial across 10 hospi-
tals indicated falls did not increase when 
staff ceased completing multifactorial fall risk 
assessments and instead used their own clin-
ical reasoning to select interventions from 
a clinical decision support intervention list 
without completing the multifactorial fall risk 
assessment.13 In addition to demonstrating 
non-inferiority, after adjusting for histor-
ical fall rates at the participating hospitals, 
the hospital fall incident rate ratio favoured 
the group that ceased fall risk assessment 
ratings.13

Strengths and limitations of this study

►► The proposed review will be the first scoping re-
view of hospital fall prediction model development 
processes.

►► This protocol includes a systematic search and ad-
heres to a rigorous, established research framework 
for study selection and reporting.

►► The review will not include a meta-analysis of pre-
diction performance.

►► The review will not include studies relating to falls 
occurring out of the hospital setting.
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The inability of conventional approaches to identifying 
patients at risk of falling, including fall risk screening 
questions and fall risk assessment tools, to successfully 
guide interventions to reduce fall injuries in acute care 
hospital settings may be due, at least in part, to poor 
fall prediction performance. Patient attributes that 
have been reported to influence fall risk include mental 
status,14 toileting needs,15 mobility impairment,16 history 
of falls,17 medications,18 diabetes and poor blood glucose 
control,19 and age,20 among many others.21 However, 
systematic reviews of conventional approaches to predict 
fall risk in hospitals report that their performance may 
not be considered clinically useful.22 In response to this, 
the current guidelines from the National Institute for 
Health and Care Excellence (NICE) advise a pragmatic 
and simplistic approach to categorising patients as high 
fall risk if they are either (1) aged 65 years or older or (2) 
aged 50–64 years and judged by a clinician to be at higher 
risk of falling because of an underlying condition.23 Since 
the NICE guidelines classify most patients in hospital 
wards as being at high risk of a fall event which occurs 
for approximately 3.6% of patients,6 this approach may 
be sensitive but lacks specificity for guiding specific fall 
prevention interventions.

The increasing digitisation of hospital information 
systems in recent years, including the wider adoption of 
integrated electronic medical records (ieMRs), has laid a 
foundation for the development and adoption of more 
advanced approaches to fall risk prediction in hospitals. 
The use of additional predictors, obtained from ieMR and 
other digital hospital systems, has been shown to improve 
risk prediction performance in related clinical contexts.24 
In addition, the potential to integrate high-performing 
prediction models nested within these systems may 
enable continuous risk predictions and computerised 
clinical decision support that is potentially desirable to 
clinicians25 and medical associations.26 The wide array 
of fields routinely and automatically recorded in ieMRs 
and associated systems provides an opportunity for the 
application of a range of advanced statistical modelling 
and algorithmic approaches that have potential utility 
in hospital settings.27 However, studies reporting newer 
approaches to fall risk prediction, including machine 
learning and its potential role in computerised clinical 
decision support systems intended to reduce fall risk, 
have not yet been systematically collated and considered 
alongside more conventional methods for predicting 
hospital falls. The quality of reporting for inpatient fall 
prediction models has also not been described previously. 
It is also unknown whether the publication of the Trans-
parent Reporting of a multivariable prediction model for 
Individual Prognosis Or Diagnosis (TRIPOD) statement28 
has led to improved reporting quality in the context of 
inpatient fall prediction models.

Study rationale
Although a range of approaches to assessing fall risk in 
hospitals have been available for decades,29 performance 

is inconsistent,30 and validation studies suggest that 
generalisability of some approaches to fall risk prediction 
may be poor.31 Increasing completion rates of conven-
tional approaches to multifactorial fall risk assessment 
and implementation of associated interventions do not 
have clinical trial evidence of effect in acute care hospital 
wards.32 Poor performance of conventional and non-
conventional approaches to fall risk prediction in hospital 
environments may be influenced by the methods used to 
develop these fall risk prediction approaches. This scoping 
review will allow us to summarise methods and sources of 
data which have already been used in the development of 
published approaches to in-hospital fall risk prediction, 
and potentially identify underexplored methods and data 
sources. It is anticipated that these findings will provide 
insight into promising approaches for improving fall 
risk prediction models that have potential to be adopted 
in computerised decision support solutions suitable for 
hospital settings, including ieMR environments. There-
fore, this review will aim to describe existing approaches 
to hospital fall prediction model development and the 
quality of reporting in these studies.

Study objectives
To address this aim, the following objectives have been 
set: (1) describe sources and predictor variables used 
for model development in the context of in-hospital 
fall prediction, (2) describe the development process 
and algorithmic approaches used, and (3) describe 
how existing in-hospital fall prediction model reporting 
adheres to the TRIPOD guidelines.28

METHODS
This scoping review will be reported to the Preferred 
Reporting Items for Systematic reviews and Meta-Analyses 
extension for Scoping Reviews.33 It will be guided by 
the Arksey and O’Malley framework34 as well as recent 
advances.35 The framework includes the following five 
steps:
1.	 Identifying the research question.
2.	 Identifying relevant studies.
3.	 Selecting studies.
4.	 Charting the data.
5.	 Collating, summarising and reporting the results.

This review design may identify areas where a system-
atic review or a meta-analysis is desired to answer a more 
precise and quantitative research question, but no meta-
analysis is planned for inclusion in this scoping review.

Stage 1: identifying the research question
The purpose of a scoping review is to map the literature 
within a given field, in this case, hospital fall prediction 
models. Therefore, we will use an iterative process as our 
understanding of the literature improves, and the ques-
tions may be reframed appropriately.

Our review will focus on the following research 
questions:
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1.	 What clinical prediction models are available for hos-
pital falls?

2.	 What methods are used to create these models?
3.	 What predictor variables are used in these models?
4.	 How well have existing models been reported?

Stage 2: identifying relevant studies
Studies that match the search terms provided will be 
extracted from CINAHL via EBSCOhost, PubMed, IEEE 
Xplore and Embase, and will include studies available 
from database inception to 12 November 2020. This 
search may be updated prior to submission of the manu-
script reporting the findings from this scoping review to 
ensure the most recent literature is included in the review 
at time of publication. There will not be any limitations 
on the document type. The search terms we will use for 
each database were selected with the consultation of a 
librarian and can be found in the online supplemental 
appendix 1.

Eligibility criteria
To enable the exploration of processes and data used 
to develop approaches for fall risk prediction among 
hospital inpatients, this review will include studies that 
developed fall risk prediction approaches and reported 
a measure of predictive model performance in their 
development study. Studies that did not report a compa-
rable measure of predictive performance for in-hospital 
fall prediction will be excluded. Similarly, studies that 
validated existing models in new samples, focused on 
use of sensors, accelerometers or other equipment not 
likely to be widely available in hospitals, or predicted 
falls that occur within a clinically irrelevant period will 
be excluded. For the purpose of this review, we consider 
a clinically irrelevant period to be one that included falls 
that occurred after hospitalisation, or within the hospi-
talisation period but with insufficient time to realistically 
enable a clinical team to be notified of the fall risk and 
implement risk mitigating actions (eg, studies predicting 
falls that occur within one minute).

Stage 3: study selection
Search results from each database will be imported into 
EndNote X9 and duplicates will be removed before being 
imported into Rayyan.36 Article titles and abstracts will be 
assessed against the eligibility criteria by two reviewers. 
Conflicts will be resolved by discussion or by an additional 
reviewer.

The same researchers will review the full texts of the 
included studies against the same eligibility criteria. After 
full-text review, the reference lists of included studies will 
be examined for additional studies of relevance.

Stage 4: charting the data
Two reviewers will extract data from 20% of included studies, 
independently, and discrepancies will be discussed. One 
of the reviewers will then complete data extraction for all 
remaining studies. The fields for data extraction adapted 
from the Joanna Briggs Institute template37 will include those 

described in the online supplemental appendix 1. Data fields 
to be extracted were chosen based on the TRIPOD state-
ment28 and include identifying details of the study, its design, 
sample characteristics (including sample size and patient 
age), data sources, type of fall outcome being predicted, 
modelling approach and performance.

Stage 5: collating, summarising and reporting the results
A narrative report will summarise the studies with regard 
to the research questions. Tables will be used to present 
detailed descriptions of each included study with regard to 
(1) study design and data sources; (2) model development 
process, features used and validation method(s); and (3) 
adherence to TRIPOD reporting guidelines.28 Aggregated 
results will also be presented in tables to provide the end user 
with a summarised view of approaches and strategies used. 
These results will be interpreted with regard to the research 
aims and objectives. Gaps in the literature will be identified 
concerning current standards of reporting and development 
methods for inpatient fall prediction models.

Patient and public involvement
No patients or members of the public were involved 
in this study, and the study will not specifically include 
additional stakeholder engagement as the methods and 
processes being reviewed are already well established.
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