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The relationship between the microbiome and disease has been investigated for many
years. As a highly malignant tumor, biomarkers for lung cancer are diverse. However,
precision of these biomarkers has not yet been achieved. It has been confirmed that lung
microecology changes in lung cancer patients compared with healthy individuals.
Furthermore, the abundance of some bacterial species shows obvious changes,
suggesting their potential use as a microbial marker for the detection of lung cancer. In
addition, recent studies have confirmed that inflammation, immune response, virulence
factors, and metabolism may be potential mechanisms linking the microbiome with
carcinogenesis. In this review, microbiome studies of lung cancer, potential
mechanisms, potential microbial markers, and the influence of the microbiome on the
diagnosis and treatment of lung cancer are summarized, providing theoretical strategies
for the diagnosis and treatment of lung cancer.
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HIGHLIGHTS

• The relationship between the pulmonary microbiome and lung cancer has been recognized.
• The potential mechanisms linking the microbiome with carcinogenesis are summarized.
• Potential microbial markers of some bacterial species for lung cancer are highlighted.
INTRODUCTION

In recent years, the relationship between the microbiome and disease has attracted wide attention.
Many investigations have revealed that pathogen infection can lead to various diseases (1–3). For
example, the correlation between Helicobacter pylori and gastrointestinal diseases has been
confirmed (4). With the development of sequencing technology, the relationship between the
pulmonary microbiome and health is being gradually recognized (3, 5, 6). Compared with healthy
individuals, lung cancer patients exhibit changes in the abundance of different microbial species in
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the lung microbiome, which can cause an imbalance in the
immune response (7, 8). Furthermore, inflammation caused by
an imbalanced immune response can promote the development
of various cancers, including ovarian cancer (9), colon cancer
(10), and stomach cancer (11). It has been reported that
approximately 15% of cancers are associated with chronic
inflammation (12, 13). Chronic inflammation of the pulmonary
system has also been reported to increase the risk of lung cancer
(14, 15). However, until now, it has been challenging to reveal the
mechanisms underlying alterations of the lung microbiome and to
confirm their contributions to the development of lung cancer. In
this review, the changes in the pulmonary microbiome in lung
cancer are summarized. The relationship between the imbalanced
immune response, caused by changes in pulmonary microecology,
and lung cancer is also explored. In addition, potential microbial
markers for lung cancer are highlighted, which will provide a new
viewpoint for early screening and diagnosis of lung cancer.
LUNG CANCER

As a highly malignant tumor, the incidence and mortality of lung
cancer is high (16, 17).The 5-year survival rate of patientswithnon-
small cell lungcancer (NSCLC) is 21%,while the 5-year survival rate
of patients with small cell lung cancer (SCLC) is only 7% (18).
The predisposing factors and pathogenesis of lung cancer are
complex and have not been completely defined. A recent study
found that the presence of inflammation-inducing bacterial
endotoxin lipopolysaccharide (LPS) in smoke can cause genetic
changes. There were significant changes in the expression levels of
1,064 genes following LPS exposure in mice. Of these genes, 859
genes were related to tumorigenesis and metastasis. These results
suggested that inflammation-inducing factors in cigarette smoke
can cause early epigenetic changes in the lung, which, together
with other factors (e.g., environmental, genetic), can cause lung
cancer (19). A retrospective meta-analysis showed that previous
pulmonary diseases, such as pulmonary tuberculosis, chronic
obstructive pulmonary disease (COPD), emphysema, chronic
bronchitis, and pneumonia, increase the risk of lung cancer (14).
The release of tumornecrosis factor (TNF) causedbyMycobacterium
tuberculosis infection leads to pulmonary inflammation, and
pulmonary fibrosis induced by M. tuberculosis results in synthesis
of extracellular matrix (ECM) components. Thus, pulmonary
inflammation and the ECM may be involved in the development
of lung cancer (20). Epidemiological evidence suggests that tissue
damage caused by inflammation can initiate or promote the
development of lung cancer (21). These studies suggest that
chronic inflammation is also a predisposing factor for lung cancer.
Moreover, microorganisms have also been shown to influence the
curative effect of lung cancer treatments. Programmed cell death-1
(PD-1)/programmed cell death 1 ligand 1(PD-L1) inhibitor
antibodies can effectively improve the 5-year survival rate and
overall survival of advanced NSCLC (22, 23). Further investigations
showed that the efficacy of anti-PD-1 cancer treatment would be
affected by intestinal microflora. In a germ-free mouse model, fecal
microbiota transplantation ameliorated the antitumor effects of
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PD-1 blockade (24–27). Fecal bacteria transplantation can also
enhance the curative effect of chemotherapy drugs (28, 29). In
summary, current data illustrates that the microbiome is associated
with the development of lung cancer.
MICROORGANISMS, INFLAMMATION,
AND CANCER

Microbiome
The microbial community of the human respiratory tract can be
roughly divided into oral/nasal, upper respiratory, and pulmonary
microbiomes. Due to direct communication with the outside, the oral
and nasal cavity often changes with the environment, which in turn
affects the microbial community of the upper respiratory tract. With
the development of the endoscopic technique and gene sequencing
technology, researchers have confirmed that healthy lungs are
teeming with microbes, and lung microbes have been divided into
the lung microbiome and lung mycobiome (30). Oral
“microaspiration” has been shown to play an important role in the
colonization of lung microorganisms. Comparison between oral
specimens, protected specimen brushing (PSB), and bronchoalveolar
lavage (BAL) specimens found that oral microflora and pulmonary
microflora are similar, which confirmed that the colonizedmicroflora
in the lungs of healthy individuals migrated from the microaspiration
of oral microflora (31–33). Sputum, BAL, and lung biopsy are
commonly used to obtain specimens of lung microorganisms.
Pollution of oral and upper respiratory tract can be avoided in BAL
samples obtained by bronchoscopy and lung biopsy (31). However,
these procedures are invasive, not readily available, and cause patient
discomfort, and thus, their use has been limited in the study of the
pulmonary microbiome. Although sputum may be contaminated by
microflora fromtheoral andupper respiratory tract, the characteristics
of themicrobial community detected in sputumwere closely related to
tobacco smoking, severity of disease, pulmonary infection, and
antibiotics use (34–36). Sputum is commonly used in many
investigations because it is easily obtained, non-invasive, and
reproducible (37, 38). The isolation and identification of lung
microorganisms can be conducted by culture or non-culture
methods. However, approximately 95% of lung microorganisms
could not be detected by culture methods (39).

Investigations of the lung microbiome are currently
unfolding. Analysis of sputum, BAL, oral, and nasopharyngeal
specimens from healthy individuals found that there was no
significant difference in different parts of the respiratory tract.
Firmicutes and Bacteroides were found to be dominant in the
lung microbiome of healthy individuals (40, 41). In terms of
fungi, sequencing of oral washes (OWs), induced sputa (IS), and
BAL from healthy individuals found that the mycobiomes of
OWs, IS, and BAL had both common organisms as well as
distinct members. Overlapping of BAL and OWs communities in
healthy hosts suggested that lung microbes might originate from
the mouth. Candida was the dominant species in OWs and IS
(42). These studies show that even in the pulmonary systems of
healthy individuals, the microbial community structure and
composition is unique.
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The microbiome not only acts on the colonized organs locally,
but also on the whole body through inflammation, immunity,
metabolism, and other mechanisms. For example, the increase in
urea concentration in patients with chronic kidney disease will
cause a change in intestinal flora and promote the production of
intestinal endotoxin, which will adversely affect kidney function
(43). Intestinalflora is involved in thepathogenesis ofnon-alcoholic
fatty liver disease by affecting intestinal barrier function, choline
metabolism, bile acid synthesis, and production of short-chain fatty
acids and amino acids (44). The gut microbiota can increase the
concentration of circulating short-chain fatty acids (SCFAs) by
metabolizing the fiber. High circulating levels of SCFAs can protect
the lung from allergic inflammation by inhibiting histone
deacetylase and inducing myelopoiesis (45, 46). This indicates
that the microbiome not only acts on the colonized organs
locally, but also acts on the whole body through inflammation,
immunity, metabolism, and other mechanisms.

Microbiome and Cancer
A link between microbial infections and the development of cancer
has been demonstrated. COPD is an important independent risk
factor for lung cancer (47, 48). Chronic inflammation is a key
characteristic of COPD (49). In most stable COPD patients also
exists potentially pathogenic microorganism colonization (50, 51).
Inflammation, oxidative stress, immunity, and DNA damage may
increase the risk of lung cancer in COPD patients (52). This suggests
that chronic respiratory infection may increase the body’s
susceptibility to carcinogens and results in a higher risk of lung
cancer. Ameta-analysis indicated that infection withM. tuberculosis
may increase the risk of lung cancer (14).H. pylori infectionmay also
promote the occurrence and development of lung cancer (53),
suggesting that pathogenic microbial infections can increase the
risk of lung cancer. Microorganisms can promote the occurrence of
lung cancer through inflammation, immune responses, virulence
factors, and metabolism; inflammatory factors, such as interleukin
(IL), tumor necrosis factor (TNF)-a, and cyclooxygenase (COX)-2,
are closely related to carcinogenesis (12). IL-4 can promote tumor
growth by inducing cathepsin protease activity in tumor-associated
macrophages (54). In addition, NSCLC cells underwent a gradually
progressing epithelial-to-mesenchymal (EMT) phenotype
following exposure to IL-1b, an abundant proinflammatory
cytokine in at-risk for lung cancer pulmonary and lung tumor
microenvironments. EMT and EMT-associated phenotypes are
related to cell invasion, PD-L1 upregulation, and chemoresistance
(55). The inflammatory cytokine TNF-a can stabilize Snail through
activation of the nuclear factor-kappa B (NF-kB) pathway, which
plays a critical role in inflammation-induced EMT and cancer cell
migration, invasion, and metastasis (56). COX-2 stimulates the
RhoA/Rho kinase pathway, which leads to disruption of tumor cell
adherens junction formation and contributes to tumor progression
(57). COX-2 is also overexpressed in NSCLC tissue and correlates
with an unfavorable prognosis (58). In summary, pathogenic
microorganisms infection can promote the release of inflammatory
cytokines and aggravate local inflammatory response, thus
promoting the occurrence and development of tumors.

The positive rate of theH. pylori (HP) in gastric cancer patients
was positively correlated with the expression of macrophage
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migration inhibition factor (MIF) (59). The expression ofMif can
promote cell transformation, tumor cell proliferation, and
metastasis. Moreover, the expression of Mif was shown to be
upregulated in NSCLC (60). The isolation and characterization of
individual circulating tumor cells (CTCs)-associated white blood
cells (WBCs) (CTCs–WBCs) as well as corresponding cancer cells
within each CTCs–WBCs cluster showed that neutrophils and
CTCs interact within the blood, and this interaction promotes cell
cycle progression, which enhances the possibility of tumor
metastasis of CTCs (61). COPD is at high risk of lung cancer
(48). Non-typeable Haemophilus influenzae (NTHi) colonization
can increase the frequency of exacerbations of COPD (62).
Compared with the air-exposed group, when IL-17C gene-
deficient metastatic lung cancer mice were exposed to NTHi,
there was a significant reduction in the proliferation, growth, and
number of tumor-associated neutrophils, suggesting that IL-17C
plays a role in the development of neutrophil-mediated lung
cancer (63).

Escherichia coli becomes highly pathogenic following the
acquisition of virulence factors, including the protein toxin
cytotoxic necrotizing factor 1 (CNF1), which induces the
expression of COX2, activates the transcription factor NF-kB, and
promotes cellular motility, and thereby promotes tumor
development (64). CNF1-induced bladder cancer cells secrete
vascular endothelial growth factor (VEGF), leading to subsequent
angiogenesis in the cancer microenvironment (65). Cytolethal
distending toxin exposure leads to a unique cytotoxicity and
induces a cell cycle arrest dependent on the DNA damage response
(66). Moreover, enterotoxigenic Bacteroides fragilis and B. fragilis
toxin gene was upregulated in patients with precancerous and
cancerous lesions (67). Besides, microbial fermentation may have
negative consequences owing to the generation of potentially toxic
and cancer-promoting metabolites, such as ammonia, amines,
phenols, sulphides, and nitrosamines (68). The microbiota
modulates the enterohepatic circulation of estrogens through their
ability to deconjugate estrogens, thus affecting circulating and
excreted estrogen levels, and the risk for development of estrogen-
dependent cancers (69). Overall, the role of inflammation and
immunity in lung cancer development has been established;
however, the correlation and interaction between pulmonary
microorganisms and lung cancer are still not clear.

New Directions for Cancer Treatment
There are new directions in cancer treatment with improved
understanding of the correlation among microbes, inflammation,
and cancer. For example, meroterpenoids, isolated from the brown
seaweed Cystoseira usneoides, significantly reduced the production
of TNF-a, IL-6, and IL-1b, suppressed COX-2 expression, and
displayed higher cytotoxic activities against lung cancer cells
compared with normal lung cells (70). COX-2 can also enhance
gefitinib resistance andNSCLCmetastasis viaPI3K-AKT silencing,
which is a novel therapeutic strategy to overcome gefitinib
resistance in NSCLC cells (58). On the other hand, a curative
effect was observed following transplantation of the dominant
intestinal flora of patients into the intestinal tract of a lung cancer
mouse model (28). Smaller tumors and an improved survival rate
were observed in lung cancer mice treated with cisplatin combined
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with Lactobacillus bacteria (29). Moreover, antibodies targeting
cytotoxic T-lymphocyte antigen (CTLA)-4 have been successfully
used as cancer immunotherapy; the anticancer activity of CTLA-4
depends on intestinal flora. Investigations have confirmed that
Bifidobacterium enhances the therapeutic effects of PD-L1 and
CTLA-4 by altering the activity of dendritic cells and enhancing
CD8+ T cell activation (71, 72). A recent investigation found that
there are many intestinal fungi in the tumor tissues of pancreatic
ductal adenocarcinoma (PDA) cells. Furthermore, the elimination
offungi can inhibit the growth of tumors in PDAmice and improve
the effects of chemotherapy (73). The antitumor effects of the
microbiome may be influenced by the type and strength of the
immune response andcross-reactionsbetween themicrobiomeand
tumor antigen (74). However, further exploration of the use of
microorganisms in the treatment of tumors is necessary.
LUNG CANCER BIOMARKERS

Development of Lung Cancer Biomarkers
There are many biomarkers for lung cancer. For example, the
sensitivity of a panel of autoantibodies to tumor-associated antigens
was higher than a single antigen. However, only 40% of primary
lung cancers can be identified by testing with a panel of
autoantibodies in peripheral blood (75). Comprehensive
assessment of suspected lung cancer using circulating microRNAs
(miRNAs) can effectively reduce the false positive rate of LDCTand
can also beused tomonitor cancer recurrence (76). The detectionof
maturemir-21 in the sputumof23 lung cancerpatients showed that
the expression of mir-21 was significantly higher than that of non-
cancer patients, with a detection rate of 69.66% and specificity of
100.00% (77). Circulating tumor DNA is frequently present in
patients with advanced NSCLC, which can be used to assess the
clinical benefits of Nivolumab (78). However, it can only be used to
assess recurrence after primary surgery for NSCLC (79). Elevated
levels of IL-6, IL-8, and C-reactive protein are associated with the
diagnosis of lung cancer. The levels of IL-8 begin to increase 5 years
prior to the diagnosis of lung cancer. Therefore, the combination of
IL-6 and IL-8 could be useful for evaluating the prognosis of lung
cancer (80). Detection of exhaled breath volatile organic
compounds by special instruments may also be useful in the
diagnosis and classification of cancer (81). Compared with
cancer-free specimens, measurement of metabolites in sputum
samples of lung cancer patients revealed that levels of isobutyl
decanoate, putrescine, diethyl glutarate, and cysteamine were
significantly changed (82), suggesting that metabolites in sputum
may act as biomarkers for lung cancer. Although detection
biomarkers for lung cancer are diverse, precision by these
biomarkers has not yet been achieved. Further research should be
performed in large and well designed trials as most data is
retrospective or in small series.

Microbiome and Potential Microbial
Markers of Lung Cancer
At present, several investigations have confirmed changes in lung
microecology in lung cancer; however, different changes in the
Frontiers in Oncology | www.frontiersin.org 4
bacterial flora of lung cancer patients were observed in different
specimens. BAL samples from lung cancer patients had elevated
levels of Firmicutes and TM7 kingdom; levels of the genera
Veillonella and Megasphaera were also increased significantly (7).
PSB samples from lung cancer patients revealed that the levels of
Streptococcus in lung cancer were significantly higher compared
with the non-cancerous control. An upward trend of Neisseria in
cancerous lesions and Staphylococcus and Dialister displayed a
decreasing trend in the non-cancerous group compared with the
cancer group. Significantly decreased microbial diversity in lung
cancer has also been observed (8). Moreover, the abundance of
Firmicutes (Streptococcus) and Bacteroides (Prevotella) was
significantly increased in the lung tissues of patients with
surgically treated lung cancer compared with emphysema
patients (83). 16S rDNA sequencing analysis showed that the
abundance of salivary species in patients with lung cancer differed
from the non-cancerous group. Compared with the non-cancerous
group at the genus level, the abundances of Capnocytophaga,
Selenomonas, and Veillonella were higher and the abundance of
Neisseria was lower in lung cancer patients. At the species level,
comparedwith the squamous cell carcinomagroup, the abundances
of Streptococcus and Porphyromonas in adenocarcinoma
patients were higher. Neisseria, Capnocytophaga, and Veillonella
may be potential biomarkers of lung cancer (84). Another
metagenomic sequence analysis found that the abundance of
Granulicatella adiacens, Streptococcus intermedius, S. viridans,
and M. tuberculosis in the sputum of patients with lung cancer
was significantly higher compared with the non-cancerous group.
The dominant trendofG. adiacens is related toEnterococcus sp.130,
E. coli, S. intermedius, Acinetobacter junii, S. viridans, and S. sp.6.
Significant changes in level 2 and 3 functions, such as urea cycle,
putrescine utilization, and intracellular resistance, were also
observed from negative to positive lung cancer. However,
compared with the non-cancerous group, there was no significant
change in sputum species diversity in lung cancer patients (85).
Comparedwith thenon-cancerous group, the analysis of 16S rDNA
high-throughput sequencing of sputum from non-smoking female
lung cancer patients found that the relative abundances of
Granulicatella (6.1%), Abiotrophia (1.5%) and Streptococcus
(40.1%) were significantly increased (86). Compared with
squamous cell carcinoma, the abundances of Thermus and
Ralstonia were higher and lower, respectively, in adenocarcinoma.
Alpha diversity is statistically significantly higher in patients with
adenocarcinoma (87). In addition, TP53 mutations have been
shown to be related to the abundance of microorganisms in
squamous cell carcinoma (88). Further investigation found that a
number of microorganisms, including Acidovorax, Klebsiella,
Rhodoferax, Comamonas, and Polarmonas, were more abundant
in squamous cell carcinoma with TP53 mutations (89).

Table 1 shows a summary of the relevant studies; overall, the
pulmonary microbiome in lung cancer patients differs from that
in tumor-free patients. In terms of biodiversity, the results are
inconsistent, which may be related to small sample sizes and
clinical sampling differences. Several studies have shown that the
abundance of Streptococcus (Firmicutes) in lung cancer patient
samples was significantly increased. In vitro, investigations have
January 2021 | Volume 10 | Article 576855
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revealed that S. pneumoniae can cause damage to alveolar
epithelial cells (90). Similar results have confirmed that S.
pneumoniae directly inhibits purinergic signaling by inducing
purinergic receptor P2Y2 phosphorylation and internalization,
which can lead to suppression of the calcium response of
alveolar epithelial cells to ATP and affect the cellular integrity
and function (91). Streptococcus may promote the development
of lung cancer, although further experiments are needed
for verification.
CONCLUSIONS AND PROSPECTS

Over the past few decades, significant progress has been made in
our understanding of the relationship between the microbiome
and lung cancer. From the above-mentioned investigations, we
know that the microbiota of lung cancer patients is changed, and
the abundance of certain bacteria in lung cancer patients is
significantly increased. However, how the changes in the
composition and metabolism of the microbiome contribute to
lung cancer development remains largely unexplored. As the
small sample sizes, the investigations of the microbiome in lung
cancer remain at analysis of the rule of microbiome change.
Further investigations are needed to clarify the mechanism
underlying the influence of the microbiome on the occurrence
and development of lung cancer and interactions between the
microbiome and lung cancer. If the increased abundance
of microorganisms in lung cancer patients promotes the
progression of lung cancer, then early monitoring and
Frontiers in Oncology | www.frontiersin.org 5
intervention for the screening and treatment of lung cancer
patients become particularly important. Further understanding
of these mechanisms will shed light on early screening, diagnosis,
and treatment of lung cancer.
AUTHOR CONTRIBUTIONS

ZNR, CYX, and ZYS wrote the manuscript. JXL and FW
critically revised it. ZYS and BX supervised the work. All
authors contributed to the article and approved the
submitted version.
FUNDING

This research was funded by the National Natural Science
Foundation of the China (31701127), Science and Technology
Project of Sichuan (2019YJ0407, 2017JY0165), and Foundation
of Affiliated Hospital of Southwest Medical University
(2015-YJ011).
ACKNOWLEDGMENTS

We would like to apologize for any omission in referencing
owing to space restrictions.
TABLE 1 | Microorganisms with varying abundance in lung cancer patients.

Sample
type

Control
group

Main finding Reference

BAL Tumor free Phylum: Firmicutes and TM7 increased in lung cancer group;
Genus: Veillonella, Megasphaera, Atopobium, and Selenomonas increased in lung cancer group;
Alpha diversity increased in lung cancer group;

Lee et al. (7)

PBS Healthy Genus: Streptococcus, Haemophilus, and Neisseria increased in lung cancer group; Staphylococcus and Dialister decreased
in lung cancer group;
Alpha diversity decreased in lung cancer group;

Liu et al. (8)

Lung
tissue

Emphysema Phylum: Firmicutes, Bacteroidetes, and Actinobacteria increased in lung cancer group; Proteobacteria decreased in lung
cancer group;
Genus: Streptococcus, Prevotella, and Bifidobacterium increased in lung cancer group; Acinetobacter, Acidovorax, and
Diaphorobacter decreased in lung cancer group;
Alpha diversity increased in lung cancer group;

Liu et al. (83)

Salivary Tumor free Order: Flavobacteriales and Burkholderiales increased in lung cancer group; Bacteroidales decreased in lung cancer group;
Family: Veillonellaceae increased in lung cancer group; Lachnospiraceae decreased in lung cancer group;
Genus: Capnocytophaga, Selenomonas, and Veillonella increased in lung cancer group; Neisseria and Streptococcus
decreased in lung cancer group;
The abundances of Streptococcus and Porphyromonas in adenocarcinoma patients was higher than in squamous cell
carcinoma patients;

Yan et al. (84)

Sputum Tumor free Species: Streptococcus viridans, Streptococcus intermedius, Granulicatella adiacens, Mycobacterium tuberculosis, and
Mycobacterium bovis increased in lung cancer group;
Alpha diversity was not significantly different in the lung cancer group;

Cameron
et al. (85)

Sputum Tumor free Genus: Streptococcus, Abiotrophia, and Granulicatella increased in lung cancer group; Leptotrichia, Sphingomonas
decreased in lung cancer group;

Hosgood
et al. (86)

Lung
tissue

_ Adenocarcinoma vs. squamous cell carcinoma: abundance of Thermus was higher in adenocarcinoma, abundance of
Ralstonia was lower in adenocarcinoma;
Alpha diversity was statistically significantly higher in patients with adenocarcinoma;

Yu et al. (87)
January 2021 | Volume 10 |
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