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Summary
Recent genomic studies suggest that Asian breast cancer (BC) may have distinct somatic features; however, most comparisons of BC

genomic features across populations did not account for differences in age, subtype, and sequencingmethods. In this study, we analyzed

whole-exome sequencing (WES) data to characterize somatic copy number alterations (SCNAs) and mutation profiles in 98 Hong Kong

BC (HKBC) patients and compared with those from The Cancer Genome Atlas of European ancestry (TCGA-EA, N ¼ 686), which had

similar distributions of age at diagnosis and PAM50 subtypes as in HKBC. We developed a two-sample Poisson model to compare driver

gene selection pressure, which reflects the effect sizes of cancer driver genes, while accounting for differences in sample size, sequencing

platforms, depths, andmutation calling methods. We found that somatic mutation and SCNA profiles were overall very similar between

HKBC and TCGA-EA. The selection pressure for small insertions and deletions (indels) inGATA3 (false discovery rate (FDR) corrected p<

0.01) and single-nucleotide variants (SNVs) in TP53 (nominal p ¼ 0.02, FDR corrected p ¼ 0.28) was lower in HKBC than in TCGA-EA.

Among the 13 signatures of single-base substitutions (SBS) that are common in BC, we found a suggestively higher contribution of SBS18

and a lower contribution of SBS1 in HKBC than in TCGA-EA, while the two APOBEC-induced signatures showed similar prevalence.Our

results suggest that the genomic landscape of BC was largely very similar between HKBC and TCGA-EA, despite suggestive differences in

some driver genes and mutational signatures that warrant future investigations in large and diverse Asian populations.
Introduction

Despite being lower than in North America and Europe,1

the incidence rates for invasive female breast cancer (BC)

[MIM: 114480] have been increasing rapidly in many

Asian populations. Moreover, Asian women seem to have

a distinct profile of BC, such as earlier age at onset and

higher frequencies of luminal B and HER2-enriched tu-

mors, compared with European populations.2 Recent

genomic studies based on a limited number of Asian sub-

jects suggest that Asian breast tumors may display a higher

frequency of somatic mutations in TP53[MIM: 191170]3–5

and distinct immune gene expression profiles.4–6 In partic-

ular, a germline APOBEC3B deletion polymorphism

[MIM:607110], which has been associated with increased

BC risk7 and increased APOBEC-associated mutation signa-

tures in BC,8,9 is much more common in East Asians

(31.2%) than in Europeans (9.0%) and West Africans

(4.2%). These previous studies suggest that East Asian

breast tumors may exhibit a distinct somatic profile

compared with other BC populations.
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Cancer develops as a result of somatic mutations and

clonal selection. The selection pressure of somatic muta-

tions in cancer driver genes reflects the adaptiveness or ef-

fect size of clonal selection.10,11 The positive selection pres-

sure indicates that the corresponding cancer subclone has

a growth advantage over normal cells and other cancer

subclones. Selection pressure is frequently measured by

dN/dS ratio, which represents the mutation rate of nonsy-

nonymous (NS) mutations (including missense, nonsense,

splicing site mutations, and insertions and deletions (in-

dels)) versus the mutation rate of synonymous muta-

tions.11 In previous studies, population differences in the

driver gene landscape were compared primarily based on

mutation frequencies among study populations. However,

these comparisons are sensitive to differences in

sequencing platforms and bioinformatic analyses.12 On

the other hand, by leveraging mutation rates of synony-

mous mutations as the reference group, the dN/dS ratio

is less sensitive to variations in sequencing and somatic

mutation calling, assuming the technical variations are

not discriminative against the function of mutations. In
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addition, although the same set of cancer driver genes may

present in different populations, the effect size of selection

can be different. Cannataro et al. estimated the selection

pressure of all recurrent single-nucleotide variants (SNVs)

in 22 cancer types in The Cancer Genome Atlas (TCGA)

and found that selection pressures varied considerably

across cancer types, even within the same cancer type.13

For example, although TP53 is a driver gene for all BC sub-

types, TP53 mutations present with higher selection pres-

sure in ER-negative than ER-positive BCs. Comparing the

selection pressure of driver genes in different populations

may therefore provide a more accurate and quantitative

measure to evaluate racial heterogeneity of somatic muta-

tions than comparing mutation frequencies alone. In this

study, we compared driver gene selection pressure, as

well as mutational signatures and somatic copy number

alteration (SCNA) profiles, between Chinese and TCGA

BC patients of European ancestry that had similar distribu-

tions of age at diagnosis and PAM50 subtypes.
Methods

Participants and samples
We analyzed data and biospecimens collected from a hospital-

based BC case-control study in Hong Kong BC (HKBC), as previ-

ously described.14 In brief, fresh frozen breast tumors and paired

normal tissues were collected from newly diagnosed BC patients

of Han Chinese ancestry in two Hong Kong hospitals between

2013 and 2016. Patients with pre-surgery treatment were excluded

from the study. Clinical characteristics and BC risk factors were ob-

tained frommedical records and a questionnaire. The study proto-

col was approved by ethics committees of the Joint Chinese Uni-

versity of Hong Kong, New Territories East Cluster, the Kowloon

West Cluster, and the National Cancer Institute (NCI). Written

informed consent was obtained prior to the surgery for all

participants.
Bioinformatic analyses
Paired tumor and histologically normal breast tissue samples were

processed for pathology review at the Biospecimen Core Resource

(BCR), Nationwide Children’s Hospital, using modified TCGA

criteria.8 Specifically, only tumors with >50% tumor cells and

normal tissue with no detected tumor cells were included for

dual DNA/RNA extraction.

Whole-exome sequencing (WES) was performed on 98 paired

tumor and normal samples at the Cancer Genomics Research Lab-

oratory (CGR), NCI, using SeqCAP EZ Human Exome Library v3.0

(Roche NimbleGen, Madison, WI) for exome sequence capture.

The captured DNA was then subjected to paired-end sequencing

utilizing Illumina HiSeq2000. The average sequencing depth was

106.2x for tumors and 47.6x for the paired blood or normal tis-

sues. Somatic mutations were called using four different algo-

rithms (MuTect,15 MuTect2 (GATK tool), Strelka,16 and TNScope

by Sentieon)17 and the final variant calls were based on mutations

called by three or more of four established callers. Variants were

excluded if they did not pass the pipeline quality control metrics,

had variant allele fraction (VAF) < 0.07 in tumor, VAF >0.02 in

normal, alternative allele read count <3 or total read count <8

in tumor, total read count <6 in normal. In addition, variants
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would be excluded if its minor allele frequency (MAF) was

>0.1% in reference germline variant databases including 1,000

Genomes Project,18 the ESP6500 dataset from University of Wash-

ington’s Exome Sequencing Project (http://evs.gs.washington.

edu/EVS/), or ExAC.19

SNP rs12628403, which is a proxy for the APOBEC3B deletion

(r2 ¼ 1.00 in Chinese from Beijing (CHB) in HapMap samples),

was genotyped in germline DNA with a custom TaqMan assay, as

previously described.20

RNA sequencing (RNA-Seq) data were generated in these tumors

at Macrogen Corporation on Illumina HiSeq4000 using a TruSeq

stranded RNA kit with Ribo-Zero for rRNA depletion and 100-bp

paired-end method. Gene expression was quantified as transcript

per million (TPM) using RSEM,21 and log2TPM was used for statis-

tical analyses. PAM50 subtype, which is a 50-gene signature that

classifies BC into five molecular intrinsic subtypes, was defined

by an absolute intrinsic subtyping (AIMS) method22 using RNA-

Seq data.6 For patients without RNASeq data, subtype was defined

using immunohistochemical status of estrogen receptor (ER), pro-

gesterone receptor (PR), and human epidermal growth factor re-

ceptor-2 (HER2).
TCGA dataset
We included 686 BC patients of European ancestry in TCGA

(TCGA-EA, defined by the study information) with both WES

and RNA-Seq as a comparison dataset. WES calls for 779 BC tu-

mors, which were downloaded from Multi-Center Mutation Call-

ing in Multiple Cancers (MC3),23 and tumors from non-European

ancestry patients were excluded. RNA-Seq data were downloaded

from the NCI’s Genomic Data Commons (GDC) (legacy archive)

and processed and quantified using similar methods as in HKBC.

PAM50 was called using the same AIMS method for each TCGA

sample, as it was used for HKBC. The somatic mutation files

(including called variants and SCNAs) were obtained from the

pan-cancer TCGA study,23 and variants were processed and filtered

using the same criteria as in HKBC.
Mutational signatures
Given the limited sample size of the HKBC study, we did not

perform de novomutation signature analysis. Instead, we evaluated

contributions of 13 COSMIC single-base substitution (SBS) signa-

tures that were previously reported to be common in BC (SBS1,

SBS2, SBS3, SBS5, SBS8, SBS9, SBS13, SBS17a, SBS17b, SBS18,

SBS37, SBS40, and SBS41).24 SBS signatures were defined by 96

mutational catalogs, each of which refers to a mutated pyrimidine

(C or T) in the center and two flanking nucleotides (flanking 50

AND-30 bases). SignatureEstimation (version 1.0.0),25 SIGNAL

(downloaded around Nov 2021),26 and YAPSA (version 1.19.0)27

were used to evaluate the contribution of each COSMIC SBS signa-

ture (version 3.2) with confidence for each tumor sample.
Driver gene detection
dNdScv11 (version 0.1.0) with the default arguments was used to

identify driver and significantly mutated genes (SMGs) (the signif-

icance was defined as false discovery rate (FDR) q < 0.01), which

were compared with previously identified BC driver genes.23 For

this analysis, we further filtered out somatic mutations with VAF

<0.1. After the filtering step and restricting the variants to those

in protein-coding regions, 39,439 mutations from 686 TCGA-EA

samples (98.7% are singletons) and 5,116 mutations from 98

HKBC samples (98.8% singletons) were used for the selection
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Figure 1. BC driver gene landscape in the HKBC study
(A) Genomic driver landscape of BC in HKBC. Top bar graph shows the number of NS mutations per tumor. The middle gene panel re-
ports NS mutations in 23 known BC driver genes that were reported previously for the TCGA BC (BRCA) study. Bottom panels show age
groups and PAM50 subtypes.
(B) Frequencies of mutations in 23 known BC driver genes in HKBC and TCGA-EA (European ancestry) studies.
pressure comparison. To examine if the sample size would impact

the number of detected driver genes, we randomly down-sampled

the TCGA-EA samples and reran dNdScv.
SCNAs
Allele-specific SCNA analysis was performed using subHMM28

(https://dceg.cancer.gov/tools/analysis/subhmm). An arm-level

SCNA was defined if the SCNA event covered 90% of the p or q

arm of each chromosome. In addition, subHMM also estimated

subclonal genotypes of SCNA events based on the distribution of

variant allele fractions. GISTIC2.029 was used to detect significant

focal recurrent SCNAs. Following the methods in previous re-

ports,30–32 the SCNA-based homologous recombination deficiency

(HRD) was quantified based on loss of heterozygosity (LOH), telo-

mere allelic imbalance (TAI), and large-scale state transition (LST).
Two-sample Poisson model to compare driver gene

selection pressure in the two populations
We developed a new statistical test, dNdScf, to compare the selec-

tion pressure of 23 known BC driver genes between the two pop-

ulations, while adjusting for study sample size, background muta-

tion rate, and mutable bases. Specifically, we first estimated the

background mutation rates for missense, nonsense, splicing site

single-nucleotide variants (SNVs), and indels, using the statistical

framework adapted from dNdScv. We then compared selection

pressure for each specific driver gene in a two-sample test using

a Poisson regression model, which adjusts the sample size of

each population and accounts for genome-wide mutation rates,

192 tri-nucleotide context-specific mutation rates, and a gene-spe-

cific mutation rate.

Let ng
ij be the number of NSmutations for the i th population and

j th mutation category in the g th driver gene, i ¼ 1;2; j ¼
1;2;.;96; and g ¼ 1;2;.;23: Wemodeled the number of NSmu-

tations following a Poisson distribution as ng
ij � Poissonðnim

g
j t

g
i b

g
i Þ,

for which ni is the sample size of the i th population, mg
j is the

mutable base per subject for the j th mutation category in the g

th driver gene, tgi is the backgroundmutation rate for the g th driver

gene in the i th population, and b
g
i is the selection pressure,
Human
measured as dN/dS, for the g th driver gene in the i th population;

ni andmg
j are given based on the study sample size andhuman refer-

ence genome; tgi is a plugged-in estimate from dNdScv11; we param-

eterized b
g
2 ¼ ugb

g
1. A Poisson regression model was fitted to esti-

mate b
g
1 and to test the null hypothesis that dN/dSs of two

populations are the same, i.e.,ug ¼ 1. Rejecting the null hypothesis

indicates the disparity of selective pressure between the two popu-

lations. Both the p value and FDR adjusted p value were reported

in the results.
Results

This analysis included 98 Chinese BC patients in HKBC

and 686 TCGA-EA BC patients. Distributions of age at diag-

nosis (mean ¼ 57.9 in HKBC and 58.3 in TCGA-EA) and

PAM50 subtypes (44.1% luminal A, 26.9% luminal B,

16.1% HER2-enriched, and 12.9% Basal-like in HKBC;

40.9% luminal A, 26.8% luminal B, 14.2% HER2-enriched,

and 18.1% Basal-like in TCGA-EA) were similar in the two

datasets (Table S1).

The tumor mutational burden in HKBC was 1.74 muta-

tions/Mb. Figure 1A shows the somatic mutation landscape

of the 23 known BC driver genes23 in HKBC, in which so-

matic mutations in these genes were seen in 73.5% of pa-

tients. The prevalence of mutations in most driver genes

was similar in the two datasets (Table S2), with the excep-

tion of CDH1 (MIM:192090; 4% in HKBC versus 13% in

TCGA-EA, nominal p ¼ 0.015, FDR adjusted p ¼ 0.35)

and GATA3 (MIM: 131320; 5% in HKBC versus 12% in

TCGA-EA, nominal p ¼ 0.075, FDR adjusted p ¼ 0.74),

which showed lower frequencies in HKBC than in TCGA-

EA (Figure 1B). De novo identification of SMGs found five

genes in HKBC versus 23 genes in TCGA-EA, using dNdScv.

We down-sampled TCGA-EA samples to test if the disparity

of the number of driver genes was due to the different

sample size in HKBC (n ¼ 98) and TCGA-EA (n ¼ 686).
Genetics and Genomics Advances 3, 100076, January 13, 2022 3
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Figure 2. Comparisons of selection pressure of BC driver genes
between HKBC and TCGA-EA studies
(A) Selection pressure of SNVs; (B) selection pressure of small in-
dels. Genes without mutations detected in either HKBC or
TCGA-EA samples are not shown. The bar represents the 95% con-
fidence interval of the estimate of selection pressure.
Down-sampling the TCGA-EA dataset to 100 tumors also

identified five SMGs, suggesting that the difference in the

number of SMGs in the two datasets was largely due to

different sample sizes (Figure S1).

To examine whether the selection pressure of BC driver

genes varied by population/ethnicity, we applied a new

statistical test, dNdScf (see Methods), to compare the se-

lection pressure (u) of the 23 BC driver genes in HKBC

and TCGA-EA. These genes were selected because they

were significant (FDR corrected p < 0.1) in the TCGA-EA

study and were reported as BC driver genes.23 Overall, we

found that u of most driver genes, including PIK3CA

(MIM:171834; the most frequently mutated gene in BC),

was similar in the two datasets (Figure 2, Table 1). However,

u of small indels inGATA3was significantly lower in HKBC

than in TCGA-EA (FDR corrected p < 0.01). In addition, u

of SNVs in TP53 was also suggestively lower in HKBC

(nominal p ¼ 0.02, FDR adjusted p ¼ 0.28).

Overall, the mutational spectrum showed similar pat-

terns in the two datasets (Figures 3a and 3b). We further

estimated the contributions of 13 known BC mutational

signatures24 in HKBC (Figure 3C) and TCGA-EA using

three algorithms SignatureEstimation, SIGNAL, and

YAPSA. Results based on SignatureEstimation and YAPSA

were very similar. We observed the same eight SBS signa-

tures in HKBC and TCGA-EA, each contributing to

>0.5% mutations in each dataset. The most prevalent

SBS signatures were SBS1, SBS2, SBS5, SBS3, SBS13, and

SBS18 in both datasets (Table S3). SBS18, which is related
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to damage by reactive oxygen species (ROS),33 appeared

to show higher contribution in HKBC than in TCGA-EA

(mean contribution by SignatureEstimation: 14.4% in

HKBC versus 10.9% in TCGA-EA, p ¼ 0.0064), whereas

SBS1, considered as a clock-like signature, showed lower

contribution in HKBC (8.2%) than in TCGA-EA (22.2%,

p ¼ 3.99x10�30). The prevalence of these signatures esti-

mated by SIGNAL was much lower as compared with the

other two algorithms, resulting in insignificant results for

most signatures (Table S3). Notably, contributions of

SBS2 and SBS13, the two APOBEC signatures, were similar

between HKBC and TCGA-EA across all algorithms (Table

S3), despite a much higher frequency of the germline

APOBEC3B deletion polymorphism in HKBC (40.4%)

than in TCGA-EA (5.7%). We found the expected associa-

tions between the APOBEC3B deletion and decreased levels

of APOBEC3B RNA expression in both tumor and normal

tissue, validating SNP rs12628403 as a proxy for

APOBEC3B deletion.6 In addition, the homozygous dele-

tion of APOBEC3B was associated with higher contribu-

tions of SBS2 and SBS13 in HKBC (Figure S2).

We also compared SCNA profiles in HKBC and TCGA-EA

and found similar patterns of gains, deletions, or LOH be-

tween the two datasets for both clonal and subclonal

SCNAs28 (Figure 4). The frequencies of those recurrent

SCNA regions in BC, such as 1q gain, 8p loss, 8q gain,

16p gain, and 16q loss, were similar in the two datasets.

Focal SCNA regions identified using GISTIC were also

very similar in the two datasets (Figure S3), although a

greater number of significant regions were identified in

TCGA-EA because of the larger sample size.
Discussion

In this study, we compared genomic profiles between a

clinically and molecularly well-annotated Asian popula-

tion and TCGA BC patients of European ancestry that

had similar age and subtype distributions. We found that

somatic mutation and SCNA profiles were overall very

similar in the two populations, which is consistent with

the conclusion from a recent large BC genomic study con-

ducted in Malaysia, where the majority of patients were of

Chinese ancestry.5 However, in contrast to findings from

previous studies, including the study by Pan et al.,5 we

did not find higher frequencies of TP53 mutations and

APOBEC signature mutations among Chinese BC patients

in Hong Kong. Instead, we found that selection pressure

for SNVs in TP53 seemed to be lower in HKBC than in

TCGA-EA. The discrepancies might be due to younger

age and more aggressive tumor subtypes in previous Asian

studies, given that TP53 mutations occur more often in

younger women and triple-negative tumors.34 In our

study, the age and subtype distributions were similar be-

tween HKBC and TCGA-EA. In addition, comparing muta-

tion frequencies is subject to differences in sequencing

coverage and mutation calling pipelines. For example, in
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Table 1. Selection pressure for 23 BC driver genes in HKBC and TCGA-EA studies

HKBC study TCGA-EA

Gene Ns Nn Ni bun; bui Ns Nn Ni bun bui pn qn pi qi

TP53 2 14 8 94.8 (56, 106) 642.5 (321, 1,285) 0 175 41 167.0 (144, 194) 864.6 (651, 1,201) 0.03* 0.28 0.43 0.70

PIK3CA 0 36 1 100.9 (73, 140) 59.1 (8, 419) 4 256 12 97.9 (87, 111) 54.2 (31, 96) 0.87 0.93 0.94 0.98

CDH1 0 0 4 0 (NA) 138.6 (52, 369) 3 41 52 18.4 (14, 25) 340.5 (259, 447) <0.01* 0.03* 0.05* 0.37

MAP3K1 0 1 3 1.9 (0.3, 132) 104.7 (34, 325) 3 29 51 7.5 (5, 11) 165.0 (125, 217) 0.08 0.35 0.41 0.70

PTEN 0 5 4 36.5 (15.88) 413.0 (155, 1,100) 0 18 22 18.1 (11, 29) 260.8 (172, 396) 0.19 0.45 0.42 0.70

MAP2K4 0 0 1 0 (NA) 101.0 (14, 717) 1 17 13 16.7 (10, 27) 146.7 (87, 257) 0.04* 0.28 0.70 0.96

FOXA1 0 2 2 10.8 (3, 43) 160.0 (40, 640) 1 18 7 13.8 (9, 33) 139.3 (87, 257) 0.73 0.93 0.86 0.96

KMT2C 1 7 6 4.1 (2, 9) 28.4 (13, 63) 0 26 21 2.1 (2, 3) 24.5 (16, 38) 0.14 0.44 0.75 0.96

GATA3 0 1 4 6.3 (0.9, 45) 157.0 (59, 418) 0 9 75 8.0 (4, 16) 998.3 (796, 1,252) 0.81 0.93 <0.01* <0.01*

RUNX1 0 1 1 5.2 (0.7, 37) 76.7 (11, 544) 1 7 16 5.2 (3, 11) 188.2 (115, 307) 0.99 0.99 0.33 0.68

TBX3 0 0 0 0 (NA) 0 (NA) 0 7 16 3.5 (2, 7) 151.2 (93, 247) 0.17 0.44 0.02* 0.22

PIK3R1 0 0 1 0 (NA) 45.2 (6, 321) 0 6 14 3.2 (2, 7) 83.8 (50, 142) 0.21 0.45 0.51 0.78

RB1 0 2 1 6.1 (2, 24) 49.1 (7, 349) 1 12 6 5.0 (3, 9) 28.0 (11, 75) 0.80 0.93 0.64 0.96

CBFB 0 2 0 25.2 (6, 101) 0 (NA) 1 12 4 20.8 (12, 37) 123.5 (46, 329) 0.81 0.93 0.32 0.68

NCOR1 0 1 0 1.1 (0.2, 8) 0 (NA) 2 24 9 3.8 (3, 6) 20.5 (11, 75) 0.15 0.44 0.10 0.37

AKT1 0 2 0 10.6 (4, 42) 0 (NA) 0 18 0 13.4 (8, 21) 0 (NA) 0.75 0.93 1.00 1.00

GPS2 0 0 0 0 (NA) 0 (NA) 0 2 7 2.5 (0.6, 10) 80.8 (39, 170) 0.46 0.82 0.23 0.68

ARID1A 0 1 2 1.2 (0.2, 9) 24.3 (6, 97) 0 9 3 1.6 (0.8, 3) 5.8 (2, 18) 0.80 0.93 0.15 0.56

CTCF 0 1 0 3.8 (0.5, 27) 0 (NA) 2 10 4 5.2 (3, 10) 35.8 (13, 95) 0.75 0.93 0.32 0.68

CDKN1B 0 0 2 0 (NA) 518.3 (130, 2,072) 1 3 5 5.6 (2, 17) 84.9 (35, 204) 0.37 0.72 0.06 0.37

NF1 0 2 1 2.2 (0.5, 9) 10.6 (2, 76) 1 13 5 1.9 (1, 3) 8.9 (4, 21) 0.89 0.93 0.87 0.96

BRCA1 0 0 1 0 (NA) 16.5 (2, 117) 0 11 4 2.5 (1, 5) 11.2 (4, 30) 0.09 0.35 0.73 0.96

ERBB2 0 0 1 0 (NA) 29.2 (4, 208) 0 11 1 3.6 (2, 7) 6.1 (1, 43) 0.09 0.35 0.28 0.68

The background mutation rates were estimated as btHK ¼ 1:28 ð0:41; 3:96Þ btWH ¼ 1:13 ð0:74; 1:73Þ ðw: 95 % CIÞ, assuming the mutation counts following a
Poisson distribution.
Ns: the number of synonymous mutations; Nn: the number of NS mutations; Ni: the number of indels.
ui: selection pressure among indels in cancer genes (relative to indel in non-cancer genes); un: selection pressure among NS mutations (relative to synonymous
mutations); ui: selection pressure among indels in cancer genes (relative to indel in non-cancer genes).
95% confidence intervals for un and ui in brackets.
pn : p value from two sample Poisson likelihood ratio test for point mutations; pi : p value from two sample Poisson likelihood ratio test for indels; qn : q value for
two sample Poisson likelihood ratio tests for point mutations; qi : q value for two sample Poisson likelihood ratio tests for indels.
A star mark (*) indicates a test is significant at level 0.05.
the Chinese study by Zhang et al.,35 the coverage of the tar-

geted sequencing was about 20 times higher (�1,200x)

than that of TCGA (<60x), which likely contributed to

the higher frequencies of mutations for most cancer driver

genes among Chinese BC patients than in TCGA overall.

In contrast, by leveraging mutation rates of synonymous

mutations as the reference group, our method of

comparing driver gene selection pressure is less sensitive

to variations in sequencing and somatic mutation calling,

assuming the technical variations are uniform regardless of

mutation types. Further, Asians are an extremely heteroge-

neous population, comprising groups with diverse genetic

background and sociodemographic characteristics. The

variations in the BC genomic landscape across different

Asian populations are therefore not surprising, high-
Human
lighting the importance of conducting more genomic

studies in different Asian populations to capture the com-

plete spectrum of the BC genomic landscape in Asia.

Nevertheless, our findings of lower selection pressure for

TP53 in HKBC are in line with the highest survival rate

among Asian Americans at all stages among BC patients

of all race/ethnic groups in the United States,36 given

that TP53 mutations are known to be associated with

poor prognosis in multiple cancer types.

Despite a much higher prevalence of the germline

APOBEC3B deletion polymorphism in HKBC than in

TCGA-EA and the expected associations between the APO-

BEC3B deletion and decreased levels of APOBEC3B RNA

expression in both tumor and normal tissue, the fractions

of APOBEC signatures (SBS2/13) were similar between
Genetics and Genomics Advances 3, 100076, January 13, 2022 5



Figure 3. SBS mutational spectrum and prevalence of SBS signatures in HKBC
(A and B) Mutational spectrum in HKBC (A) and TCGA-EA studies (B).
(C) The contributions of COSMIC SBS signatures for each patient in HKBC.
HKBC and TCGA-EA. The percentage of samples with SBS2

was actually lower in HKBC, suggesting that this germline

deletion polymorphismmay not play a major role in APO-

BEC-related mutagenesis in our Hong Kong study.

Notably, we found a consistent increase in SBS18 in

HKBC; both the percentage of patients with SBS18 and
Figure 4. Comparisons of SCNAs between HKBC and TCGA-EA stu
(A) Main clones (left: HKBC, right: TCGA-EA). Each panel shows the fr
across the samples in each study.
(B) Subclones (left: HKBC, right: TCGA-EA).

6 Human Genetics and Genomics Advances 3, 100076, January 13, 2
the mean fraction of SBS18 were higher in HKBC than in

TCGA-EA. SBS18 has been associated with ROS damage

and defective base excision repair due to germline MUTYH

mutations.37 However, a germline pathogenic variant in

MUTYH was only seen in one patient in HKBC and zero

in TCGA-EA. Given the sample size and variations in
dies
equency of copy number gain, loss, and copy number neutral LOH

022



signature estimates across different algorithms, future

studies are warranted to follow up these findings in addi-

tional Asian studies.

The major limitation of the HKBC study is the small

sample size, which limited the power to agnostically iden-

tify HK-specific events, to extract de novomutational signa-

tures, and to compare selection pressure for less frequently

mutated genes. In addition, lack of whole-genome

sequencing data prohibited us from assessing HRD signa-

tures based on structural variants. Nevertheless, taking

advantage of the existing knowledge of BC genomics, we

found suggestive differences in mutational signatures

and selection pressure for several genes, suggesting some

extent of racial heterogeneity in mutation generation

and selection. Future large studies are warranted to confirm

these findings and to relate these genomic differences with

germline genetic variants and other etiologic factors.
Data and code availability

Sequencing data generated in the HKBC study has been

deposited in the dbGaP database under Accession

Code phs001870.v1.p1. at https://www.ncbi.nlm.nih.gov/

projects/gap/cgi-bin/study.cgi?study_id¼phs001870.v1.p1.
Supplemental information

Supplemental information can be found online at https://doi.org/

10.1016/j.xhgg.2021.100076.
Acknowledgments

This research was supported by the Intramural Research Program

of the National Institutes of Health, National Cancer Institute, Di-

vision of Cancer Epidemiology and Genetics, and Research Grants

Council (grant number 474811 to Dr. Tse), Hong Kong SAR.
Declaration of interests

The authors declare no competing interests.

Received: September 9, 2021

Accepted: November 30, 2021
Web resources

Online Mendelian Inheritance in Man: http://www.omim.

org.
References

1. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A.,

and Jemal, A. (2018). Global cancer statistics 2018: GLOBO-

CAN estimates of incidence and mortality worldwide for 36

cancers in 185 countries. CA Cancer J. Clin. 68, 394–424.

2. Yap, Y.S., Lu, Y.S., Tamura, K., Lee, J.E., Ko, E.Y., Park, Y.H., et al.

(2019). Insights into breast cancer in the East vs the west: a re-

view. JAMA Oncol. 5, 1489–1496.
Human
3. Yap, Y.S., Singh, A.P., Lim, J.H.C., Ahn, J.H., Jung, K.H., Kim, J.,

Dent, R.A., Ng, R.C.H., Kim, S.B., and Chiang, D.Y. (2018).

Elucidating therapeutic molecular targets in premenopausal

Asian womenwith recurrent breast cancers. NPJ Breast Cancer

4, 19.

4. Kan, Z., Ding, Y., Kim, J., Jung, H.H., Chung, W., Lal, S., Cho,

S., Fernandez-Banet, J., Lee, S.K., Kim, S.W., et al. (2018).

Multi-omics profiling of younger Asian breast cancers reveals

distinctive molecular signatures. Nat. Commun. 9, 1725.

5. Pan, J.-W., Ahmad Zabidi, M.M., Ng, P.-S., Meng, M.-Y., Hasan,

S.N., Sandey, B., et al. (2020). The molecular landscape of

Asian breast cancers reveals clinically relevant population-spe-

cific differences. Nat. Commun. 11, 6433.

6. Zhu, B., Tse, L.A., Wang, D., Koka, H., Zhang, T., Abubakar, M.,

Lee, P., Wang, F., Wu, C., Tsang, K.H., et al. (2019). Immune

gene expression profiling reveals heterogeneity in luminal

breast tumors. Breast Cancer Res. 21, 147.

7. Long, J., Delahanty, R.J., Li, G., Gao, Y.T., Lu, W., Cai, Q.,

Xiang, Y.B., Li, C., Ji, B.T., Zheng, Y., et al. (2013). A common

deletion in the APOBEC3 genes and breast cancer risk. J. Natl.

Cancer Inst. 105, 573–579.

8. Cancer Genome Atlas, N. (2012). Comprehensive molecular

portraits of human breast tumours. Nature 490, 61–70.

9. Chen, Z., Wen, W., Bao, J., Kuhs, K.L., Cai, Q., Long, J., Shu,

X.O., Zheng, W., and Guo, X. (2019). Integrative genomic an-

alyses of APOBEC-mutational signature, expression and germ-

line deletion of APOBEC3 genes, and immunogenicity inmul-

tiple cancer types. BMC Med. Genomics 12, 131.

10. Greaves, M., and Maley, C.C. (2012). Clonal evolution in can-

cer. Nature 481, 306–313.

11. Martincorena, I., Raine, K.M., Gerstung, M., Dawson, K.J.,

Haase, K., Van Loo, P., Davies, H., Stratton, M.R., and Camp-

bell, P.J. (2017). Universal patterns of selection in cancer and

somatic tissues. Cell 171, 1029–1041 e1021.

12. Xiao, W., Ren, L., Chen, Z., Fang, L.T., Zhao, Y., Lack, J., Guan,

M., Zhu, B., Jaeger, E., Kerrigan, L., et al. (2021). Toward best

practice in cancer mutation detection with whole-genome

andwhole-exome sequencing. Nat. Biotechnol. 39, 1141–1150.

13. Cannataro, V.L., Gaffney, S.G., and Townsend, J.P. (2018). Ef-

fect sizes of somatic mutations in cancer. J. Natl. Cancer Inst.

110, 1171–1177.

14. Li, M., Tse, L.A., Chan, W.C., Kwok, C.H., Leung, S.L., Wu, C.,

Yu,W.C., Lee, P.M., Tsang, K.H., Law, S.H., et al. (2017). Night-

time eating and breast cancer amongChinese women inHong

Kong. Breast Cancer Res. 19, 31.

15. Cibulskis, K., Lawrence, M.S., Carter, S.L., Sivachenko, A.,

Jaffe, D., Sougnez, C., Gabriel, S., Meyerson, M., Lander, E.S.,

and Getz, G. (2013). Sensitive detection of somatic point mu-

tations in impure and heterogeneous cancer samples. Nat.

Biotechnol. 31, 213–219.

16. Saunders, C.T., Wong, W.S., Swamy, S., Becq, J., Murray, L.J.,

and Cheetham, R.K. (2012). Strelka: accurate somatic small-

variant calling from sequenced tumor-normal sample pairs.

Bioinformatics 28, 1811–1817.

17. Freed, D., Pan, R., and Aldana, R. (2018). TNscope: accurate

detection of somatic mutations with haplotype-based variant

candidate detection and machine learning filtering. bioRxiv,

250647.

18. Genomes Project, C., Abecasis, G.R., Altshuler, D., Auton, A.,

Brooks, L.D., Durbin, R.M., Gibbs, R.A., Hurles, M.E., and

McVean, G.A. (2010). A map of human genome variation

from population-scale sequencing. Nature 467, 1061–1073.
Genetics and Genomics Advances 3, 100076, January 13, 2022 7

https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001870.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001870.v1.p1
https://www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs001870.v1.p1
https://doi.org/10.1016/j.xhgg.2021.100076
https://doi.org/10.1016/j.xhgg.2021.100076
http://www.omim.org
http://www.omim.org
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref1
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref1
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref1
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref1
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref2
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref2
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref2
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref3
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref3
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref3
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref3
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref3
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref4
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref4
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref4
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref4
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref5
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref5
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref5
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref5
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref6
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref6
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref6
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref6
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref7
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref7
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref7
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref7
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref8
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref8
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref9
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref9
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref9
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref9
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref9
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref10
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref10
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref11
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref11
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref11
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref11
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref12
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref12
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref12
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref12
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref13
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref13
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref13
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref14
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref14
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref14
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref14
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref15
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref15
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref15
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref15
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref15
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref16
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref16
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref16
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref16
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref17
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref17
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref17
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref17
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref18
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref18
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref18
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref18


19. Lek, M., Karczewski, K.J., Minikel, E.V., Samocha, K.E., Banks,

E., Fennell, T., O’Donnell-Luria, A.H., Ware, J.S., Hill, A.J.,

Cummings, B.B., et al. (2016). Analysis of protein-coding ge-

netic variation in 60,706 humans. Nature 536, 285–291.

20. Middlebrooks, C.D., Banday, A.R., Matsuda, K., Udquim, K.I.,

Onabajo, O.O., Paquin, A., Figueroa, J.D., Zhu, B., Koutros, S.,

Kubo, M., et al. (2016). Association of germline variants in the

APOBEC3 region with cancer risk and enrichment with APO-

BEC-signature mutations in tumors. Nat. Genet. 48, 1330–

1338.

21. Li, B., and Dewey, C.N. (2011). RSEM: accurate transcript

quantification from RNA-Seq data with or without a reference

genome. BMC Bioinformatics 12, 323.

22. Paquet, E.R., and Hallett, M.T. (2015). Absolute assignment of

breast cancer intrinsic molecular subtype. J. Natl. Cancer Inst.

107, 357.

23. Bailey, M.H., Tokheim, C., Porta-Pardo, E., Sengupta, S., Ber-

trand, D., Weerasinghe, A., Colaprico, A., Wendl, M.C., Kim,

J., Reardon, B., et al. (2018). Comprehensive Characterization

of cancer driver genes and mutations. Cell 174, 1034–1035.

24. Alexandrov, L.B., Kim, J., Haradhvala, N.J., Huang, M.N., Tian

Ng, A.W., Wu, Y., Boot, A., Covington, K.R., Gordenin, D.A.,

Bergstrom, E.N., et al. (2020). The repertoire of mutational sig-

natures in human cancer. Nature 578, 94–101.

25. Huang, X., Wojtowicz, D., and Przytycka, T.M. (2018). Detect-

ing presence of mutational signatures in cancer with confi-

dence. Bioinformatics 34, 330–337.

26. Degasperi, A., Amarante, T.D., Czarnecki, J., Shooter, S., Zou,

X., Glodzik, D., Morganella, S., Nanda, A.S., Badja, C., Koh,

G., et al. (2020). A practical framework and online tool for

mutational signature analyses show inter-tissue variation

and driver dependencies. Nat. Cancer 1, 249–263.

27. Hubschmann, D., Jopp-Saile, L., Andresen, C., Kramer, S., Gu,

Z., Heilig, C.E., Kreutzfeldt, S., Teleanu, V., Frohling, S., Eils, R.,

et al. (2021). Analysis of mutational signatures with yet

another package for signature analysis. Genes Chromosomes

Cancer 60, 314–331.

28. Choo-Wosoba, H., Albert, P.S., and Zhu, B. (2019). A hidden

markov modeling approach for identifying tumor subclones

in next-generation sequencing studies. bioRxiv, 675512.

29. Mermel, C.H., Schumacher, S.E., Hill, B., Meyerson, M.L., Ber-

oukhim, R., and Getz, G. (2011). GISTIC2.0 facilitates sensi-
8 Human Genetics and Genomics Advances 3, 100076, January 13, 2
tive and confident localization of the targets of focal somatic

copy-number alteration in human cancers. Genome Biol.

12, R41.

30. Sinha, S., Mitchell, K.A., Zingone, A., Bowman, E., Sinha, N.,

Schäffer, A.A., Lee, J.S., Ruppin, E., and Ryan, B.M. (2020).

Higher prevalence of homologous recombination deficiency

in tumors from African Americans versus European Ameri-

cans. Nat. Cancer 1, 112–121.

31. Swisher, E.M., Lin, K.K., Oza, A.M., Scott, C.L., Giordano, H.,

Sun, J., Konecny, G.E., Coleman, R.L., Tinker, A.V., O’Malley,

D.M., et al. (2017). Rucaparib in relapsed, platinum-sensitive

high-grade ovarian carcinoma (ARIEL2 Part 1): an interna-

tional, multicentre, open-label, phase 2 trial. Lancet Oncol.

18, 75–87.

32. Telli, M.L., Timms, K.M., Reid, J., Hennessy, B., Mills, G.B.,

Jensen, K.C., Szallasi, Z., Barry, W.T., Winer, E.P., Tung, N.M.,

et al. (2016). Homologous recombination deficiency (HRD)

score predicts response to platinum-containing neoadjuvant

chemotherapy in patients with triple-negative breast cancer.

Clin. Cancer Res. 22, 3764–3773.

33. Poetsch, A.R. (2020). The genomics of oxidative DNA damage,

repair, and resulting mutagenesis. Comput. Struct. Bio-

technol. J. 18, 207–219.

34. Nik-Zainal, S., Davies, H., Staaf, J., Ramakrishna, M., Glodzik,

D., Zou, X., Martincorena, I., Alexandrov, L.B., Martin, S.,

Wedge, D.C., et al. (2016). Landscape of somatic mutations

in 560 breast cancer whole-genome sequences. Nature 534,

47–54.

35. Zhang, G., Wang, Y., Chen, B., Guo, L., Cao, L., Ren, C., Wen,

L., Li, K., Jia, M., Li, C., et al. (2019). Characterization of

frequently mutated cancer genes in Chinese breast tumors: a

comparison of Chinese and TCGA cohorts. Ann. Transl.

Med. 7, 179.

36. DeSantis, C.E., Ma, J., Gaudet, M.M., Newman, L.A., Miller,

K.D., Goding Sauer, A., Jemal, A., and Siegel, R.L. (2019).

Breast cancer statistics, 2019. CA Cancer J. Clin. 69, 438–

451.

37. Thibodeau, M.L., Zhao, E.Y., Reisle, C., Ch’ng, C., Wong, H.L.,

Shen, Y., et al. (2019). Base excision repair deficiency signa-

tures implicate germline and somatic MUTYH aberrations in

pancreatic ductal adenocarcinoma and breast cancer onco-

genesis. Cold Spring Harb. Mol. Case Stud. 5, a003681.
022

http://refhub.elsevier.com/S2666-2477(21)00057-9/sref19
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref19
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref19
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref19
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref20
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref20
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref20
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref20
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref20
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref20
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref21
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref21
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref21
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref22
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref22
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref22
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref23
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref23
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref23
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref23
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref24
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref24
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref24
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref24
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref25
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref25
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref25
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref26
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref26
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref26
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref26
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref26
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref27
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref27
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref27
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref27
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref27
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref28
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref28
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref28
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref29
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref29
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref29
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref29
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref29
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref30
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref30
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref30
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref30
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref30
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref31
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref31
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref31
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref31
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref31
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref31
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref32
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref32
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref32
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref32
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref32
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref32
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref33
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref33
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref33
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref34
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref34
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref34
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref34
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref34
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref35
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref35
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref35
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref35
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref35
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref36
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref36
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref36
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref36
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref37
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref37
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref37
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref37
http://refhub.elsevier.com/S2666-2477(21)00057-9/sref37

	Comparison of somatic mutation landscapes in Chinese versus European breast cancer patients
	Introduction
	Methods
	Participants and samples
	Bioinformatic analyses
	TCGA dataset
	Mutational signatures
	Driver gene detection
	SCNAs
	Two-sample Poisson model to compare driver gene selection pressure in the two populations

	Results
	Discussion
	Data and code availability
	Supplemental information
	Acknowledgments
	Declaration of interests
	Web resources
	References


