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Abstract: Alzheimer’s disease (AD) is the most common form of dementia among older 

people and the pathogenesis of this disease is associated with oxidative stress. 

Acetylcholinesterase inhibitors with antioxidant activities are considered potential 

treatments for AD. Some novel ketone derivatives of gallic hydrazide-derived Schiff bases 

were synthesized and examined for their antioxidant activities and in vitro and in silico 

acetyl cholinesterase inhibition. The compounds were characterized using spectroscopy 

and X-ray crystallography. The ferric reducing antioxidant power (FRAP) and  

2,2-diphenyl-1-picrylhydrazyl (DPPH) assays revealed that all the compounds  

have strong antioxidant activities. N-(1-(5-bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-

trihydroxybenzohydrazide (2) was the most potent inhibitor of human acetyl 

cholinesterase, giving an inhibition rate of 77% at 100 μM. Molecular docking simulation 

of the ligand-enzyme complex suggested that the ligand may be positioned in the enzyme’s 

active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl 

OPEN ACCESS



Molecules 2012, 17 2409 

 

binding pocket (ABP). The current work warrants further preclinical studies to assess the 

potential for these novel compounds for the treatment of AD. 

Keywords: gallic hydrazide Schiff bases; AChE inhibition; antioxidant study;  

molecular docking 

 

1. Introduction 

The chemistry of hydrazones is an intensive area of study and numerous Schiff base ligands and their 

complexes of this type have been synthesized and their biological applications reported [1–5]. The major 

antioxidants currently used in foods are monohydroxy or polyhydroxy phenol compounds with various 

ring substitutions. These compounds have low activation energy for hydrogen donation [6]. Mainly from  

in vitro studies, polyphenols have been reported to have antioxidant [6–8], anti-cancer [9,10] and 

cardioprotecive activities [11]. 

Antioxidants such as vitamins A, E and C prevent the formation of free radicals and/or neutralize 

those that are formed, thus they break radical chains. They also repair the damage caused by free 

radicals, such as the DNA repair enzymes, e.g., transferases. Natural antioxidants are present in foods, 

but synthetic antioxidants may either be added to food to extend its shelf-life, or prepared by extraction 

from plant sources to be taken as supplements in concentrated form [8]. A number of studies have 

investigated a range of antioxidant agents in the hope of finding better and more effective treatments 

against AD [12]. Work has tended to focus on dietary antioxidants such as vitamins A, C, and E. 

Though these appear to have some benefits, results have proved frustratingly inconclusive [13]. 

Studies of many other dietary antioxidants polyphenols have also shown promise but, once more, their 

worth is yet unproven [14]. 

Researchers have recently investigated the potential health benefits of polyphenols in organic 

product [15]. Increased consumption of polyphenols has been associated with a reduced risk of 

cardiovascular disease and possibly cancer and stroke. Laboratory findings have shown that oxidative 

stress may play an important role to the pathogenesis of AD. Therefore, the risk of AD disease might 

be decreased by intake of antioxidants that neutralize the unfavorable effects of oxidative stress [16]. 

The present work reports the synthesis, characterization, antioxidants activities and X-ray crystal 

structures of Schiff bases derived from the condensation reaction of gallic hydrazide with pyridine and 

acetophenone derivatives, together with their acetylcholinesterase inhibition and antioxidant activity. 

2. Results and Discussion 

2.1. Chemistry 

The reaction of gallic hydrazide (1) with selected hydroxyacetophenones and pyridine derivatives 

resulted in the formation of the corresponding polyphenolic compounds: N-(1-(5-Bromo-2-

hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2); N-(1-(5-Chloro-2-hydroxyphenyl)-

ethylidene)-3,4,5-trihydroxybenzohydrazide (3); N-(1-(2-Hydroxy-5-methoxyphenyl)-ethylidene)-3,4,5- 

trihydroxybenzohydrazide (4); 3,4,5-Trihydroxybenzoic acid [1-pyridylethylidene] hydrazide (5); 
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3,4,5-Trihydroxybenzoic acid [1-(4-acetyl-pyridin-2-yl)-ethylidene] hydrazide (6) (Scheme 1). Their 

NMR, IR and UV-visible spectra were all consistent with the proposed structures. 

Scheme 1. Reaction pathways. 
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The IR spectra of compounds 2–6 revealed the presence of both characteristic ketonic carbonyl 

absorptions (at wavenumbers of 1,618, 1,650, 1,674, 1,638 and 1,658 cm−1 respectively) and imine 

absorptions [17,18] (at wavenumbers of 1,621, 1,623, 1,610, 1,604, and 1,604 cm−1 respectively), thus 

confirming the formation of Schiff bases. The broad bands observed in the 3,570–3,390 cm−1 range 

were attributed to the phenolic hydroxyl groups [19]. Other series of bands in the wavenumber ranges 

3,360–3,220 cm−1 and 1,110–950 cm−1 were assigned to υ(N-H) aliphatic and υ(N-N) stretching 

vibrations, respectively [20,21]. The 1H-NMR spectra of the Schiff bases revealed a singlet at δ 1.24, 

1.24, 1.19, 2.12 and 1.24 ppm, respectively, which is due to a methyl group shielded by the imine 

moiety. Compound 4 also showed another singlet at δ 3.75 which was attributed to the methoxyl 

group. In the 13C-NMR spectra the signals in the range 167–152 ppm could be assigned to the 

azomethine carbon atoms [3]. 

2.2. X-ray Crystallography 

The ORTEP view of the crystal structure of compound 4 is shown in Figure 1, and selected bonding 

parameters are listed in Table 1. The N1-N2 1.375(4), N1 = C8 1.294(4) and N2-C10 1.374(4) bond 

distances show no significant differences with those obtained previously for compound 2 [22]. For the 

description of the X-ray crystal geometry of the ligands, the molecule is proposed to be a planar or flat 

molecule. Planarity of the molecule makes it possible for the proton to be transferred through the 

hydrogen bond in the ground state with a small energy requirement. 
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Figure 1. ORTEP-type view of the crystal structure of compound 4 showing the labeling 

scheme. Thermal ellipsoids are drawn at the 50% probability level. 

 

Table 1. Selected bond distances (Å) and angles (°) for compound 4. 

Distances
N1-N2 1.375(4)
N1-C8 1.294(4)
N2-C10 1.374(4)
C10-O3 1.231(4)

Angles
C8-N1-N2 121.0(3) 
C10-N2-N1 116.6(3)
O3-C10-N2 120.5(3)
O2-C5-C6 123.0(3)

The crystal data and structure refinement for compound 4 is summarized in Table 2. 

Table 2. Crystal data and structure refinement for 4 and 5. 

Identification code 4 5 

Empirical formula  C16H18N2O7 C14H12N3O5  

Formula weight  350.32 302.27  

Temperature/K  569(2) 296.0  

Crystal system  Monoclinic triclinic  

Space group  P21/n P-1  

a/Å  7.769(9) 6.6282(7)  

b/Å  15.509(19) 9.9326(7)  

c/Å  13.162(16) 12.8906(11)  

α/°  90.00 79.982(2)  

β/°  103.85(2) 80.995(2)  

γ/°  90.00 76.5060(10)  

 



Molecules 2012, 17 2412 

 

Table 2. Cont. 

Identification code 4 5 

Volume/Å3  1,540(3) 806.67(12)  

Z  4 2  

ρcalcmg/mm3  1.511 1.244  

m/mm-1  0.120 0.097  

F(000)  736 314.0  

Crystal size/mm3  0.28 × 0.05 × 0.01 0.33 × 0.14 × 0.11  

2Θ range for data collection  4.14 to 50° 3.24 to 61.08°  

Index ranges  −5 ≤ h ≤ 9, −18 ≤ k ≤ 18, −15 ≤ l ≤ 14 −8 ≤ h ≤ 6, −14 ≤ k ≤ 10, −17 ≤ l ≤ 17 

Reflections collected  7,052 2,552  

Independent reflections  2,704[R(int) = 0.0721] 2,237[R(int) = 0.0358]  

Data/restraints/parameters  2,704/3/241 2,237/12/254  

Goodness-of-fit on F2  0.986 0.804  

Final R indexes [I >= 2σ (I)]  R1 = 0.0532, wR2 = 0.1121 R1 = 0.0462, wR2 = 0.1239  

Final R indexes [all data]  R1 = 0.1117, wR2 = 0.1358 R1 = 0.0555, wR2 = 0.1354  

Largest diff. peak/hole/e Å−3  0.305/−0.264 0.43/−0.34  

2.3. Anti-AChE Assay 

The inhibitory activities of compounds 1–6 on human acetyl cholinesterase were in the range of  

16–77% at 100 μM (see Table 3) and thus comparable to those of the standard drugs tacrine  

and propidium. 

Table 3. Human AChE inhibitory effects and anti-oxidant activities for compounds 1–6. 

Compounds 
Molecular 

weight 
AChE Inhibition (%) 

(Final conc. = 1 × 10−4 M) 
DPPH 

(IC50, μg/mL) 
FRAP value 
(Mean ± SD) 

1 184.15 38.0 ± 1.3 1.210 ± 0.002 81,633.30 ± 0.075 
2 381.18 77.0 ± 1.8 1.140 ± 0.001 62,200.00 ± 0.083 
3 336.73 68.9 ± 1.8 1.400 ± 0.002 35,740.00 ± 0.011 
4 332.31 48.5 ± 2.5 1.220 ± 0.001 30,080.00 ± 0.054 
5 287.27 16.4 ± 1.4 1.460 ± 0.001 22,946.70 ± 0.004 
6 329.31 71.5 ± 1.7 2.300 ± 0.001 23,340.00 ± 0.021 
Propidium - 54.5 ± 1.6  - - 
Tacrine - 51.2 ± 1.6  - - 
Ascorbic acid - - 2.260 ± 0.001 19,400.00 ± 0.007 
BHT - - - 187.3 ± 2.6 

1: Gallic hydrazide; 2: N-(1-(5-Bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide; 
3: N-(1-(5-Chloro-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide; 4: N-(1-(2-Hydroxy- 
5-methoxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide; 5: 3,4,5-Trihydroxybenzoic acid 
[1-pyridylethylidene] hydrazide, 6: 3,4,5-Trihydroxybenzoic acid [1-(4-acetyl-pyridin-2-yl)-ethylidene] 
hydrazide; BHT: Butylated hydroxytoluene. 
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Compounds 2, 3 and 6 showed the highest activities. This indicates that introduction of chlorine or 

bromine atom at position 5 of the acetophenone moiety significantly enhances the inhibition activity. 

This might be ascribed to the electron donating properties of the halogens by resonance, making the 

lone pair electrons more available to a plausible electron transfer. The activity of 6 could be attributed 

to the presence of the acetyl group on the pyridine ring making the lone pair electron on the pyridine 

nitrogen atom available for electron transfer, also increasing of bond dissociation enthalpy (BDE) 

values in phenolic structure contain substituent of electron withdrawing groups such as COR, COOR, 

CN [23] could discourage the abstraction of hydrogen. O-H bond dissociation enthalpy (BDE) is a 

theoretical parameter successfully used to measure the H-atom-donating ability of various antioxidants. 

Similar results have been reported by Kadoma [24]. 

2.4. Molecular Docking 

The crystal structure of hAChE (in complex with fasciculin-2) (pdb id: 1B41) shows that the 

enzyme possesses a deep narrow gorge which penetrates halfway into the enzyme, where the catalytic 

site resides [25]. The binding site of AChE consists of five subsites: a peripheral anionic site (PAS), an 

acyl binding pocket (ABP), the esteratic site (ES), an oxyanion hole (OH) and an anionic subsite (AS). 

Figure 2. Representations of the molecular model of the complex formed between 

compound 2 and hAChE. (a) 3D representation of the ligand-enzyme binding interactions. 

Compound 2 is represented as a dark grey sticks and hydrogen bonds as green dashed lines; 

(b) 2D schematic representation of the hydrogen bonding and hydrophobic interactions. 

 
a 
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Figure 2. Cont. 

 
b 

The residues that have been reported to be involved in protein-ligand interactions are Tyr 72,  

Asp 74, Tyr 124, Ser 125, Trp 286, Tyr 337 and Tyr 341 (PAS); Trp 236, Phe 295, Phe 297 and  

Phe 338 (ABP); Ser 203, His 447 and Glu 334 (ES); Gly 121, Gly 122 and Ala 204 (OH); and Trp 86, 

Tyr 133, Glu 202, Glu 448 and Ile 451 (AS) [26]. The molecular docking simulation of the complex 

formed between compound 2 and hAChE (Figure 2) showed the ligand well positioned in the active-site 

gorge, with the monohydroxyphenyl and trihydroxyphenyl moieties interacting with residues in the 

PAS and ABP, respectively. 

A closer inspection of the interactions at the PAS showed the presence of a hydrogen bond between 

the 2-hydroxyl group and Tyr 72, π-π stacking involving the monohydroxyphenyl ring, Trp 286 and  

Tyr 341 and a cation-π interaction between the protonated nitrogen atom of the amide and Trp 286. 

Furthermore, hydrophobic interactions between 2 and the rich aromatic residues (Asp 74, Tyr 124,  
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Trp 286, Leu 289 and Tyr 341) along the gorge appear to direct the trihydroxyphenyl moiety into the 

ABP, thus enabling the phenolic hydroxyl groups to form a network of hydrogen bonds with Ser 293, 

Phe 295 and Arg 296. 

Molecular modeling of the complexes formed between the enzyme and compounds 3 and 6 

suggested the involvement of a similar set of interactions as for the complex with compound 2  

(see Figures 3 and 4). In the case of the complex with compound 3, the model showed, at the PAS, a 

hydrogen bond between the 2-hydroxyl group and Asp 74, a σ-π interaction between carbon 6 in the 

aromatic ring and Trp 286, a cation-π interaction between the protonated nitrogen atom of the amide 

and Tyr 341 and a hydrogen bond between the amide nitrogen atom and Tyr 124 and, in the ABP, 

hydrogen bonds between two of the hydroxyl groups in the trihydroxyphenyl moiety and Ser 293 and 

Arg 296. The complex with compound 6 showed, at the PAS, π-π stacking between the pyridinyl ring 

and Trp 286 and hydrogen bonds between the amide nitrogen atom and the carbonyl group and  

Arg 296 and, in the ABP, hydrogen bonds between of the hydroxyl groups in the trihydroxyphenyl 

moiety and Tyr 337 and Phe 338. 

Figure 3. Representations of the molecular model of the complex formed between 

compound 3 and hAChE. (a) 3D representation of the ligand-enzyme binding interactions. 

Compound 3 is represented as a dark grey sticks and hydrogen bonds as green dashed lines; 

(b) 2D schematic representation of the hydrogen bonding and hydrophobic interactions. 

 
a 
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Figure 3. Cont. 

 
b 

This analysis suggests that the hAChE inhibition activity of compounds 2, 3 and 6 is probably due 

to their ability to block the active-site gorge, thus preventing the substrate, acetylcholine, from entering 

the active site. 

2.5. Antioxidant Assays 

The antioxidant efficacies of the compounds 1–6 were tested and the results obtained (see Table 3) 

revealed differing activities in the two assays. This indicates that two mechanisms, operating in 

different ways, must be responsible for the observed activity. The color change from deep purple to 
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yellow at 515 nm observed in the DPPH assay confirmed the radical scavenging activity of the 

compounds. A reference curve of absorbance (A) against DPPH concentration in methanol was plotted 

and used for the calculation of DPPH concentration at various reaction times (R2 = 0.9999). The 

compounds showed IC50 values in the range of 1.1–2.3 μg/mL. All the compounds tested showed a 

lower IC50 compared to the positive control used (ascorbic acid), except for compound 6, which 

showed no significant difference with the IC50 of the positive control. The high activity of the 

compounds in the DPPH assay can be related to the resonance effect of the polyhydroxyl groups 

attached to the phenolic ring in the compounds, whereupon electron donating substituents increase the 

electron density in the aromatic ring making it more reactive towards electrophilic attack or mainly 

due to their redox properties, which can play an important role in the absorption and neutralization of 

free radicals, the quenching of singlet and triplet oxygen, or the decomposition of peroxides [27,28]. 

This presumably promotes the release of phenolic hydrogen to the (1,1-diphenyl-2-picrylhydrazyl) free 

radical indicated by a color change from purple to yellow. The second method used for testing  

the antioxidant activities of these compounds was the FRAP assay. It is considered an accurate method 

for assessing “antioxidant power”. Ferric to ferrous ion reduction at low pH causes a colored  

ferrous-tripyridyltriazine complex to form. FRAP values are obtained by comparing the absorbance 

change at 593 nm in test reaction mixtures with those containing ferrous ions at known concentrations. 

Figure 4. Representations of the molecular model of the complex formed between 

compound 6 and hAChE. (a) 3D representation of the ligand-enzyme binding interactions. 

Compound 6 is represented as a dark grey sticks and hydrogen bonds as green dashed lines; 

(b) 2D schematic representation of the hydrogen bonding and hydrophobic interactions. 

 
a 



Molecules 2012, 17 2418 

 

Figure 4. Cont. 

 
b 

In this study, the compounds showed FRAP values in the range 2,000–9,000 which is above the values 

shown by BHT and ascorbic acid used as standards. It was observed that compounds 1–5 demonstrated the 

highest activities in the DPPH assay while 1 and 2 showed the highest values in the FRAP assay. This can 

be attributed to increased π-electron delocalization within the pyridine ring which increases the electron 

density and causes ferric ion reduction [29]. 

3. Experimental Section 

3.1. General 

The compounds synthesized in this study were characterized by spectral methods. IR spectra was 

recorded at the wavelength range from 4,000–400 cm−1 using a Perkin Elmer 783 spectrophotometer, 

NMR spectra were obtained on a ECA400 FT-NMR spectrophotometer using TMS as internal 

standard, UV-visible spectra were recorded on a UV-1650PC model UV-visible spectrophotometer, 

Melting points were measured using a Gallenkamp melting point apparatus and are Elemental analysis 
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was conducted on Costech Elemental Combustion System CNHS-O elemental analyzer. General grade 

solvents and reagents were used unless stated otherwise and were obtained from Aldrich Chemicals 

UK Ltd. and Acros Ltd. (UK). Methyl-3,4,5-trihydroxybenzoate, hydrazine hydrate, 2-hydroxy-5-

methoxyacetophenone, 5-bromo-2-hydroxyacetophenone, 5-chloro-2-hydroxyacetophenone, 2-cetylpyridine, 

2,6-diacetylpyridine, Dilute Hydrochloric acid (0.01 M), Distilled Ethanol. Distilled water and 

Dimethyl formamide (DMF). 

3.2. Gallic Hydrazide (1) 

 

N
H

O

NH2

HO

HO

HO Molecular Weight: 184.15  
An ethanolic solution (20 mL) containing methyl 3,4,5-trihydroxybenzoate (1.84 g, 0.01 M C8H8O5) 

and hydrazine (9 mL) was stirred for 30 minutes, until all the solute completely dissolved then distilled 

ethanol (45 mL) was added. The mixture was refluxed for about 6–8 h. The resulting white precipitate 

was collected by filtration, washed several times with distilled water and then dried under vacuum. 

Yield = 70%, melting point = 290 °C, elemental analysis theory: C (45.6%); H (4.3%); N (15.2%); 

found: C (45.2%); H (5.04%); N (15.04%), %, FT-IR spectra (KBr); 3,429 cm−1 (νAr-OH), 3,299 cm−1 

(νN-H), 1,654 cm−1 (νC=O), 1,344cm−1 (νC-O), 1,103 cm−1 (νN-N), 1H-NMR (DMSO-d6): 9.35 ppm 

[δ(Ar-OH), 1H s], 9.13 ppm, 9.05 ppm [δ(Ar-OH), 2H, d], 8.65 ppm [δ(NH), 1H, brd], 6.79 ppm,  

6.82 ppm [δ(Ar-H), 2H s], 4.37 ppm [δ(NH2), 2H s]. 13C-NMR (DMSO-d6): 166.39 ppm [δ(CONH), 

1C], 145.37 ppm [δ(aromatic), 1C-OH], 136.10, 136.42 ppm [δ(aromatic), 2C-OH], 124.00 ppm 

[δ(aromatic), 1C], 106.43 ppm [δ(aromatic), 2C = C] ppm. 

3.3. N-(1-(5-Bromo-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (2) 

N
H

OHO

HO

HO

N

CH3

HO

Br

Molecular Weight: 381.18  
Gallic hydrazide (1.84 g, 0.01 M) in (20 mL) ethanol was added to an ethanolic solution (20 mL) of 

5-bromo-2-acetophenone (2.15 g, 0.01 M respectively). The mixture was stirred for 2–3 h whereupon 

the color of the solution turned yellowish. The pH was adjusted by adding a few drops of dilute HCl. 

The reaction was continued for another hour resulting in the formation of a yellow precipitate. More 

precipitate was obtained when reducing the solvent by distillation. The product was collected by 

filtration, washed several times with ethanol and dried in an oven. (Yield 75%), elemental analysis: 

theory C (47.50); H (3.89); N (7.32); found C (47.26); H (3.44); N (7.35); IR spectra (KBr);  

3,558 cm−1 (νAr-OH), 3,235 cm−1 (νN-H), 1,604 cm−1 (νC=N), 1,658 cm−1 (νC=O), 1,242 cm−1  

(νC-O), 953 cm−1 (νN-N), 1H-NMR (DMSO-d6): 13.57 ppm [δ(OH), 1H, s], 11.10 ppm [δ(OH), 1H, s], 

9.05 ppm [δ(OH), 2H, brd], 6.79–7.73 ppm [δ(aromatic), 5H, m], 4.34 ppm [δ(NH), 1H, s], 1.24 ppm 
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[δ(-CH3 ), 3H, s]. 13C-NMR (DMSO-d6): 166.39 ppm [δ(C=N)], 164.43 ppm [δ(C=O)], 145.53 ppm, 

145.36 ppm [δ(aromatic), 2C-OH], 137.41 ppm [δ(aromatic), 1C-OH], 137.40, 136.10 ppm, 

[δ(aromatic), 2C], 130.31 ppm [δ(aromatic), 1C], 123.51 ppm, 122.35 ppm, 121.52 ppm, 119.50 ppm 

[δ(aromatic), 4C], 107.54 ppm, 106.42 ppm [δ(aromatic), 2C=C], 13.92 ppm [δ(CH3)] ppm. 

3.4. N-(1-(5-Chloro-2-hydroxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (3) 

N
H

OHO

HO

HO

N

CH3

HO

Cl

Molecular Weight: 336.73  
An accurately weighed amount of gallic hydrazide (1.84 g, 0.01 M) in ethanol (20 mL) was added 

to the same ethanolic solution (20 mL) of 5-chloro-2-hydroxyacetophenone (2.15 g, 0.01 M), and the 

mixture was stirred for 2–3 h as the color of the solution turned yellowish. The pH was adjusted by 

adding few drops of dilute HCl. The reaction was continued for another 1 h to give a yellow 

precipitate. More precipitate was obtained after reducing the solvent by distillation. The product was 

collected by filtration, washed several times with ethanol and dried in an oven. (Yield 75%) 

respectively, elemental analysis: theory C (53.50); H (3.89); N (8.32); found C (53.39); H (3.76);  

N (8.33); IR spectra (KBr); 3,568 cm−1 (νAr-OH), 3,225 cm−1 (νN-H), 1,638 cm−1 (νC=O), 1,604 cm−1 

(νC=N), 1,212 cm−1 (νC-O), 953 cm−1 (νN-N). 1H-NMR (DMSO-d6): 11.14 ppm [δ(OH), 1H, s],  

11.13 ppm [δ(OH), 1H, s], 9.30 ppm [δ(OH), 2H, brd], 7.66 ppm [δ(NH), 1H, s], 7.37–6.93 ppm 

[δ(aromatic), 3H, m], 6.983 ppm, 6.976 ppm [δ(aromatic), 2H str d], 2.12 ppm [δ(-CH3), 3H, s].  
13C-NMR (DMSO-d6): 166.94 ppm [δ(C=N)], 164.84 ppm [δ(C=O)], 157.94 ppm [δ(aromatic) 1C], 

146.10 ppm, 145.93 ppm [δ(aromatic), 2C-OH], 137.97 ppm [δ (aromatic), 1C-OH], 128.10 ppm, 

124.08 ppm, 122.92 ppm, 122.53 ppm, 121.48 ppm, 119.58 ppm [δ(aromatic), 6C], 108.10 ppm, 

106.98 ppm [δ(aromatic), 2C=C], 14.48 ppm [δ(CH3)] ppm. 

3.5. N-(1-(2-Hydroxy-5-methoxyphenyl)-ethylidene)-3,4,5-trihydroxybenzohydrazide (4) 

N
H

OHO

HO

HO

N

CH3

HO

O

CH3

Molecular Weight: 332.31  
An ethanolic solution (20 mL) of gallic hydrazide (1.84 g, 0.01 M) was added to an ethanolic 

solution (20 mL) of 2-hydroxy-5-methoxyacetophenone (1.06 g, 0.01 M) in 1:1 ratio. The mixture was 

refluxed for 2–3 h resulting in the formation of a slightly yellow precipitate. More precipitate was 

obtained by removal of some solvent by distillation. The product was collected by filtration, washed 

several times with ethanol until a milky colored compound is obtained. The ligand was re-crystallized 

by using the same solvent (ethanol), filtered to remove the suspended impurities and a single crystal 

was obtained suitable for X-ray analysis. (Yield = 65%), elemental analysis: theory C (57.83);  

H (4.85); N (8.43); found C (58.30); H (4.51); N (8.71); IR spectra (KBr); 3,467 cm−1 (νAr-OH),  

3,308 cm−1 (νN-H), 1,650 cm−1 (νC=O), 1,623 cm−1 (νC=N), 1,282 cm−1 (νC-O), 944 cm−1 (νN-N),  
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1H-NMR (DMSO-d6): 12.89 ppm [δ(OH)], 10.98 ppm [δ(OH), 1H, s], 9.28 ppm [δ(OH), 2H, brd], 

8.90 ppm [δ(NH)], 7.11 ppm [δ(aromatic), 2H str s], 7.11–6.83 ppm [δ(aromatic), 3H, m], 3.75 ppm 

[δ(O-CH3), 3H, s], 1.24 ppm [δ(-CH3), 3H, s]. 13C-NMR (DMSO-d6): 152.58 ppm [δ(C=N)],  

151.36 ppm [δ(C=O)], 145.52 ppm [δ(aromatic), 2C-OH], 137.27 ppm [δ(aromatic), 1C-OH],  

122.70 ppm, 122.61 ppm, 117.77 ppm, 117.39 ppm, 119.49 ppm [δ(aromatic), 5C], 107.44 ppm 

[δ(aromatic), 2C=C], 55.54 ppm [δ(O-CH3)], 13.94 ppm [δ(CH3)] ppm. 

3.6. 3,4,5-Trihydroxybenzoic Acid [1-Pyridylethylidene] Hydrazide (5) 

N
H

OHO

HO

HO

N

CH3

N

Molecular Weight: 287.27  
A stoichiometric amount of gallic hydrazide (1.84 g, 0.01 M) in ethanol (20 mL) was added to a 

solution (20 mL) of 2-acetylpyridine (1.21 mL, 0.01 mmol) and the mixture was refluxed on a water 

bath for 2–3 h, resulting in the formation of a small amount of white precipitate. More precipitate was 

obtained after evaporating the solvent by distillation. The product was then collected by filtration, 

washed several times with ethanol until a clear white powdery product was formed. The white 

powdered ligand was recrystallized by using DMF to obtain single crystals for X-ray structural 

determination. (Yield = 65%), melting point = 253 °C, elemental analysis: theory: C (58.53%); H (4.56%); 

N (14.63%); found: C (57.99%); H (4.56%); N (14.06%), IR spectra (KBr); 3,399 cm−1 (νAr-OH), 

3,351 cm−1 (νN-H), 1,621 cm−1 (νC=N), 1,618 cm−1 (νC=O), 1,560 cm−1 (νC=N)Py, 1,281 cm−1  

(νC-O), 1,032 cm−1 (νN-N), 1H-NMR (DMSO-d6): 9.38 ppm [δ(OH), 1H, s], 9.21 ppm, 9.11 ppm 

[δ(OH), 2H, brd], 8.14–8.07 ppm [δ(aromatic), 2H m], 7.87–7.70 ppm [δ(aromatic), 2H m], 7.63 ppm 

[δ(NH), 1H, s, brd], 6.92 ppm [δ(aromatic), 2H str s], 1.24 ppm [δ(-CH3), 3H, s]. 13C-NMR  

(DMSO-d6): 162.47 ppm [δ(C=N)], 155.25 ppm [δ(C=O)], 148.54 ppm [δ(aromatic), pyridine],  

145.85 ppm [δ (aromatic), 2C-OH], 138.70 ppm [δ(aromatic), 1C-OH], 136.52 ppm [δ(aromatic), 

pyridine], 124.57 ppm [δ(aromatic), 1C], 123.95 ppm, 122.90 ppm [δ(aromatic), pyridine],  

107.55 ppm, 106.35 ppm [δ (aromatic), 2C=C], 22.10 ppm [δ(CH3)] ppm. 

3.7. N'-(1-(6-Acetylpyridin-2-yl)ethylidene)-3,4,5-trihydroxybenzohydrazide (6) 

 

N
H

OHO

HO

HO

N

CH3

N
O

CH3

Molecular Weight: 329.31
 

A weighed amount of gallic hydrazide (1.84 g, 0.01 M) in (20 mL) ethanol was added to the same 

volume (20 mL) of ethanolic solution of 2,6-diacetylpyridine (1.63 g, 0.01 M). The mixture was stirred 

for 2–3 h while the color of the solution turned yellowish. The pH was adjusted by adding few drops of 

dilute HCl. The reaction was continued for another one hour resulting in the formation of a yellow 

precipitate. The product was collected by filtration, washed several times with ethanol and dried in an 
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oven. (Yield 90%), elemental analysis: theory C (58.36); H (4.59); N (12.76); found: C (57.99);  

H (4.89); N (13.11); IR spectra (KBr); 3,448 cm−1 (νAr-OH), 3,239 cm−1 (νN-H), 1,674 cm−1 (νC=O), 

1,610 cm−1 (νC=N), 1,511 cm−1 (νC-N)py, 1,265 cm−1 (νC-O), 955cm−1 (νN-N). 1H-NMR (DMSO-d6): 

9.29 ppm [δ(OH), 1H, s], 8.26 ppm, 8.28 ppm [δ(OH), 2H, brd], 8.14–8.03 ppm [δ(aromatic), 2H m], 

8.01–7.90 ppm [δ(aromatic), 2H m] 6.89 ppm [δ(aromatic), 2H str s], 4.3 ppm [δ(NH), 1H, s], 1.19 ppm 

[δ(-CH3), 3H, s]. 13C-NMR (DMSO-d6): 166.38 ppm [δ(C=N)], 164.34 ppm [δ(C=O)], 151.97 ppm 

[δ(aromatic), pyridine], 145.37 ppm [δ(aromatic), 2C-OH], 137.87 ppm [δ(aromatic) 1C-OH],  

136.13 ppm [δ(aromatic), pyridine], 123.87 ppm [δ(aromatic), 1C], 123.51 ppm [δ(aromatic), 2C=C], 

121.13 ppm, 120.26 ppm [δ(aromatic), pyridine], 199.24 ppm, 106.45 ppm [δ(C=OCH3)], 25.50 ppm 

[δ(CH3-C=O)], 18.52 ppm [δ(CH3)] ppm. 

3.8. X-ray Crystallography 

Diffraction data were measured using a Bruker SMART Apex II CCD area-detector diffractometer 

(graphite-monochromated Mo K radiation, = 0.71073 Å). The orientation matrix, unit cell refinement 

and data reduction were all handled by the Apex2 software (SAINT integration, SADABS absorption 

correction) [30]. The structures were solved using direct or Patterson methods in the program 

SHELXS-97 [31] and were refined by the full matrix least-squares method on F2 with SHELXL-97. 

All the non-hydrogen atoms were refined anisotropically and all the C-bound hydrogen atoms were 

placed at calculated positions and refined isotropically. O-bound hydrogen atoms were located in 

difference Fourier maps and refined with distance restraint of O-H 0.84(2) Å. Drawings of the 

molecules were produced with XSEED [32]. Crystal data and refinement are summarized in Table 2. 

3.9. Anti-AChE Assay 

The anti-cholinesterase activities of the compounds were evaluated by Ellmann’s method with 

slight modifications, using acetylthiocholine as a substrate [33] and 5,5'-dithiobis[2-nitrobenzoic 

acid](DTNB). Sodium phosphate buffer (pH 8.0, 110 μL) was added into the 96 wells followed by 

sample solution (20 μL), DTNB (0.126 mM, 50 μL) and AChE enzyme (0.6 U/mL, 20 μL). The 

mixture was incubated for 50 minutes at 37 °C. The reaction was then initiated by the addition of 

acetylthiocholine iodide (0.120 mM, 50 μL). The hydrolysis of acetylthiocholine was monitored by  

the formation of yellow 5-thio-2-nitrobenzoate anion as the result of the reaction of DTNB with 

thiocholine, released by the enzymatic hydrolysis of acetylthiocholine, at a wavelength of 412 nm 

every 30 s for 25 minutes using a 96-well microplate plate reader (TECAN Infinite M200, Mannedorf, 

Switzerland). Test compounds were dissolved in analytical grade DMSO. Tacrine and propidium 

iodide were used as reference standards [34]. The reactions were performed in triplicate and monitored 

with a spectrophotometer. The percent inhibition of the enzyme activity due to the presence of 

increasing test compound concentration was obtained from the expression; 100 − (vi/vo × 100), where 

vi is the initial rate calculated in the presence of inhibitors and vo is the enzyme activity. 



Molecules 2012, 17 2423 

 

3.10. Molecular Modeling Evaluations 

The coordinates for the enzyme were those deposited in the Protein Data Bank for the human 

acetylcholinesterase (1B41) after eliminating the inhibitor (Fasciculin-2) and water molecules. The 

missing residues were built and polar hydrogen atoms were added using Discovery Studio 3.0 

(Accelrys, Inc., San Diego, CA, USA). By default, solvation parameters and Kollman charges were 

assigned to all atoms of the enzyme using AutoDock Tools v.1.4. The 3D structures of the compounds 

were optimized according to the standard protocol in Discovery Studio 3.0. For docking studies, the 

latest version of AutoDock v.4.0 [35] was chosen because its algorithm allows full flexibility of small 

compounds. It has been shown to successfully reproduce many crystal structure complexes and 

includes an empirical binding free energy evaluation. Docking of compounds to AChE was carried out 

using the hybrid Lamarckian Genetic Algorithm. A grid box with the size of 178 Å × 200 Å × 194 Å 

and grid spacing of 0.375 Å was built to span the entire protein structure, in vacuo. The maximum 

number of energy evaluations was set to 25,000,000. Blind docking was used to predict structural 

features of compound binding. Resulting docked orientations within a root-mean square deviation of 

1.5 Å were clustered. The lowest energy cluster reported by AutoDock for each compound was used 

for further analysis. All other parameters were maintained at their default settings. The structures of 

the complexes obtained were visualized and analyzed using Discovery Studio 3.0 and Ligplot 1.0 [36] 

to identify some specific interactions between the atoms of the compounds and the enzyme. 

3.11. Antioxidant Activity 

3.11.1. DPPH (1,1-Diphenyl-2-picrylhydrazyl) Assay 

The scavenging activities of the compounds on DPPH were measured according to a reported 

procedure [37]. The compounds showed final concentrations within the range of 0–25 μg/mL in 

methanol. One milliliter of 0.3 mM DPPH ethanol solution was added to sample solution (2.5 mL) of 

different concentrations and used as stock solutions for the test; meanwhile methanol (1 mL) was 

added to samples (2.5 mL) to make the blank solutions. The negative control (blank) consisted of 

DPPH solution (1 mL) plus methanol (2.5 mL). These solutions were allowed to react at room 

temperature for 30 min in the dark. The absorbance was read at 518 nm and converted into percentage 

antioxidant activity according to the following equation: % Inhibition = [(AB − AA)/AB] × 100. 

Where: AB: absorption of blank sample, AA: absorption of tested samples. The kinetics of DPPH 

scavenging activity was determined and the IC50 calculated using ascorbic acid as a positive control. 

3.11.2. FRAP Assay 

The FRAP assay of the compounds performed using modified method as described by Benzie and 

Strain [38]. The stock solutions contained 300 mM acetate buffer (3.1 g CH3COONa·3H2O and 16 mL 

CH3COOH), pH 3.6, 10 mM TPTZ (2,4,6-tripyridyl-s-triazine) solution in 40 mM hydrochloric acid 

and 20 mM ferric chloride hexahydrate solution. The fresh working solution was prepared by mixing 

acetate buffer (25 mL), TPTZ (2.5 mL), and ferric chloride hexahydrate solution (2.5 mL). The 

temperature of the solution was raised to 37 °C before use and allowed to react with the FRAP solution 
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(300 μL) in the dark. The colored product (ferrous tripyridyltriazine complex) was monitored at a 

wavelength of 593 nm. The standard curve was linear between 100 and 1,000 μM ferrous sulphate. 

Results are expressed in μM ferrous/g dry mass and compared with that of ascorbic acid and  

butylated hydroxytoluene. 

3.12. Statistical Analysis 

All values were reported as mean ± S.E.M. The statistical significance of differences between 

groups was assessed using one-way ANOVA. A value of p < 0.05 was considered significant. 

4. Conclusions 

Synthesized novel Schiff bases were observed to be potentially useful for acetyl-cholinesterase 

inhibition and possible treatment for AD. The compounds also showed strong free radical inhibitory 

activities. In silico molecular modeling revealed that the compounds may position themselves in the 

enzyme’s active-site gorge, interacting with residues in the peripheral anionic subsite (PAS) and acyl 

binding pocket (ABP). 

Supplementary Data 

CCDC 857032 contains the supplementary crystallographic data for complex-4. These data can be 

obtained free of charge via http://www.ccdc.cam.ac.uk/conts/retrieving.html, or from the Cambridge 

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223-336-033;  

or E-Mail: deposit@ccdc.cam.ac.uk. Detailed information can be accessed at: http://www.mdpi.com/ 

1420-3049/17/3/2408/s1. 
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