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With many protective vaccine antigens reported in the literature and verified experimen-
tally, how to use the knowledge mined from these antigens to support rational vaccine 
design and study underlying design mechanism remains unclear. In order to address 
the problem, a systematic bioinformatics analysis was performed on 291 Gram-positive 
and Gram-negative bacterial protective antigens with experimental evidence manually 
curated in the Protegen database. The bioinformatics analyses evaluated included 
subcellular localization, adhesin probability, peptide signaling, transmembrane α-helix 
and β-barrel, conserved domain, Clusters of Orthologous Groups, and Gene Ontology 
functional annotations. Here we showed the critical role of adhesins, along with subcellu-
lar localization, peptide signaling, in predicting secreted extracellular or surface-exposed 
protective antigens, with mechanistic explanations supported by functional analysis. We 
also found a significant negative correlation of transmembrane α-helix to antigen pro-
tectiveness in Gram-positive and Gram-negative pathogens, while a positive correlation 
of transmembrane β-barrel was observed in Gram-negative pathogens. The commonly 
less-focused cytoplasmic and cytoplasmic membrane proteins could be potentially pre-
dicted with the help of other selection criteria such as adhesin probability and functional 
analysis. The significant findings in this study can support rational vaccine design and 
enhance our understanding of vaccine design mechanisms.

Keywords: vaccine design, protective antigen, reverse vaccinology, adhesin probability, subcellular localization, 
conserved domains, transmembrane proteins, functional analysis

inTrODUcTiOn

Vaccination is considered as the most effective medical intervention ever introduced in modern 
medicine (1) and has prevented 103 million cases of infectious diseases in the United States since 1924 
(2). However, it is still difficult to develop safe and effective vaccines against many infectious diseases 
including tuberculosis, HIV, and malaria (3). The emerging reverse vaccinology (RV) addresses the 
challenge through rational vaccine design by predicting vaccine antigen based on bioinformatics 
analysis of pathogen genomes (4, 5). The first application of RV in Group B meningococcus (MenB) 
vaccine development predicted 350 surface-exposed proteins from MenB, and the following experi-
ments verified 25 of them capable of inducing bactericidal antibodies (6). This finding led to the 
approval of the first MenB vaccine, Bexsero, for use in the Europe (7), and United States (8). The 
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success of Bexsero is a milestone for rational vaccine design and 
RV has also been applied in vaccine prediction against other chal-
lenging pathogens such as Mycobacterium tuberculosis (9).

Many selection criteria have been applied to vaccine antigen 
prediction, but a deep understanding of the rationale behind their 
usage is still missing. The initial RV study of MenB vaccine predic-
tion used the subcellular localization (SCL) as a major selection 
criterion, given that the humoral immunity is vital to host protec-
tion against MenB and the protective antigens (PAgs) inducing 
antibody response are primarily located in extracellular or outer 
membrane (6). However, the preference of vaccine antigens in 
specific SCL varies across different pathogens, and SCL might not 
be equivalently critical for those pathogens against which cell-
mediated immunity plays a major role. Another frequently used 
criterion is the number of transmembrane α-helices (TMHs) 
due to the difficulty in the isolation of proteins with more than 
one TMH (10). Nonetheless, it is unclear whether the number of 
TMH, and possibly transmembrane β-barrel (TMB), of a protein 
correlates with vaccine protection. Adhesin is crucial to pathogen 
invasion into host cells (11) but the usage of adhesin probability 
(AP) has not been widely appreciated. Other criteria including 
signal peptides, conserved domains, and biological function 
analysis (10) have been used in different RV tools [e.g., NERVE 
(12), Vaxign (13), and Jenner-predict server (14)], and machine-
learning techniques are also applied to vaccine design studies  
(15, 16). However, the significance and association of above cri-
teria with the protectiveness of bacterial PAgs is still lacking. The 
identification of such association is essential to improve vaccine 
antigen prediction and design studies.

The goal of this study is to systematically analyze known 
bacterial PAgs reported in the literature and identify underlying 
design mechanisms for better rational vaccine prediction. Our 
study uses PAgs collected from Protegen with antigen informa-
tion and experimental protection evidence manually annotated 
from peer-reviewed articles (17). The significance and association 
of these Protegen PAgs are analyzed using bioinformatics tools 
for SLC (18), AP (19), signal peptide (20), TMH (21) and TMB 
(22), conserved domains (23), Clusters of Orthologous Groups 
(COG) (24), and gene ontology (GO) (25). This report provides a 
systematic analysis of protein properties and biological functions 
associated with known bacterial PAgs in the interest of support-
ing future rational vaccine prediction and design.

MaTerials anD MeThODs

Protective antigens and Background 
Pan-Proteome non-Protective Protein 
sequences
Protective antigens in G+  and G− bacteria with supporting 
experimental evidence were downloaded from Protegen data-
base (Table S1 in Supplementary Material). The most common 
experimental evidence is the protection results against virulent 
bacterial challenge in laboratory animal models. Reported 
assay results that correlate to protection or immune responses 
are also considered. Using the Gram-positive (G+)  and Gram-
negative pathogen information provided along with the PAgs 

from Protegen, all protein-coding sequences of these pathogens 
were downloaded from the UniProt database (26). The tax-
onomy IDs reported in Protegen were queried against UniProt 
for possible pan-proteome sequences. The detail of taxonomy 
ID mapping between the reported G+  and G− pathogens from 
Protegen and their corresponding pan-proteome in UniProt is 
available in Table S2 in Supplementary Material. By merging all the 
pan-proteome protein sequences from UniProt, we obtained the 
background proteome for two groups used in this study: G+ and 
G− pathogen background proteomes. There is no curated dataset 
of non-protective G+ and G− proteins available in the literature. 
The non-protective protein datasets were generated by applying 
similar strategies reported in previous vaccine design studies  
(15, 27, 28). Specifically, the G+  and G− pan-proteomes down-
loaded from UniProt were first aligned to Protegen PAg sequences 
using BLAST (29). Then sequences that shared similar homology 
with the Protegen PAgs (E-value ≤10 and have a shared percent 
identity of 10%) were removed from the datasets. All the remaining 
sequences within the datasets were considered as non-protective 
proteins throughout the entire study. The non-protective proteins 
generated in this study only provide an estimated survey of the 
true non-protective datasets and some non-protective proteins 
included in this study could have never been tested for the protec-
tive capacity.

Protein Property computations
In this paper, five types of protein properties were computed:  
(i) SCL, (ii) AP, (iii) signal peptide, (iv) TMH, and (v) TMB (Table 
S8 in Supplementary Material).

For SCL computation, all sequences were computed for tenta-
tive SCL locations by running through PSORTb v3.0 program 
(18). Briefly, PSORTb uses Bayesian network to integrate different 
SCL location prediction modules such as support vector machine, 
SCL-BLAST, and motif-based modules. The program predicts 
and assigns score for each possible SLC locations of the input 
sequence, and the location with the highest score is returned. 
In this study, the default setting was used besides specifying the 
G+ or G− of input sequences.

The AP of all sequences was computed using SPAAN program 
with default setting (19). SPAAN calculates probability of being 
adhesin for an input sequence using neural network with five 
features including amino-acid frequencies, multiplet frequencies, 
dipeptide frequencies, charge composition, and hydrophobic 
composition. Sachdeva et al. reported 89% sensitivity and 100% 
specificity when the cutoff value AP ≥ 0.51 was used (19), and 
therefore the same threshold was applied in this study.

Prediction of signal protein secretion of all sequences was 
calculated by SignalP 4.1 standalone version (20), which is built 
solely on neural network to discriminate signal peptides from 
transmembrane regions. The discrimination score (D-score) 
computed by SignalP provides a value for protein secretion. As 
suggested by SignalP1, the threshold value of D-score of 0.45 for 
G+ and 0.51 for G− provides the best sensitivity in signal peptide 
detection. In this study, the suggested cutoff values were used and 

1 http://www.cbs.dtu.dk/services/SignalP/performance.php.
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the default configuration was applied besides specifying the G+ or 
G− of input sequences.

The TMH was computed using TMHMM 2.0 (21) with default 
settings and the number of TMH of the input G+ and G− pathogen 
sequences was reported. In brief, the tool uses hidden Markov 
model to predict transmembrane state of the input sequences and 
the Krogh et al. reported 97–98% prediction sensitivity (21).

The TMB was computed using PROFtmb tool, which is also 
a hidden Markov model-based prediction program (22). Only 
TMB of G− pathogen sequences were computed because clas-
sical G+  bacteria do not contain β-barrel membrane proteins 
(30). Based on the performance evaluation of the PROFtmb on 
discriminating transmembrane vs. non-transmembrane β-barrel 
using the whole protein dataset by Bigelow et  al. (22), a cutoff 
value of ≥0.6 accuracy was chosen in order to achieve a balance 
with coverage.

Protein sequence Property computations
The PAg sequences, non-protective protein and background 
proteome sequences were functionally annotated with (i) Pfam 
conserved domains, (ii) COG functional classifications, and (iii) 
GO biological process (BP), molecular function (MF) and cellular 
component (CC) terms (Table S8 in Supplementary Material).

The PfamScan tool was used to annotate the conserved 
domains in all PAg, non-protective proteins and background 
proteomes. The sequences were aligned using the downloaded 
Pfam-A domain hidden Markov models (23).

The sequences of all PAgs were scanned for COG clusters using 
HMMER2 with the hidden Markov models downloaded from 
the EggNog 4.5 database (31). Each input sequence was initially 
assigned with one ENOG identifier, which was then mapped 
to the corresponding COG cluster. For background proteomes 
and non-protective proteins, the COG cluster identifiers were 
retrieved directly from the UniProt database.

The PAg sequences were submitted to Argot2 web server for 
GO annotation prediction (32). The GO information of non-
protective proteins and background proteomes were directly 
downloaded from UniProt database.

statistical analysis
Unless specified, the statistical significance of the association 
between reported PAgs and computed protein properties includ-
ing SCL, AP, signal peptide, TMH, and TMB were calculated 
using one-way Fisher’s exact test since we were only interested 
in over-representation of properties in PAgs only. For the ad hoc 
analysis of specific property (e.g., SCL prediction), the significance 
of individual sub-property (e.g., individual SCL locations such as 
extracellular, cell wall, cytoplasmic membrane, and cytoplasm in 
G+ bacteria) were further examined by performing one vs. other 
Fisher’s exact test and the resulting p-value was adjusted by apply-
ing Bonferroni correction.

The over-representation of conserved domains, COG 
clusters, and GO BP, MF, CC terms among Protegen PAgs 
were tested using Fisher’s exact test and adjusted using 

2 http://hmmer.org/.

Benjamini–Hochberg–Yekutieli procedure. In addition, the sig-
nificant (adjusted p ≤ 0.05) GO terms (BP, MF, CC) were visual-
ized in hierarchical format using GOfox (33). GOfox3 laid out GO 
terms using the internal hierarchical GO structure simplification 
algorithm since GO enrichment analysis tends to generate a large 
list of enriched GO terms (33).

resUlTs

Three sets of data were collected and generated for the bioinfor-
matics analysis. Our study specifically analyzed frequently used 
PAg prediction features, including SCL, AP, signal peptide, TMH 
and TMB, conserved domain, and biological function analysis.

collection of Protective Vaccine antigens, 
Background and non-Protective Proteins
After removal of identical sequences, the curated Protegen data-
set contained 81 and 210 non-redundant vaccine PAgs from 14 
Gram-positive (G+) and 34 Gram-negative (G−) bacteria, respec-
tively (Table S1 in Supplementary Material). The corresponding 
pan-proteomes of these G+ and G− pathogens were downloaded 
from the UniProt database (26) as the background proteomes, 
which included 39,397 G+  and 73,371 G− peptide sequences 
(Table S2 in Supplementary Material). A set of non-protective 
proteins were selected from background proteome as described in 
Materials and Methods and other RV studies (15, 16, 27, 28), and 
contained 4,954 G+ and 5,478 G− pathogen peptide sequences.

subcellular localization analysis
Our analysis found that 44.4% and 19.8% of PAgs in G+  bac-
teria located in extracellular space and cell wall, respectively 
(Figure  1A). In comparison, only 1.7% and 1.2% of the 
G+  non-protective proteins were extracellular and cell wall 
proteins, respectively (Figure  1B). Our statistical analysis 
showed significant over-representation of PAgs in these two 
SCLs (p < 0.01). In G− bacteria, 15.7%, 30.0%, and 8.1% of PAgs 
were extracellular, outer membrane, and periplasmic proteins, 
respectively (Figure  1C). Compared with the corresponding 
SCL proportions in G− non-protective proteins (0.4, 0.4, and 
0.9%) (Figure  1D), these three locations were significantly 
over-represented in PAgs (p < 0.01). In non-protective proteins, 
most proteins (78.3% in G+  and 67.7% in G−) were localized 
in the cytoplasmic or cytoplasmic membrane (Figures  1B,D) 
but these two SCL locations also accounted for 26.8% G+ and 
31.1% G− of the reported PAgs (Figures 1A,C). The SCL pre-
dictions of background proteome were shown in Figure S1 in 
Supplementary Material.

To confirm the SCL analysis results, we also analyzed signal 
peptides using SignalP (20), which predicted the presence of signal 
sequences of the majority of synthesized proteins designated to 
secretory pathways. The distribution histograms of the calculated 
score for PAgs, non-protective proteins, and background proteomes 
were plotted (Figure S2 in Supplementary Material). The signal 
peptide scores of extracellular (both G+ and G−) or surface-exposed 

3 http://gofox.hegroup.org/.
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FigUre 1 | Subcellular localization profiles. G+ and G− bacterial protective antigens showed significantly higher (p < 0.01) proportions of EC (G+ and G−), CW (G+), 
and PE and OM (G−) (a,c) compared with the non-protective proteins (B,D) (abbreviations shown in the middle color key legend). Only PAgs and non-protective 
proteins are displayed and the composition of background proteomes and non-protective proteins are very alike (Figure S1 in Supplementary Material). The 
significant over-representation of PAgs’ subcellular localization prediction compared with non-protective proteins is indicated with “*” (p < 0.01).
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proteins (cell wall for G+ and outer membrane for G−) showed that 
a large fraction of PAgs was predicted to be secreted signal peptides 
(Figure S2 and Table S3 in Supplementary Material).

adhesin Probability analysis
Adhesins are proteins critical for bacterial pathogens to invade 
host cells and cause infections (11). Over half of the PAgs could 
be identified with AP (56.8% of G+ and 52.8% of G−) using the 
suggested cutoff of no <0.51 (19). The AP of proteins with dif-
ferent SCLs also had different patterns (Figure  2). Specifically, 
comparing PAgs (Figures  2B,E) and non-protective proteins 
(Figures 2C,F), PAgs with SCL locations other than cytoplasmic 
membrane and cytoplasm generally showed increasing trend in 
AP. There were 87.5% G+ PAgs in the cell wall and 82.5% G− PAgs 
in outer membrane that were also adhesins, compared with 37.5% 
G+ and 20% G− non-protective proteins in the cell wall and outer 

membrane, respectively (Figure  2; Table S4 in Supplementary 
Material). This high preference of surface-exposed proteins 
(cell wall for G+ and outer membrane for G−) with high AP was 
significant (p < 0.01, Figure 2) and illustrated the importance of 
SCL and AP as two major criteria in vaccine design. Additionally, 
90.0% and 54.3% of the PAgs in G+ and G− bacteria with 
unknown SCL were in fact predicted to be adhesins. Therefore, 
utilizing AP with SCL could potentially overcome the limitation 
of excluding “Unknown” SCL and avoid inaccuracy generated by 
individual SCL prediction tool. For PAgs located at the cytoplas-
mic membrane and cytoplasm, the computed AP also showed 
different patterns between G+ and G− (Figures 2B,E). G+ PAgs 
in cytoplasmic membrane were more likely adhesins (77.8%), 
while in G− only 20.0% were adhesins (Table S4 in Supplementary 
Material). For cytoplasm, PAgs were both unlikely adhesins (0% 
for G+ and 4.9% for G−, Table S4 in Supplementary Material). AP 

http://www.frontiersin.org/Immunology/
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FigUre 2 | Profiles of adhesin probabilities of protective antigens (PAgs) and non-protective proteins with different subcellular localizations. The top three panels 
(a–c) show G+ pathogens, and the bottom three panels show G− pathogens. Specifically, the first column (a,D) represents the overall percentages of adhesin 
probabilities. The second column (B,e) and third column (c,F) show adhesin probability distributions of PAg and non-protective proteins, respectively. The red line in 
(B,c,e,F) indicates adhesin probability cutoff of no <0.51. Overall, PAgs have significantly higher (p < 0.01) percentages in EC (G+ and G−), CW (G+), and PE and 
OM (G−) (abbreviations shown in bottom color key legend). Interestingly, CM in G+ is also significant (p < 0.05) when coupled with adhesin probability. See the text 
for detailed discussion. The significant over-representation of PAgs’ adhesin probabilities at different subcellular localizations compared with non-protective proteins 
is indicated with “*” (p < 0.05) or “**” (p < 0.01).
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prediction of background proteome is also shown in Figure S3 in 
Supplementary Material.

Transmembrane α-helix and β-Barrel
We analyzed and compared the TMH profiles between PAgs and 
non-protective proteins. Specifically, none of the PAgs located at 
the cell wall (G+), outer membrane, or periplasm (G−) had more 
than one TMH (Figure 3A). There were two G− PAgs with more 
than 10 TMH (lipoprotein signal peptidases in Brucella melitensis 
and l-lactate permease in Neisseria meningitides). The β-barrel 
analysis was only performed for G− pathogens because classical 
G+ bacteria do not contain β-barrel membrane proteins (30). 
Using the probability cutoff of 0.60, our study found that 12.9% 
of Gram-negative PAgs predicted to have TMB compared with 
<0.001% in non-protective proteins (Figure 3B).

conserved Domain analysis
Conserved domains represent functional units in proteins 
and some domains are more frequently associated with PAgs  
(14, 34). Our analysis identified eight conserved domains that 
were only frequently found among reported PAgs (Table 1). These 
domains included “autotransporter β-domain,” “outer membrane 
protein β-barrel domain,” “fimbrial protein,” “TonB-dependent 
receptor plug domains,” “OmpH-like outer membrane protein,” 

and “extended signal peptide of type V secretion system.” The full 
list of all predicted conserved domains and their frequencies in 
PAgs and non-protective proteins can be found in Table S5 in 
Supplementary Material.

Functional analysis
The functional annotations were analyzed using the COG and 
GO. COG includes 26 functional clusters (24). Our COG analysis 
of PAgs identified 16 COG functional categories that were sig-
nificantly enriched (adjusted p < 0.05) in PAgs (Figure 4; Table 
S6 in Supplementary Material). Four COG clusters “cell wall/
membrane envelope biogenesis,” “cell motility,” “signal transduc-
tion mechanisms,” and “extracellular structures” were notably 
enriched in PAgs.

We also analyzed enriched GO terms from the three GO 
branches: biological process (BP), molecular function (MF), 
and cellular component (CC) (25). Eighteen GO BP terms were 
found significantly enriched (adjusted p  <  0.05) in bacterial 
PAgs, including “pathogenesis” as the most significantly enriched 
term among PAgs in bacterial pathogens (Figure  5; Table S7 
in Supplementary Material). BPs related to pathogen invasion  
(e.g., “cell adhesion” and “proteolysis”) and terms related to 
transporter (e.g., “transmembrane transport”) were significantly 
over-represented among PAgs. Twenty GO MF terms were 
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TaBle 1 | Frequent Pfam-A conserved domains among reported PAgs.

Pfam domain description Protective 
antigen count

Autotransporter β-domain 11
Outer membrane protein β-barrel domain 10
Fimbrial protein 10
ATPase family associated with various cellular activities (AAA) 9
TonB-dependent receptor plug domain 8
Outer membrane protein (OmpH-like) 5
ABC transporter 5
Extended signal peptide of Type V secretion system 5

The most over-represented (PAg count ≥5) Pfam-A conserved domains among 
reported PAgs were listed. The top two frequently found Pfam-A conserved domains 
among reported PAgs were β-barrel domains, which support the positive selection of 
transmembrane β-barrel in PAg prediction. In addition to β-barrel domains, proteins 
with over-represented conserved domains were more likely related to the pathogenesis 
of bacteria including pathogen colonization and invasion, and therefore could be used 
as a good indicator of PAg prediction.

FigUre 3 | Transmembrane α-helix (G+ and G−) and β-barrel (G− only) profiles. As compared with non-protective proteins, there were much higher percentages of 
protective antigens with zero or one transmembrane α-helix (a). For transmembrane β-barrel (B), only two (0.0004%) out of all non-protective proteins had 
probability higher than the designated cutoff (indicated as black vertical line) described in method.
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GO CC terms were significantly enriched (adjusted p < 0.05). 
In agreement with the SCL prediction results, extracellular or 
surface-exposed CC terms were significantly over-represented 
among reported PAgs. In addition, CC terms that were related 
to bacterial colonization and invasion within host such as “bac-
terial-type flagellum filament,” “pilus,” “host cell part,” “host cell 
plasma membrane,” and “host cell junction” were also enriched, 
suggesting PAgs’ role in the interactions between bacteria and 
the host cells.

DiscUssiOn

Although extensive research has been conducted, modern vac-
cine research and development still faces challenges of quick and 
accurate development of vaccines in response to major infectious 
diseases [e.g., tuberculosis (3)], outbreaks [e.g., Ebola and Zika 
virus (35, 36)], and new drug-resistant pathogens (37). Our efforts 
to develop vaccines using traditional methods have not been suc-
cessful to address these challenges. The future success of effective 
vaccine development relies on powerful rational vaccine design 

significantly enriched (adjusted p  <  0.05), including those 
related to invasion (e.g., “peptidase activity”) and transporta-
tion (e.g., “transferase activity” and “receptor activity”). Fifteen 
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FigUre 4 | Over-representation of COG clustering profiles among reported protective antigens (PAgs). Over 40% of the reported PAgs belong to the cluster “Cell 
wall/membrane/envelop biogenesis,” which agrees with common knowledge of using surface-exposed proteins as a key criterion in vaccine antigen prediction. 
Other COG clusters related to pathogen motility, secretion, signal transduction, and transportation are also significantly enriched in PAgs as compared with 
non-protective proteins. See the text for detailed discussion. The significant over-representation of PAgs’ COG clusters compared with non-protective proteins is 
colored with gray (p < 0.05) and black (p < 0.01).
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including reverse and structural vaccinology (1) and based on our 
deeper understanding of vaccination mechanism. By systemati-
cally studying and comparing bacterial PAgs and non-protective 
proteins, our comprehensive bioinformatics study analyzed key 
criteria for vaccine design including various protein properties 
and biological functions. The summarized characteristics in this 
study are specifically used for bacterial model PAg prediction and 
might not hold true for viral or parasitic pathogens. The results of 
this study confirmed and provided details on the usage of these 
prediction criteria, including SCL, AP, signal peptides, TMH and 
TMB, conserved domains, and biological function annotations, 
for RV prediction against bacterial pathogen. Most importantly, 

our results suggested new insights toward rational vaccine pre-
diction and design.

In accordance with secreted extracellular or surface-exposed 
antigens commonly known to be PAgs, our study observed the 
differences among the SCL profiles of G+ and G− bacterial PAgs. 
In terms of extracellular proteins, G+ bacterial PAgs had a much 
higher percentage (44%) being PAgs than G− bacterial PAgs 
(15.7%). We also found a strong correlation between the pres-
ence of secretory signal peptides and PAgs. Approximately half 
of the PAgs (over 45% in both G+ and G−) were predicted to be 
signal peptides (Table S3 in Supplementary Material; Figure 4). 
Coupling the selection of SCL and signal peptides, particularly in 
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http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


FigUre 5 | Over-representation of GO BP, MF, and CC term profiles among reported protective antigens (PAgs) and visualized using the GOfox tool. The number 
next to each GO term indicates the number of PAg with the corresponding GO functional annotation. Similar to COG clustering, GO terms that are related to 
pathogen motility, secretion, signal transduction, and transportation are also significantly enriched in PAgs as compared with non-protective proteins. The GO CC 
terms also supported the high preference of extracellular, surface-exposed (cell wall in G+ and outer membrane in G−), and periplasmic (G−) PAgs. The significant 
over-representation of PAgs’ GO terms compared with non-protective proteins is color-coded following the legend in the lower right corner.
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G+ bacterial pathogens, pose a viable option for a more precise 
PAg prediction. On the other hand, 19.8% cell wall proteins in G+ 
and 30.0% outer membrane proteins in G− bacteria were surface-
exposed PAgs (Figures  1A,C). The G+ bacterial PAgs showed 
higher preference in extracellular proteins, while both G+ and 
G− bacterial PAgs shared similar proportions as surface-exposed 
proteins.

Moreover, 8.1% G− PAgs were in the periplasm, a subcellular 
location that vaccine researchers often ignore due to lack of direct 
interaction with the host immune cells. Hence, the percentage 
of periplasmic PAgs was significant (p <  0.05, Figure  1C) and 
over-represented (Figure  5) when taking the non-protective 
periplasmic proteins (0.9%) into consideration. It is possible 
that G− bacterial periplasmic proteins can be released extracel-
lularly after being packed within outer membrane vesicles and 
can induce strong immune responses (38, 39). These periplasmic 
proteins can be potentially a good source of PAg candidates when 
coupling with other selection criteria such as functional analysis.

The results of our study highlight the importance of AP and 
its effect in improving RV prediction when combined with SCL. 
Adhesin is critical for bacterial invasion and is capable of induc-
ing strong immune responses (11). Adhesins can also function 
as enzymes and mediate a main part of bacterial pathogenesis 
(40). The majority of vaccine design studies do not incorporate 
AP in their selection pipeline (6, 15, 16, 27), and AP as a selection 
criterion is currently underused and poorly investigated in the 
vaccine development field. Our study managed to identify over 
50% of the PAgs with AP as the only criterion. The prediction 
of coupling SCL and AP was even more significant, with the 

identification of over 80% cell wall (G+) and outer membrane 
(G−) PAgs (Table S4 in Supplementary Material). By addressing 
the importance of adhesin playing an important role in vaccine 
development, we hope to promote the AP as a viable option in 
future vaccine design studies.

The functional analysis of adhesive PAgs in our study proposes 
a mechanistic explanation of their roles in pathogen colonization 
and invasion. Cell motility is one of the most important steps 
in host colonization and invasion, and the bacterial movement 
requires structure such as flagellum and pillus for cell adhesion 
and colonization (41), and cell motility related COG clusters and 
GO terms were significantly enriched (Figures 4 and 5). Pilli are 
composed of fimbrial and other proteins (41), and the Pfam domain 
“fimbrial protein” was highly conserved among the reported PAgs 
(Table 1). GO BP term “proteolysis” and GO MF terms “peptidase 
activity” (Figure 5) were also found to be significant in the func-
tional analysis. For instance, Yersinia pestis can produce the surface 
protease to mediate invasion into host endothelial cells (42). The 
pili, fimbri, and protease mentioned earlier can occur as one of the 
various architectures of adhesins (40). Given these important roles 
of adhesins, more investigations of adhesins as potential PAgs and 
how they induce protective immunity are much deserved.

Our study showed two distinct correlation patterns of the PAgs 
protectiveness to the TMH and TMB. The TMH is more abun-
dant in cytoplasmic or inner membranes, and the TMB type is 
more likely located in bacterial outer membranes (43). Our study 
confirmed that TMH proteins with more than one TMH were not 
typically used for vaccine development (10) (Figure 3A; Figure 
S5 in Supplementary Material). The two exceptional proteins 
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that had more than 10 TMHs, which were Brucella lipoprotein 
signal peptidase and Neisseria meningitides l-lactate permease. 
Brucella lipoprotein signal peptidase is a known virulence factor, 
which is involved in lipopolysaccharides biosynthesis (44). The 
N. meningitides l-lactate permease is a protein required by N. 
meningitides during bacteraemic infection and induces protec-
tive immunity in systemic meningococcal infection (45). Different 
from TMH, our study indicated that the presence of TMB was 
associated with significantly higher portions (p <  0.01 from χ2 
test) of G− PAgs (Figure 3B). In particular, none of the G− outer 
membrane non-protective proteins was predicted to have TMB. 
Our results suggested the use of TMH as a negative and TMB as a 
positive selection criterion in future vaccine development.

Although not usually considered as PAgs, large portions 
(26.8% G+ and 31.1% G−) of cytoplasmic and cytoplasmic mem-
brane proteins were found to be PAgs (Figures 1A,C). Compared 
with a much larger size of cytoplasmic and cytoplasmic mem-
brane non-protective proteins, this fraction of PAgs was not 
significant. However, the ignorance of proteins located at these 
two SCLs might hinder the productivity of effective PAg predic-
tion. Cytoplasmic and cytoplasmic membrane proteins might 
not induce humoral immune response due to their SCLs, but 
these proteins often time can be potent inducers of cell-mediated 
immunity. For example, the cytoplasmic catalase-peroxidase 
protein in M. tuberculosis, which contributes to intracellular 
survival within host macrophage by protecting against reac-
tive oxygen species (46), is able to induce protective immunity 
(47). How to accurately predict cytoplasmic PAgs remains a 
big challenge but it can be potentially addressed using multiple 
features such as AP, conserved domains, COG clusters, and GO 
terms. Particularly in G+ cytoplasmic membrane, PAgs showed 
significant over-representation (p < 0.05) when coupled with AP 
prediction. Conserved domains have been reported as a viable 
option in the PAg prediction (14). In our study, many conserved 
domains were frequently found among PAgs and each domain 
might link to important bacterial biological functions within 
the host such as “TonB-dependent receptor plug domain.” As a 
strategy in antibiotics resistance is the bacterial efflux pumps (48), 
TonB-dependent receptor is a G− bacterial protein responsible for 
the transportation of large ion complex and has been identified as 
potent vaccine PAgs (49). The over-represented COG clusters and 
GO terms among the reported PAgs suggested a viable alterna-
tive to overcome the challenge of identifying cytoplasmic and 
cytoplasmic membrane PAgs and complement to current vaccine 
prediction studies.

The findings in this study can be translated into a predic-
tive framework with different approaches to improve existing 
methods and achieve better identification and validation of novel 
PAgs. Even though traditional rule-based prediction has been 
successful in multiple studies (6, 9) and also applied in many 
tools (12–14), this type of “all-or-nothing” selection might fail 
to capture the relationship among different criteria (16). For 
example, a potential cytoplasmic or cytoplasmic membrane 
PAg would be immediately discarded from a study that includes 
surface-exposing SCL as one of the criterion. As indicated in our 

findings, the cytoplasmic or cytoplasmic membrane PAg could be 
predicted by incorporating other criteria such as AP, conserved 
domains, and biological functions. As a natural solution, a com-
binatory strategy has been proposed that assigns each criterion 
with a weight and synthesizes multiple criteria in a composite 
way such as weighted metrics (50). Candidate proteins that have 
low score in a set of rules could still achieve a reasonable score 
and are compensated by another set of selection criteria. Another 
advance technique is to apply machine-learning methods such 
as support vector machine, random forest, and neural network 
as described in many previous studies (15, 16, 28, 34). Even 
though the machine-learning-based prediction can overcome the  
“all-or-nothing” scenario, these methods have not captured all the 
significant features as reported in this study. For example, AP and 
conserved domains are not implemented in current ML-based 
prediction (15, 16, 28) except the preliminary study by Xiang 
and He (34), and none of these studies incorporated TMB and 
biological functional analysis into their prediction pipeline. The 
additional features given from our findings showed promising 
improvement on current machine-learning methods.

Based on the new discoveries reported in this study, we plan 
to explore the possibility of integrating these significant criteria 
along with other including MHC-epitope binding and struc-
ture on protein selection as vaccine candidates to improve our 
Vaxign software program (13). Even though our analysis focused 
on bacterial model, some criteria such as AP, signal peptide, 
transmembrane proteins, and pathogenesis-related conserved 
domains and biological functions can be extended to viral or 
parasitic PAgs prediction after further verification and analysis. 
The better understanding of the association between individual 
criterion and PAgs, as well as the inter-relation among different 
criteria, will provide new opportunities for more accurate and 
rational vaccine design, leading to better prevention and control 
of various infectious diseases.
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