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Deep learning based classification 
of dynamic processes 
in time‑resolved X‑ray tomographic 
microscopy
Minna Bührer1,2, Hong Xu3, Allard A. Hendriksen4, Felix N. Büchi3, Jens Eller3, 
Marco Stampanoni1,2 & Federica Marone1*

Time-resolved X-ray tomographic microscopy is an invaluable technique to investigate dynamic 
processes in 3D for extended time periods. Because of the limited signal-to-noise ratio caused by the 
short exposure times and sparse angular sampling frequency, obtaining quantitative information 
through post-processing remains challenging and requires intensive manual labor. This severely limits 
the accessible experimental parameter space and so, prevents fully exploiting the capabilities of the 
dedicated time-resolved X-ray tomographic stations. Though automatic approaches, often exploiting 
iterative reconstruction methods, are currently being developed, the required computational 
costs typically remain high. Here, we propose a highly efficient reconstruction and classification 
pipeline (SIRT-FBP-MS-D-DIFF) that combines an algebraic filter approximation and machine 
learning to significantly reduce the computational time. The dynamic features are reconstructed 
by standard filtered back-projection with an algebraic filter to approximate iterative reconstruction 
quality in a computationally efficient manner. The raw reconstructions are post-processed with a 
trained convolutional neural network to extract the dynamic features from the low signal-to-noise 
ratio reconstructions in a fully automatic manner. The capabilities of the proposed pipeline are 
demonstrated on three different dynamic fuel cell datasets, one exploited for training and two for 
testing without network retraining. The proposed approach enables automatic processing of several 
hundreds of datasets in a single day on a single GPU node readily available at most institutions, so 
extending the possibilities in future dynamic X-ray tomographic investigations.

X-ray tomography is a widespread imaging technique used to investigate the internal structures of a large variety 
of opaque samples in a non-destructive manner. During the past decade, dynamic tomographic microscopy has 
paved the way towards the volumetric investigation of time-evolving processes, as for instance crack formation 
during in situ tensile tests1 and metal foaming2. In dynamic tomographic investigations the speed of evolving 
non-periodic processes dictates the imaging conditions, and the maximum allowed scan time, to avoid move-
ment artefacts. Fast dynamic processes with characteristic time-scales in the sub-second range typically strongly 
limit the possible exposure time and angular sampling frequency, usually leading to highly noisy reconstructions 
also affected by undersampling artefacts. Prior to quantitative analysis, a series of dedicated, labor-intensive 
and time-consuming post-processing steps (such as registration, filtering and segmentation) is therefore often 
needed. Parameter tuning and manual optimization are mostly unavoidable: the total data post-processing 
time is therefore significantly dominated by the human component and not by the actual computation time. 
Furthermore parameter optimization is unfortunately often dataset specific. The analysis of tens of TBs of data 
from multiple samples and/or different experimental conditions is not realistic. While iterative reconstruction 
algorithms (e.g.3–11) can be exploited to enhance the raw reconstruction quality and ease the following data post-
processing task, they often also require parameter tuning through a time-consuming trial-and-error process and 
are typically computationally intensive. Daily experience at dedicated time-resolved X-ray tomographic stations 
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shows that unfortunately their capabilities are often not fully exploited: experimental plans are mostly limited to 
ensure feasible data processing or the data analysis is restricted to only a part of the acquired data.

Sub-optimal water management during the operation of polymer electrolyte fuel cells (PEFCs), a promising 
technology considered in future cleaner energy strategies, limits their performance maximization towards higher 
power densities. Dynamic sub-second X-ray tomographic microscopy has proven pivotal in the investigation 
of liquid water dynamics in fuel cells during transient operation12–15. To reach the required sub-second time 
resolution, both angular sampling frequency and exposure time are minimized leading to noisy datasets, which 
after tomographic reconstruction with standard analytical reconstruction algorithms result in low signal-to-noise 
ratio (SNR) volumes with undersampling artifacts13. Moreover, the reconstructed liquid water, static structures 
and noise have similar gray level values, hindering the classification of water features directly from the recon-
structed dynamic volumes. To overcome this challenge, a high-quality post operando tomographic volume of 
the fuel cell in a dry state is registered to and subtracted from each reconstructed dynamic time frame to obtain 
difference image volumes containing only liquid water features, background noise and misalignment artifacts 
due to insufficient alignment of the static and dynamic reconstructed datasets. A dedicated ad hoc pipeline13,16 is 
then used to ensure that only the correct features are segmented as water. The cell components and the imaging 
protocols typically vary between different experiments addressing different scientific questions. The parameters 
of the post-processing pipeline are material and experiment dependent and need to be individually and often 
manually adjusted hindering any automation and as a consequence efficient quantitative analysis for larger 
comprehensive studies.

In 2020, Bührer et al.17 proposed an iterative reconstruction algorithm to automate the reconstruction and 
feature extraction of dynamic components from static matrices. The performance of the proposed algorithm 
was explored on both simulated and real fuel cell tomography datasets, yielding high accuracy when compared 
to manual segmentation. The proposed approach enabled the full automation of the reconstruction and seg-
mentation pipeline, completely decoupling the data processing from manual efforts. Compared to the manual 
segmentation pipeline used thus far13, for which the processing time is strongly dominated by manual work, 
the proposed automatic pipeline enabled at least a factor of 4 reduction in the processing time while being fully 
automatic. However, the computational time remained still relatively high on limited computational resources.

In recent years, machine learning has demonstrated applicability to a wide range of imaging problems. Con-
volutional neural networks (CNNs) in particular have been applied successfully to various image processing 
tasks such as image classification (e.g.18,19), semantic segmentation (e.g.20,21) and image enhancement (e.g.22–26). 
In computed tomography (CT), a variety of CNN models have been successfully applied as a post-processing 
tool to remove reconstruction artefacts and noise from reconstructions obtained through classical reconstruc-
tion methods19,24,27–30. In addition, neural networks have also been exploited to learn a filter bank for the FBP 
reconstruction method to directly improve the reconstruction quality within the reconstruction algorithm31. 
CNNs have also demonstrated capabilities as an end-to-end model that learns the mapping between the sinogram 
and reconstructed image based on training data32. In such an end-to-end model the geometry of the measure-
ment process is though completely ignored while Bazrafkan et al. demonstrated that for tomographic images the 
auxiliary information associated with the scanning geometry can help network models to retain more detailed 
structures33. Though training of CNNs can be relatively time-consuming, the trained networks can be applied 
efficiently even to image sizes typical in synchrotron tomography experiments: as an example, a 100-layer mixed-
scale dense convolutional network (MS-D) has demonstrated capabilities to process a single reconstructed image 
of 1024 × 1024 pixels in only 200 ms on an Nvidia GTX 1080 GPU24. The trained networks can often be directly 
applied to other similar datasets that are collected under similar experimental conditions. Completely different 
sample structures, compositions and experimental conditions typically require retraining of the network. For 
dynamic tomographic experiments where several different samples are imaged under a variety of experimental 
parameters, a reality in fuel cell experiments, the required retraining of the related large data volumes significantly 
extends the complete post-processing time. Moreover, as it is often difficult to obtain high-quality training data, 
especially for semantic segmentation of low SNR datasets, applicability of deep learning approaches to such 
dynamic investigations still remains a great challenge.

In this paper, we propose a highly-efficient algorithm protocol that combines deep learning and algebraic 
filters to tomographically reconstruct and segment dynamic features in large data volumes acquired in time-
resolved experiments. The proposed algorithm follows the difference sinogram approach proposed by Bührer 
et al.17 to separate the dynamic features from the static matrix prior reconstruction to minimize any potential 
misalignment artefacts in a fully automatic manner. The difference sinograms are then reconstructed through 
the SIRT-FBP algorithm34, which approximates the simultaneous iterative reconstruction technique (SIRT) 
through an angle-dependent filter within the standard FBP algorithm. This enables reconstructing the raw data 
volumes in the same computational time as standard FBP with the reconstruction quality of standard SIRT. The 
reconstruction step is automatically followed by the extraction of the dynamic features from the noisy difference 
reconstructions through trained deep convolutional neural networks. This enables to efficiently reconstruct and 
segment the dynamic features from the collected data volumes, allowing to process hundreds of datasets in a 
single day on a single GPU node. Moreover, as the network is trained on difference reconstructions while the 
complex static structures are completely ignored, the trained network can be applied to additional datasets with 
different static structures without retraining, so significantly reducing the total computational burden. The pro-
posed algorithm performance is demonstrated on three real-world fuel cell datasets, however, it can be applied 
to any dataset where evolving dynamics are present.
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Methods
Background.  Tomography model.  The tomography model is defined for a 2D parallel beam geometry ex-
periment by the linear system p = Wx. The column vector x =

(

xj
)

ǫRN represents the unknown object, de-
fined on a grid of N pixels. The vector p =

(

pi
)

∈ R
M consists of log-corrected measured or phase-retrieved 

projection values of the object x from all angular positions, typically distributed homogeneously between 0° and 
180° in parallel-beam geometry. W =

(

wij

)

∈ R
M×N is a collection of weights that model the contribution of 

each pixel j to the projected value at index i.
In tomographic reconstruction the aim is to reconstruct the unknown object x from its measurement p . A 

direct solution of the system of linear equations is typically impracticable due to its ill-posedness. The recon-
struction accuracy with analytical reconstruction methods, such as filtered back-projection (FBP)35, is high, 
if a sufficient amount of homogenously distributed angular views of the object are available. If the number of 
available angular views is insufficient, the angular sampling is highly sparse or the measurement angle range is 
restricted (limited-angle tomography), the quality of tomographic volumes obtained with analytical reconstruc-
tion algorithms is deteriorated by streak artefacts. Iterative reconstruction algorithms deal with these limitations 
by modeling the measurement through a linear system of equations and exploiting prior information of the object 
within the reconstruction algorithm.

Conventional FBP and SIRT.  A common analytical reconstruction algorithm for solving the tomographic 
inverse problem is FBP35. In FBP, the measured projection data p is convolved with a filter h ∈ R

M prior to the 
back-projection step, defined34,36 by

where Chp denotes a convolution of the filter h with the measured data p , and WT is the back-projection opera-
tor. The filter h can be chosen depending on the SNR of the measured data to optimize the spatial resolution and 
contrast of the reconstruction.

The Simultaneous Iterative Reconstruction Technique (SIRT)37,38 is an algebraic iterative reconstruction 
algorithm that models the tomographic linear system of equations. Starting from an initial reconstruction x(0) , 
typically a zero vector, the SIRT algorithm updates the reconstruction at each iteration k by

where α is a relaxation factor influencing the convergence rate36. The algorithm is known to converge to a solu-
tion of

SIRT‑FBP.  In 2015, Pelt and Batenburg34 proposed the SIRT-FBP reconstruction method designed to accurately 
approximate SIRT reconstructions with the computational efficiency of standard FBP. The proposed method dif-
fers from the conventional FBP only by its filtering step, making it possible to combine the filter with the already 
existing, computationally efficient FBP reconstructions. In34 it is shown that the SIRT-FBP reconstruction cor-
responding to the standard SIRT reconstruction  x(k) at iteration k is defined by

The angle-dependent filter uk can be computed for any number of projections, angular range and number of 
standard SIRT iterations. The filter computation process has a comparable computation time to a single SIRT 
reconstruction with the same number of iterations. Once the filter is calculated, the same filter can be though 
applied to any other dataset that has the same number of projections, angular range and desired number of 
SIRT iterations in a computation time of a standard FBP reconstruction. In 2017, Pelt and Andrade36 further 
demonstrated successful application of the algebraic filter approximation approach to several real-world large 
tomographic datasets, combining the filter both with FBP and Gridrec algorithms. A more detailed mathematical 
derivation of the filter and its performance characterization are presented in34,36.

Mixed‑scale dense convolutional neural network.  Machine learning models, convolutional neural networks 
(CNNs) in particular, have recently become popular post-processing techniques to both improve reconstruction 
image quality and segment the reconstructed data volumes. In typical CNNs, images are processed in successive 
layers, each layer consisting of multiple images. At each layer, images are computed by using learned filters to 
convolve the images received from the previous layers and by applying a non-linear activation function to each 
pixel of the convolved images. Considering ni images at the layer i of the network model, the image j can be 
described by zji ∈ R

N , computed by

where Hqijk
 is a 2D convolution with a learned filter qijk ∈ R

3×3 , bij ∈ R is a learned bias of each layer image and 
σ ∈ R

N → R
N is a non-linear pixel-wise activation function, e.g., the ReLU function39. At the final layer stage, 

(1)FBP
(

p, h
)

= WTChp,

(2)x(k) = x(k−1) + αWT
(

p−Wx(k−1)
)

,

(3)argminx
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the activation function is typically different, the exact function depending on the image processing task, e.g. 
soft-max for segmentation or identity for image enhancement. For CNNs, the network parameters are usually 
learned during the training process by presenting to the network a large set of input images and corresponding 
target “ground truth” images.

In 2017, Pelt and Sethian19 proposed a mixed-scale dense (MS-D) convolutional neural network architecture 
design to overcome the challenge of learning a large number (typically several millions) of parameters and the 
requirement for a large amount of training images and computer memory related to popular encoder-decoder 
architectures such as U-Net20 when applied to large datasets. In the MS-D architecture features are captured at 
various image scales by using dilated convolutions40 with channel-specific dilation di ∈ Z

+ in channel i . As all 
feature maps are densely connected, each layer of the network is able to directly leverage the features extracted 
at all intermediate layers. This architecture design enables a substantial reduction of the number of training 
parameters, thereby reducing the overfitting risk, the number of necessary training image pairs and computer 
memory requirements. As the network learns during training which combinations of dilations to use for each 
given training task, it adapts automatically and can therefore be easily applied to a variety of problems without 
architectural changes or time-consuming hyperparameter tuning. The MS-D architecture has demonstrated 
accurate results with relatively few intermediate images and trainable parameters19,21,23,24, allowing effective train-
ing with relatively small training sets and large images, also for image enhancement and segmentation tasks19. 
In Pelt et al.24 the network architecture has for instance been successfully applied to simulated and real-world 
tomographic data as a post-processing operator, demonstrating significant improvement in obtained recon-
structed image quality for datasets suffering from different data limitations such as limited angular range and 
low SNR. As MS-D networks use the same set of standard machine learning operations at each layer, they are 
easy to implement, train, apply and modify allowing their flexible use in practice. A more detailed description 
of the MS-D network architecture and its performance characterization are presented in19.

SIRT‑FBP‑MS‑D‑DIFF.  Here, we propose an algorithm protocol designed to efficiently reconstruct and seg-
ment large quantities of low SNR data produced by dynamic experiments on moderate computational resources. 
The algorithm consists of a data reconstruction part (SIRT-FBP) and a feature extraction part (MS-D), which 
together provide an automatic and efficient reconstruction and segmentation pipeline for large quantities of low 
SNR tomographic data.

Data reconstruction.  The data reconstruction step follows closely the protocol proposed by Bührer et al.17 For 
samples where dynamics are present within a static matrix, an additional tomographic scan of the sample in a 
static state (without dynamics) is required to apply the proposed SIRT-FBP-MS-D-DIFF algorithm. During the 
data reconstruction, the dynamic scans are automatically aligned to the static scan using cross-correlation. After 
the alignment, the static sinogram is subtracted from the dynamic sinograms to obtain difference sinograms 
containing only dynamic changes and noise17. For fully dynamic samples (for example foams), the sinogram 
subtraction step can be omitted as the measured sinograms contain only dynamic changes. The difference sino-
grams are automatically reconstructed by the SIRT-FBP algorithm (“SIRT-FBP” section in “Background” sec-
tion) to reconstruct the extracted dynamic features. This allows to obtain the reconstruction quality of SIRT with 
the computation time of a standard FBP. Moreover, as the SIRT filter is combined with an analytical reconstruc-
tion algorithm, interior tomography datasets can be simply accommodated by standard edge-padding34 without 
need for a more complex and time-consuming virtual sinogram step typically required if iterative reconstruc-
tion techniques are used17. For a more detailed description of the sinogram alignment and subtraction steps we 
refer to17. The reconstruction step is directly followed by application of a trained MS-D network (“Mixed-scale 
dense convolutional neural network” section in “Background” section) to extract the dynamic features from the 
reconstructed data volumes in an automatic and efficient manner.

Network training.  To establish the optimal network training scheme for water classification, three different 
training protocols for the MS-D network were considered: standard network training, quasi-4D network train-
ing taking into account time (1D) and volume (3D) simultaneously, and an ensemble of three independently 
trained networks. For each training protocol (Fig. 1), the SIRT-FBP reconstructions of the difference sinograms 
were considered as the network input. The target images were created by using the iterative reconstruction 
pipeline proposed by Bührer et al.17, designed specifically to extract dynamic features from a static matrix by 
combining iterative reconstruction and time-regularization.

A standard MS-D network was trained by pairing the single input and target slices xinputi  and xtargeti  , where 
i ∈ 1, . . . ,N/2 corresponds to the horizontal slices of the volumes xinput and xtarget (Fig. 1a, axial). The redundant 
information of the time- and/or volume-sequence is not exploited during training.

A quasi-4D network was trained by collecting the input slices into slabs and training the network between 
the input slabs and single target slices. The slabs were created by considering for each input image xinputi,t  at slice 

i and time step t, the adjacent slices in the time and volume dimension: 
[

[

x
input
j,p

]i+1

j=i−1

]t+1

p=t−1

 where t ∈ 1, . . . ,T 

corresponds to the acquired time frames and i to the number of slices per volume (Fig. 1b). This enabled the 
network to simultaneously exploit the time and volumetric information available in the acquired dynamic time-
series of volumetric data. To ensure the same slab size for all input slices, symmetric padding was used at the 
time and volume borders. It is important to note that the network can, in principle, be provided with slabs of 
any size, though the training time and required memory increase with slab size. In this work the slabs were 
limited to the single-adjacent slices in the volume- and time-sequences, leading to a slab size of 5 (Fig. 1b) due 
to memory constraints.
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An ensemble network training (majority voting) was considered as a final training scheme. For this, three 
different standard MS-D networks were trained independently by selecting three different views of the data 
volume (Fig. 1a) as proposed in41. After training, the networks were independently applied to the datasets, and 
the corresponding network outputs were merged. During merging, the pixels labeled as dynamic features by all 
trained networks were labeled as dynamic while the other pixels were set to zero to obtain the final segmentation 
by the ensemble network.

Following the MS-D network model presented in19, a network consisting of 100 intermediate layers was 
initialized for each training scheme and the convolution (3 × 3 pixel kernel) at each layer i  was dilated by 
di = 1+ (imod10) . The number of channels per layer was always 1 and the number of input channels for 
the quasi-4D approach was 5 (Fig. 1). A rectified linear unit (ReLU) activation function has been used in the 
intermediate layers, while for the final output layer a softmax activation has been chosen. For a more detailed 
description of the underlying network model, including a schematic figure, we refer to19.

The network was trained for 100 epochs using the ADAM algorithm with mini-batch size of 1 (single image), 
which minimizes the negative log-likelihood training loss between the network output and input images after 
each epoch. On a separate validation dataset, the validation error was evaluated through the negative log-like-
lihood after each epoch and the training epoch yielding the lowest validation error was chosen as the optimal 
trained network.

Algorithm protocol.  To apply the proposed SIRT-FBP-MS-D-DIFF algorithm, we propose the following proto-
col presented in Fig. 2:

0.	 Pre-requisite:

a.	 Set the number of SIRT iterations that will be approximated by the filter.
b.	 Prepare a representative dataset for network training consisting of raw SIRT-FBP reconstructions of 

difference sinograms (steps 1.a, 2, 3.a below) (input) and the corresponding segmentations (target). The 
imaging conditions and sample type (e.g. a fuel cell, a catalyst) should represent the datasets to which 
the trained network will be applied to.

1.	 Pre-processing:

a.	 Geometry dependent: pre-compute the angle-dependent SIRT-FBP filters (“SIRT-FBP” section in “Back-
ground” section).

Figure 1.   Schematic illustration of the training schemes. (a) Axial, coronal and sagittal views of the sample. The 
axial view is used during standard training. For the ensemble training, all three views are individually trained. 
(b) The quasi-4D training scheme. For each time step T, the adjacent slices in time- and volumetric direction are 
considered.
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b.	 Geometry independent: train the MS-D network with a training dataset (“Network training” section 
in “SIRT-FBP-MS-D-DIFF” section).

2.	 Align and subtract sinograms to extract the dynamic changes (“Data reconstruction” section in “SIRT-FBP-
MS-D-DIFF” section).

3.	 Reconstruct and extract the dynamic features with the SIRT-FBP-MS-D-DIFF algorithm:

a.	 Run SIRT-FBP on the difference sinograms to reconstruct the dynamic features and noise.
b.	 Apply the trained MS-D network to automatically classify dynamic features.

The network has to be trained with an initial training dataset consisting of raw reconstructions (input) and 
the corresponding segmentations (target). The segmentations used for network training can be created depend-
ing on user preference, by using the previously proposed rSIRT-PWC-DIFF algorithm protocol17 or any other 
segmentation pipeline. In addition, it is necessary to select the number of SIRT iterations approximated by the 
filter (see step 0.a above). For this, following the automatic stopping criterion proposed by Bührer et al.17 a set of 
SIRT-FBP reconstructions can be computed for a selection of iterations (for example 10, 20, …, 700). Between 
the adjacent increase in iteration, the difference between the corresponding reconstructions can be measured 
through the Euclidean L2-norm. By normalizing the resulting L2-norms and measuring their gradient, the 
gradient slope position can be chosen as the optimal number of iterations to approximate in SIRT-FBP. Though 
this requires computation of several SIRT filters, once the iteration number is chosen, the corresponding pre-
computed filter can be directly applied to all datasets with computational efficiency of a standard FBP. For more 
a detailed explanation of the stopping criterion we refer to17.

Materials
The algorithm performance was assessed on three dynamic Polymer Electrolyte Fuel Cell (PEFC) synchro-
tron tomographic datasets (Supplementary information Fig. S1 online) collected from two different cells at 
the TOMCAT beamline at the Swiss Light Source (SLS) at the Paul Scherrer Institut, Switzerland42. Both cells 
had a diameter of approximately 5 mm. The setup for all experiments consisted of a high-numerical-aperture 
macroscope43 (fixed 4× magnification), a 150 μm thick LuAG:Ce scintillator (Crytur, Turnov, Czech Republic) 

Figure 2.   Algorithm protocol flowchart. The algorithm protocol starts with an automatic data pre-processing 
step to extract the dynamic components. For each experiment geometry a SIRT-FBP filter needs to be 
computed, and for each sample category (e.g. fuel cell, porous media, foams) a MS-D network trained. If these 2 
elements are available, reconstruction and feature extraction can be performed fully automatically.
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to convert the X-rays into visible light and the in-house developed high-frame rate GigaFRoST detector44. The 
experiments were performed with filtered (20 mm Sigradur and 75 μm Mo) polychromatic radiation with a peak 
energy of approximately 20 keV. To reach the required time resolution, the horizontal field of view was cropped 
to approximately 4 mm, leading to interior tomography datasets. The collected images were 1440 × 1100 pixels 
with a pixel size of 2.75 μm.

During data acquisition, both cells were connected from above with two long tubes to simultaneously ensure 
a continuous gas flow to the cell and continuous cell rotation. 300 evenly distributed projections of the cells were 
collected between 0° and 180° with no image blurring despite continuous sample rotation during data acquisi-
tion. For all datasets the exposure time was set to 0.3 ms for each projection image, resulting in a total scan time 
of 0.1 s per tomogram.

The first dataset (PEFC_1) was collected from a cell (flow field plates made of BMA5, SGL Technologies; 
membrane electrode assembly: Gore Primea A510.1/M815.15/C510.4 with a 15 µm thick membrane and anode/
cathode Pt loadings of 0.1/0.4 mg/cm2; GDL: Toray TGP-H-060, Toray Industries Inc.) by acquiring a total of 
five sets of tomographic datasets, each consisting of 60 continuous time steps. The data for the first 3 sets (3 × 60 
scans) are available in TomoBank45. A set of 30 continuous time steps (time steps 121 to 150) with water in the 
gas diffusion layer was then chosen for the network training. A single dry scan with the same experimental 
parameters was considered for the sinogram alignment and subtraction. The total experiment time (time steps 
1–300) was 4 min.

The second dataset (PEFC_2)46 was collected using the same cell as in the PEFC_1 dataset. A total of 49 time 
frames were collected. Unlike PEFC_1, the time series was not continuous, but for the time steps 1–41 the scans 
were collected every 3 s and for the time steps 42–49 every 30 s. At the beginning of the time series the cell was 
completely dry, having water appearing within the cell during the time sequence. The first time step was therefore 
considered as a dry scan for the sinogram alignment and subtraction step. The total experiment time was 7 min.

The third dataset (PEFC_3)46 was collected from a different cell (materials identical to PEFC_1 except for 
the GDL: Freudenberg I6, Freudenberg Group, Germany) with smaller GDL average pore size. The acquisition 
strategy was identical to the PEFC_2 dataset: a total of 49 time steps were collected with 3 s time gap between 
time steps 1–41 and 30 s gap for time steps 42–49, leading to a total experiment time of 7 min. As for PEFC_2, 
the cell was dry at the beginning of the time series. Therefore, the first time step was considered as a dry scan 
during sinogram alignment and subtraction.

All projection images were dark and flat-field corrected. Phase retrieval of each projection with the Paganin 
algorithm47 followed before reconstruction. The phase retrieval algorithm, implemented in the reconstruction 
pipeline available at TOMCAT​48, was applied together with a deconvolution step to enhance the contrast between 
different materials while minimizing compromise in the spatial resolution49.

Results
Training and validation dataset.  Each network was trained on the PEFC_1 dataset (“Materials” sec-
tion) cropped to the region of interest (dynamically active area). Each PEFC_1 time step volume was split from 
the middle into training and validation sets, so obtaining 30 training and 30 validation volumes each of size 
237 × 1407 × 236 pixels. The target segmented images for training were obtained by applying the iterative recon-
struction pipeline described in17.

When applying the trained networks, the confidence threshold was set to 20%, causing voxels to be classified 
as dynamic if their assigned probability of being dynamic exceeds 20%. This ensures a more balanced true and 
false positive rate, which is necessary because of the substantial class imbalance in the dataset (only 5% of the 
voxels are dynamic)50.

The lowest validation error for all networks was actually reached already after 25 (“Standard”) to 55 (“Quasi-
4D”) epochs since the used data is rather simple (only dynamic signal and background noise). After this mini-
mum, the error kept oscillating within the neighborhood of its lowest value until the maximum 100 epochs were 
reached. This indicates that the overfitting risk is minimal in practice and that the training time can be reduced 
by stopping earlier using the validation error as guidance.

Metrics and evaluation.  Each training scheme was evaluated by applying the trained network, without 
re-training, to two test sets (PEFC_2 and PEFC_3, “Materials” section) and to the training set (PEFC_1). The 
resulting segmented volumes were compared to independent manual segmentations obtained from a manual 
ad-hoc post-processing pipeline13. The network segmentations were evaluated through sensitivity, specificity51, 
false-positive-rate, false-negative-rate52 and Dice coefficient53.

Software.  The algorithm was developed in Python 3.7. The SIRT-FBP34 algorithm was used together with 
the ASTRA toolbox54–56 to implement the reconstruction step and the PyTorch57 implementation of the MS-D 
network23 was used for the segmentation step. A single Nvidia Tesla V100 GPU card was exploited to accelerate 
computations.

Results.  The SIRT-FBP-MS-D-DIFF classified water volumes of the three cells PEFC_1, PEFC_2 and PEFC_3 
and the corresponding manual segmentations are presented in Figs. 3a, 4a and 5a, respectively. The classified 
water volumes are presented for all three network training protocols: standard, quasi-4D and ensemble. The 
manual segmentations are used as ground truth to evaluate the accuracy of each training scheme. The difference 
volumes between the classifications and the ground truth are presented in Figs. 3b, 4b and 5b, respectively. For all 
samples, the manual segmentations were generated by aligning the dynamic Gridrec reconstructions to an addi-
tional high-quality Gridrec reconstruction of the cell in a dry state (without dynamics) (1000 projections with 
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1 ms exposure time) of the sample followed by image subtraction to isolate the dynamic features (water) from 
the static matrix16. The subtracted images were further post-processed to obtain the final segmentations for each 
time frame13. In addition, static masks were created by segmenting the GDL fiber structures and applied to the 
manually segmented volumes within the post-processing pipeline to exclude any fiber structures misclassified as 
water13. To allow comparison to the manual segmentations, the same masks were also applied to all SIRT-FBP-
MS-D-DIFF reconstructions. The reconstructions were evaluated through sensitivity, specificity, false-positive-
rate, false-negative-rate and dice metrics, results are presented in Table 1.

As can be seen from Fig. 3a, the difference volumes between the water classifications and ground truth seg-
mentation demonstrate strong similarity between the three training methods’ performance. For the ensemble 
training scheme some reduction in falsely reconstructed water (orange features) can be seen at the top surfaces of 
the water features across all time steps. The differences in the dice metric between all methods (Table 1) are lim-
ited to maximum 2% points, so supporting the high correlation between all methods’ performance. The sensitivity 
was found to be maximized by the quasi-4D method for time step T2 and by the standard method for T3. Speci-
ficity was found to be close to 100% for all time steps and methods, leading consecutively to false-positive-rates 

Figure 3.   Comparison of the recovered water for the PEFC_1 dataset. The first column presents the first 
time step (T1), the second column time step 15 (T2) and the third column time step 30 (T3). (a) Difference 
volumes between the manual segmentation (ground truth) and SIRT-FBP-MS-D-DIFF water classifications with 
standard (Stand.), quasi-4D (Q.-4D) and ensemble (Ens.) training schemes of the MS-D network, respectively. 
The green color corresponds to features present only in the ground truth, orange to features present only in the 
SIRT-FBP-MS-D-DIFF water classifications. (b) Difference slice (slice 143, T3) between the water classification 
with the networks and ground truth segmentation. The white structures correspond to features present only in 
the ground truth segmentation, black structures only in the SIRT-FBP-MS-D-DIFF water classification.
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of nearly 0%. For all training schemes 1% increase in sensitivity and dice were detected at T1 for the validation 
half of the volume. This is due to a slight registration inaccuracy in favor of the validation dataset. The location 
of the falsely reconstructed water features (Fig. 3a orange, 3b black) and missing water features (Fig. 3a green, 
3b white) were identified at the top and bottom boundaries of the water features. Figure 3b further reveals that 
the size and boundaries of the water features are in slight disagreement between the SIRT-FBP-MS-D-DIFF 
classifications and the manual segmentations. The accuracy metrics in Table 1 can therefore be considered as a 
slightly pessimistic evaluation of the water detection accuracy due to the combined effect of the size and bound-
ary difference. The classified water volumes of the ground truth and the different training schemes are presented 
in Supplementary information Fig. S2 online.

For comparison, the same accuracy metrics were also computed between the SIRT-FBP-MS-D-DIFF water 
classifications and the target volumes used to train and validate the networks. The target volumes were com-
puted with the rSIRT-PWC-DIFF algorithm17. The accuracy metrics were evaluated separately for the training 
and validation halves of the PEFC_1 water classifications, results presented in Table 2. The dice metric is in high 
agreement for all three training schemes at all time steps, quasi-4D reaching the highest performance at T2 and 
ensemble method only slightly improving the quasi-4D and standard methods at time step T3. The sensitivity 
is highest at time steps T1 and T2 when the quasi-4D method is used, increasing from the standard method 
on average by 2%. At time step T3, the standard method yields the best performance, reaching at maximum 
9% points higher performance on the validation half than the ensemble method. The specificity was found to 
be between 98 and 99% for all training schemes and time steps, leading consecutively to false-negative rates of 
1–2% across the time sequence. Though the target and reconstructed volumes were now automatically aligned 

Figure 4.   Comparison of the recovered water for the PEFC_2 dataset. The first column presents the time step 
25 (T1), the second column time step 37 (T2) and the third column time step 49 (T3). (a) Difference volumes 
between the manual segmentation (ground truth) and SIRT-FBP-MS-D-DIFF water classifications with 
standard (Stand.), quasi-4D (Q.-4D) and ensemble (Ens.) training schemes of the MS-D network, respectively. 
The green color corresponds to features present only in the ground truth, orange to features present only in the 
SIRT-FBP-MS-D-DIFF water classifications. (b) Difference slice (slice 563, T3) between the water classification 
with the networks and ground truth segmentation. The white structures correspond to features present only in 
the ground truth segmentation, black structures only in the SIRT-FBP-MS-D-DIFF water classification.
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and additional registration was not needed, similar slight disagreement of the water feature sizes as detected 
between the classification results and manual segmentations (Fig. 3b) was observed.

For the test dataset PEFC_2, the performance in Fig. 4 is similar for the different training schemes, while the 
ensemble method is able to successfully suppress speckled noise (Fig. 4a) at all time steps (for classified water 
volumes see Supplementary information Fig. S3 online). The metrics in Table 1 reveal that the dice coefficient is 
highest across the time sequence for the ensemble method, reaching maximum 6% points increased performance 
at time steps T1 and T3 than the quasi-4D method. The highest sensitivity was reached by the standard method 
for all time steps, with maximum difference of 9% points at time step T2 to the ensemble method. Qualitative 
comparison for PEFC_3 agrees with the qualitative evaluation of PEFC_2: Fig. 5 reveals that while the methods 
reach similar segmentations, the speckled noise is significantly suppressed with the ensemble training scheme 
(for classified water volumes see Supplementary information Fig. S4 online). This is supported by the dice 
metric (Table 1) which reaches the highest values across the time sequence by the ensemble method. As with 
the PEFC_2 dataset, the sensitivity metric, though similar for all methods, is slightly higher with the standard 
method, increasing from the ensemble method on average by 3% points and the quasi-4D method by 1% point.

For both test datasets similar water droplet boundary effects as with PEFC_1 can be observed in Figs. 4b and 
5b: the differences between the ground truth and water classifications are strongly focused on the water feature 
boundaries, typically the upper boundaries tending to overestimate the water while the lower boundaries are 
suppressed. This is further demonstrated in Table 3, where the maximum water voxels for the segmentation and 
SIRT-FBP-MS-D-DIFF water classifications are presented. When the exact position of the voxels is discarded 
and only the absolute number of water voxels is considered, the percentage of the recovered water increases 
significantly for most time steps. While all networks have tendency to over-estimate the water distribution for 
PEFC_3, the ensemble training scheme is able to reach a water content closest to 100% by suppressing uncer-
tainties caused by noise (speckled structures in Fig. 4a). For the training dataset PEFC_1, the standard method 
is able to reach a water content closest to 100% at time step T3.

Table 1.   Comparison of the classified water accuracy for the volumes at time steps T1, T2 and T3 computed 
between the SIRT-FBP-MD-D-DIFF and a manual segmentation (ground truth) for each MS-D network 
design and fuel cell dataset (PEFC_1 training and validation, PEFC_2, PEFC_3). The classified water accuracy 
was measured through dice coefficient and sensitivity throughout the volume.

Network Dataset

Dice Sensitivity

T1 (%) T2 (%) T3 (%) T1 (%) T2 (%) T3 (%)

Standard

PEFC_1, training 87 88 88 92 93 88

PEFC_1, validation 88 87 86 94 91 86

PEFC_2 79 82 88 95 91 95

PEFC_3 55 70 80 97 96 97

Quasi-4D

PEFC_1, training 86 89 87 91 94 86

PEFC_1, validation 87 89 84 92 93 80

PEFC_2 78 84 84 94 88 86

PEFC_3 58 71 80 98 96 93

Ensemble

PEFC_1, training 88 88 87 90 88 83

PEFC_1, validation 89 86 84 91 83 77

PEFC_2 84 85 90 90 82 92

PEFC_3 69 77 85 93 94 94

Table 2.   Comparison of the classified water accuracy for the volumes at time steps T1, T2 and T3 computed 
between the SIRT-FBP-MD-D-DIFF and target volumes used for network training and validation. The target 
volumes were computed with the rSIRT-PWC-DIFF algorithm17. The results are shown separately for each 
MS-D network design, further split between the training and validation halves of the PEFC_1 fuel cell dataset. 
The classified water accuracy was measured through dice coefficient and sensitivity through the volume.

Network Dataset

Dice Sensitivity

T1 (%) T2 (%) T3 (%) T1 (%) T2 (%) T3 (%)

Standard
PEFC_1, training 80 87 85 91 92 94

PEFC_1, validation 76 82 80 93 91 92

Quasi-4D
PEFC_1, training 83 89 86 93 95 92

PEFC_1, validation 77 84 81 94 93 88

Ensemble
PEFC_1, training 82 88 87 88 87 89

PEFC_1, validation 79 82 81 89 83 83
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The strong similarity between the water classifications obtained from the three training approaches reveals 
that the different training schemes converge to a similar final water extraction profile. This similar convergence is 
suspected to arise from the relative simplicity of the training problem: as the networks are trained on the differ-
ence volumes, the training volumes contain only dynamic features (here water), noise and possible reconstruc-
tion artefacts. As no complex static features are present, it is relatively easy for each network to learn extracting 
the single dynamic phase from the background. Due to the simplicity of the training volumes and their relative 
sparsity, the additional information leveraged by the quasi-4D and ensemble methods remains minor, leading 
to a highly similar performance for the PEFC_1 (Fig. 3) compared to the standard approach. As the ensemble 
method was able to reach higher similarity between the classified water and ground truth, demonstrated both 
by the dice metrics (Table 1) and the total recovered water volume (Table 2) for all three datasets and visually 
suppress noise artefacts especially for the PEFC_2 and PEFC_3 datasets (Figs. 4, 5), we recommend to use the 
ensemble network scheme to optimize the obtainable reconstruction accuracy. When aiming to perform a quick 
initial quality check of the obtained data to, for instance, prioritize data processing or evaluate data quality, we 
recommend the standard network scheme to minimize the data processing time while the classification accuracy 
is only slightly compromised.

Discussion
We have introduced the SIRT-FBP-MS-D-DIFF algorithm designed to efficiently reconstruct and segment 
dynamic, low SNR interior tomography data volumes containing dynamic features potentially without prior 
knowledge of the sample composition and its inner features. The proposed algorithm is inspired by the recon-
struction protocol described in17. The dynamic features are extracted prior to reconstruction through difference 

Figure 5.   Comparison of the recovered water for the PEFC_3 dataset. The first column presents the time step 
25 (T1), the second column time step 37 (T2) and the third column time step 49 (T3). (a) Difference volumes 
between the manual segmentation (ground truth) and SIRT-FBP-MS-D-DIFF water classifications with 
standard (Stand.), quasi-4D (Q.-4D) and ensemble (Ens.) training schemes of the MS-D network, respectively. 
The green color corresponds to features present only in the ground truth, orange to features present only in the 
SIRT-FBP-MS-D-DIFF water classifications. (b) Difference slice (slice 553, T3) between the water classification 
with the networks and ground truth segmentation. The white structures correspond to features present only in 
the ground truth segmentation, black structures only in the SIRT-FBP-MS-D-DIFF water classification.
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sinograms between the static and dynamic tomograms to directly extract dynamic features in an automated man-
ner. The difference sinograms are efficiently reconstructed through the SIRT-FBP algorithm34 that successfully 
approximates SIRT reconstructions with an angle-dependent filter within a standard analytical reconstruction 
algorithm, reaching comparable computation time as a standard FBP reconstruction. The raw reconstructions 
are directly post-processed through a trained neural network to efficiently extract the dynamic features from 
noise and possible reconstruction artefacts. Prior knowledge and input required by the algorithm protocol have 
been strongly minimized while striving for high computational efficiency to allow the algorithm application 
to large data volumes with hundreds of time steps and to data of different samples of similar type (for example 
other fuel cells). Though the algorithm protocol has been demonstrated on fuel cell datasets consisting of static 
and dynamic phases, we expect that the same protocol can be applied to any datasets with one single evolving 
phase including fully dynamic samples (e.g. foam) by training the network with a representative dataset. After 
training, the algorithm can be directly applied to other similar types of datasets without additional retraining 
or parameter tweaking.

Even though the algorithm has been tested only with different fuel cell datasets, we envisage that for systems 
with a static and dynamic part, where difference sinograms are required, the resulting subtracted datasets with 
only the dynamic fraction (e.g. water) can have similar characteristics even for very different systems (e.g. full 
cells and water evolution in sandstone), for which the same trained model could potentially produce satisfac-
tory results. More extensive training with a variety of datasets for different samples could potentially also help 
in improving the reliability of the network. This point needs though to be tested and verified, but is beyond the 
scope of this work.

To optimize the computation time, it is recommended to pre-compute the necessary angle-dependent SIRT 
filters for the reconstruction. Once the filters are computed, the reconstruction pipeline can be applied in parallel 
to all measured data in the computation time of FBP. Alternatively, the sinograms can be aligned into the same 
angular range for all data volumes to enable the use of a single computed filter, corresponding to this specific 
angular range, to all measured data.

As demonstrated with the three fuel cell datasets, the MS-D network was trained using only a single dataset 
(PEFC_1). Though the training dataset had significantly larger dynamic content compared to the other datasets, 
we demonstrated direct applicability of the algorithm to the testing datasets (PEFC_2 and PEFC_3, Figs. 4, 5) 
without network retraining. The trained networks were able to classify water with 80–97% sensitivity (Table 1) 
and reach similar water volume content (Table 3) as the manual segmentations which were used to estimate the 
ground truth water content. Over 90% water sensitivity was reached even for the PEFC_3 dataset, for which the 
cell materials consisted of significantly smaller GDL structures and pores, leading to a completely different water 
distribution profile in 3D (“Materials” section). In the future, the performance on PEFC_3 could even be further 
optimized by including smaller water volume content within the training dataset so to maximize its representa-
tiveness. These results demonstrate how, by exploiting difference sinograms to simplify the training problem, it 
is possible to train the network just once on a single target dataset and apply it directly to other similar datasets 
without network re-training, so drastically reducing the required training time.

In time-resolved X-ray tomographic microscopy investigations, such as fuel cell imaging experiments, the 
collected datasets typically represent complicated sample structures, but as the SNR of the collected tomograms is 
highly limited, their reconstruction and post-processing to extract dynamic components is often very challenging. 
The post-processing pipelines often require several processing steps such as data reconstruction, registration, fil-
tering and segmentation, each step requiring typically manual parameter tuning and optimization. Unfortunately, 

Table 3.   Water volume comparison between the volumes at time steps T1, T2 and T3 computed between the 
SIRT-FBP-MD-D-DIFF classifications and a manual segmentation (ground truth) for each MS-D network 
design and fuel cell dataset (PEFC_1 training and validation, PEFC_2, PEFC_3). The maximum classified 
water volume was calculated as a number of water voxels present in the SIRT-FBP-MD-D-DIFF classified 
volumes compared to the number of ground truth water voxels.

Network Dataset

Maximum recovered water volume

T1 (%) T2 (%) T3 (%)

Standard

PEFC_1, training 111 112 97

PEFC_1, validation 113 108 99

PEFC_2 140 120 117

PEFC_3 250 177 141

Quasi-4D

PEFC_1, training 110 106 95

PEFC_1, validation 112 109 91

PEFC_2 139 111 106

PEFC_3 239 171 131

Ensemble

PEFC_1, training 105 100 90

PEFC_1, validation 104 94 84

PEFC_2 113 94 105

PEFC_3 170 142 121
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the manually tuned parameters do not generalize well, thus requiring new manual parameter evaluation when 
the experimental conditions or the imaged samples are modified. This manual work requirement extends the 
total data post-processing time significantly, posing limits to the feasible number of samples and time steps that 
can be realistically post-processed. The proposed algorithm protocol has been designed to obtain a significant 
reduction in manual labor while obtaining accurate feature extraction rates on limited computation resources.

When 100 full volume time steps of good quality data of a single fuel cell are processed with the current 
pipeline including manual parameter tuning and optimization, the complete processing from raw data to seg-
mented water requires in the best case 2 weeks of work (using 15 CPU nodes). The work is though significantly 
dominated by the unavoidable manual labor, not by the computation. If the image quality is challenging or a 
completely new cell type and material are being investigated, additional manual tuning and parameter search 
might be necessary, causing the processing time to extend from 2 weeks up to 1 month. This processing time was 
successfully decreased by the rSIRT-PWC-DIFF algorithm17 which was able to process a similar data quantity 
fully automatically in 1 week. The algorithm protocol proposed here can further reduce the processing time to 
approximately 7.2 h on a single GPU node when the standard network scheme is used. This processing time 
is divided to 5.8 h for the sinogram alignment, 20 min for the reconstruction step and 1.1 h for the feature 
extraction through a single MS-D network. With the ensemble MS-D network, considering a single GPU card, 
approximately 1.5 h additional time for the feature extraction is necessary to apply the three trained networks. 
Additional computation time is required for network training and the angle-dependent SIRT filter calculation. 
On the single GPU node used, the standard network training for 100 epochs requires approximately 29 h, 
coronal view 26 h, sagittal view 110 h and quasi-4D 106 h when training on 30 time step volumes, each con-
sisting of 600 slices. To characterize the algorithm performance, the training was completed for 100 epochs in 
all cases. As with the current training data, the lowest validation error was reached already before half of the 
total number of epochs, in the future the training time could be further optimized by developing an automatic 
stopping criterion. Since the network training and filter calculation are completely independent, they can be 
performed in parallel on multiple GPU cards to further reduce the total additional computation time. Once the 
angle-dependent filters are calculated and the network is trained, the same trained network and filters can be 
used for other datasets without re-computation, reducing the processing time back to the aforementioned 7.2 h. 
Thanks to the high computational efficiency, the proposed protocol can be applied on limited computational 
resources in an automatic manner to significantly accelerate the required data processing time. This is foreseen 
to open up new possibilities in dynamic X-ray tomographic investigations as a considerably larger parameter 
space can be efficiently handled. Moreover, the full automation of the proposed algorithm and parallelized code 
create ideal conditions to distribute the computations to a supercomputing facility, significantly expanding the 
possible future data processing applications.

Data availability
The PEFC_1 dataset is available in TomoBank (https://​tomob​ank.​readt​hedocs.​io/​en/​latest/​source/​data/​docs.​
data.​dynam​ic.​html#​fuel-​cell-​data). The PEFC_2 and PEFC_3 datasets are available upon request. The PyTorch 
implementation of the standard MS-D network is available in Github (https://​github.​com/​ahend​riksen/​msd_​
pytor​ch). The standard SIRT-FBP implementation is available in Gitlab (http://​dmpelt.​gitlab.​io/​sirtf​ilter/). The 
SIRT-FBP-MS-D-DIFF implementation is available upon request.
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