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Abstract

Obesity has been estimated to decrease life expectancy by as little as 0.8 to as much as 7 years 

being the second leading cause of preventable death in the United States after smoking. Along 

with the increase in the prevalence of obesity, there has been a dramatic rise of the prevalence of 

prediabetes and type 2 diabetes among adolescents. Despite that, very little is known about the 

pathogenesis of these conditions in pediatrics and about how we could detect prediabetes in an 

early stage in order to prevent full blown diabetes. In this review we summarize the current 

knowledge on the pathophysiology of prediabetes and type 2 diabetes in adolescents and describe 

how biomarkers of beta-cell function might help identifying those individuals who are prone to 

progress from normal glucose tolerance towards prediabetes and overt type 2 diabetes. To better 

understand and fight this disease, we will need to explore and develop novel therapeutic strategies 

and individuate more sensitive and specific biomarkers that can allow an earlier detection of the 

disease.
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Introduction

Prediabetes in the obese adolescent: the prelude to type 2 diabetes

The increased prevalence of childhood obesity is being accompanied by a rise of the 

prevalence of type 2 diabetes (T2DM) in pediatrics. The SEARCH for diabetes study 

estimated that by 2050 the prevalence of T2DM among youth might almost quadruple.1

T2DM onset in pediatrics shows a great heterogeneity in terms of onset and progression. 

Since the onset of T2DM is a progressive phenomenon, overt diabetes is preceeded by a 

range of glucose related phenotypes, characterized by a progressive decline of beta-cell 

function. These conditions, that clinically define a state known as prediabetes, are highly 

prevalent among obese youth.2 This review will focus on the main elements that alter 

glucose metabolism early in the course of diabetes development as well as on genetic and 

developmental factors that predispose to the development of prediabetes and diabetes.

Prevalence of youth onset prediabetes

“Prediabetes” serves as a broad expression describing multiple facets of altered glucose 

metabolism, including impaired fasting glucose (IFG), impaired glucose tolerance (IGT), 

elevated HbA1c or combinations of them.3, 4 Each one of these conditions, whether detected 

in childhood or adulthood, confers greater risk for the development of T2DM over time as 

well as for the presence of adverse cardiovascular risk factors. Importantly, these conditions 

are not interchangeable and each one represents specific alterations in glucose metabolism. 

The emerging rise in the prevalence of prediabetes in children and adolescents parallels the 

rise in rates of childhood obesity in recent decades.5 The prevalence of prediabetes amongst 

youth depends on the tools used for screening as well as on the population studied. Upon 

testing obese children and adolescents, the prevalence of IGT ranges from 1 to 30% 6–8 

while the prevalence of IFG in obese children but also amongst the general adolescent 

population and not specifically within at-risk groups has a broad range.7, 9–12

Estimates of prevalence rates are made more difficult by some differences in classification of 

prediabetes. For example, there are two glucose cut-offs used to define IFG: the American 

Diabetes Association suggests 5.6 mmol/L,13 while the World Health Organization promotes 

6.1 mmol/L.14 European studies report prevalence rates of IFG in obese children ranging 

from 1% in Italy15 and 4% in Germany to 17% in Sweden (all using the ADA criteria).16 

American studies have reported prevalence rates ranging from 2–9% (WHO criteria) to 15–

47% (ADA criteria).17–19 Other countries, including India, China and Mexico, report only a 

few percent of patients with IFG in the obese pediatric population20–22 whereas 28% of 

obese adolescents in Taiwan are reported to have IFG.23 The United Arab Emirates (UAE), 

which has among the highest adult prevalence of T2DM, reports that 12% of overweight and 

obese children have IFG.24 Several challenges arise when attempting to compare and 

interpret these prevalence rates since different methods (e.g. population-based vs obesity 

clinic) were used to recruit the sample populations. Importantly, when performing 

epidemiological studies assessing the prevalence of IFG in large samples, there is always a 

possibility that some of the participants are not truly fasting, causing an overestimation of 

the true prevalence. Similarly, it has been demonstrated that the presence of IGT may be 
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variable upon repeated sampling within weeks.25 This may be due to variations of insulin 

sensitivity between studies (such as the presence of a minor infection or the phase of the 

menstrual cycle which may affect whole body insulin sensitivity) yet one can argue that a 

single detection of IGT, even if not repeated, already indicates that in the face of significant 

insulin resistance – the individuals’ beta-cell has inadequate function.

HbA1c in healthy blood donors is within the prediabetes range in up to 10% of adolescents. 

(26) Importantly, the presence of prediabetes is highly dependent on the tools used for its 

detection, the population studied and the pubertal status of subjects and thus cannot be 

viewed as a single entity. To this end, few years ago the American Diabetes Association 

(ADA) published revised recommendations to use HbA1c to diagnose prediabetes and 

diabetes.1 The decision was based on numerous cross-sectional and longitudinal studies 

showing the correlation between A1C and diabetes at baseline or long-term association 

between A1C and risk of diabetes and diabetes-related comorbidities.1–6 The use of HbA1c 

as diagnostic tool for diabetes has been proven not to overlap completely with the evaluation 

of diabetes done by an OGTT.27

Even though, HbA1c combined with 2-h glucose, represents the strongest predictor for 

development of prediabetes or diabetes in at-risk young subjects27 and an independent 

predictor of cardiovascular risk in non-diabetic adults.28

These findings prevent the utilization of absolute levels of HbA1c as specific single 

biomarker for the detection of “prediabetes” in youth, yet the combination of several such 

biomarkers do shed light on the pathogenesis of altered glucose metabolism and its 

complications in this age group and provide potential targets for intervention.

Pathophysiology of altered glucose metabolism in obese children and adolescents

Glucose levels are normally restricted within a narrow range between fasting and post-

prandial conditions. Maintenance of glucose within this narrow range depends upon the 

delicate interplay of coordinated hormonal (insulin and glucagon), neural and metabolic 

activity in all organs and tissues involved in glucose metabolism. Insulin and glucagon, 

secreted from beta and alpha cells respectively govern glucose metabolism. The timely 

secretion of insulin and its target organ action leads to clearance of glucose from the 

circulation thus preventing it from reaching hyperglycemic levels and providing mostly 

muscle but also adipose tissue and the liver with a source of energy for immediate utilization 

or for storage. Normal glucose metabolism depends on the physiological interplay of insulin 

secretion and insulin action and in order to develop T2DM – defects in both are usually 

present.29

The role of insulin secretion

Insulin secretion is bi-phasic (figure 1). First phase secretion is the immediate limited 

response to increasing plasma glucose and is postulated to consist of pre-packaged insulin 

from secretory granules. It is measured within the first 10 minutes of a hyperglycemic clamp 

study. Second phase secretion is the prolonged response to persistent elevated glucose and 

involves a longer process of trafficking of insulin from the Golgi system to secretory 

granules and out of the beta-cell. Second phase is measured by most during 10–120 minutes 
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of the hyperglycemic clamp. First and second phase insulin secretion can be accurately 

quantified only in response to a non-physiological intravenous glucose stimulus (a 

hyperglycemic clamp or an intra-venous glucose tolerance test). Both phases can be 

evaluated by modeling of the response to a more physiological oral glucose load. Despite 

this limitation, measurement of phasic insulin dynamics is crucial as defects in first phase 

secretion have been shown to precede the development of overt diabetes.30 Obese 

adolescents with pre-diabetes (IFG, IGT or both) have been shown to have reduced first 

phase insulin secretion compared to those with normal glucose metabolism.31 Using c-

peptide modeling of OGTTs, glucose sensitivity of first-phase insulin secretion has been 

shown to decline progressively as obese adolescents deteriorate from isolated IFG or IGT to 

combined IFG/IGT.32 Thus, alterations in second-phase insulin secretion are a somewhat 

later phenomenon that occurs only in those with combined IFG/IGT or overt T2DM.3 This 

observation implies that an isolated first phase defect is an early manifestation of pre-

diabetes while a combination of first and second phase defects represents profound beta-cell 

dysfunction which is the prelude of overt T2DM.

The deterioration of the beta-cell usually occurs faster in youth than in adults. In fact, while 

in adults the transition toward T2DM takes about 10 years with ~7% per year reduction in 

beta-cell function, in obese adolescents the beta-cell deteriorates at a rate of ~20–30% per 

year,34 with a mean transition time from pre-diabetes to overt diabetes of about 2.5 years.35 

It is important to remember that the defects in insulin secretion in obese youth emphasize 

failure to compensate for the profound ambient insulin resistance. Despite this, obese youth 

demonstrate very high insulin concentrations during oral glucose tolerance tests in 

comparison to adults. These seemingly supra-physiological insulin concentrations are still 

less than that required to overcome the marked insulin resistance of these youths.

Whole body insulin sensitivity is defined as the action of the hormone in all insulin 

responsive tissues and organs. It is well established that whole body insulin sensitivity 

declines in obese children with normal compared to those with impaired glucose 

tolerance.36, 37 Importantly, obese children with IGT are uniformly markedly insulin 

resistant while those with NGT have insulin sensitivity levels ranging from highly sensitive 

to markedly resistant, similar to those with IGT.38 Reduced insulin sensitivity in obese 

children is in most cases associated with a typical lipid partitioning profile generally 

characterized by increased intra-abdominal (visceral), intra-hepatic, and intramyocellular 

lipid deposition.39 This lipid depot distribution pattern may differ between obese youths of 

different ethnic backgrounds. The ability of the obese child to compensate for low insulin 

sensitivity by increasing insulin concentrations is the determinant of actual glucose 

tolerance. In order to increase circulating insulin levels, two parallel compensatory 

mechanisms are activated: enhanced insulin secretion and reduced insulin clearance by the 

liver.40 Children with very low insulin sensitivity most probably reduce hepatic insulin 

clearance to a trough level beyond which insulin action within the liver may be 

compromised and are thus left with further increasing insulin secretion as the sole 

compensation mechanism aimed at maintaining euglycemia.40 This enhanced continuous 

stress on the beta-cell results in an allostatic price manifesting as slight yet significant 

increases in glucose levels at fasting and the post absorptive state41 needed to stimulate the 

beta-cell to secrete adequate amounts of insulin.
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The mathematical relation of insulin sensitivity and secretion is best described as hyperbolic, 

such that the product of insulin sensitivity X insulin secretion equals a constant (figure 2).42 

The product of the two has been named “disposition index” (DI) and reflects beta-cell 

function in the context of ambient insulin sensitivity. The DI has been shown to be the 

strongest predictor of the development of diabetes over time.43 Obese children with impaired 

glucose metabolism have lower DI than their NGT counterparts, reflecting defects in beta-

cell function that precede development of diabetic range hyperglycemia.32, 44 Importantly, 

even appropriate beta-cell compensation requires a continuous stimulus to maintain 

enhanced insulin secretion. For a given DI, exposure to lower insulin sensitivity (i.e. being 

on the left of the hyperbolic DI curve) is accompanied by slight yet significant increases in 

both fasting and 2-hr glucose.41 These may still be within the “normal” glucose tolerance 

range yet reflect an increased demand upon the stressed beta-cell. It should be noted that 

“normal glucose tolerance” in obese children represents a continuous spectrum. Specifically, 

a worsening of the DI accompanies increases in postprandial glucose levels even within in 

the “normal” range.44 In other words, major defects in beta-cell function may exist in obese 

youth despite having “high normal” 2-hr glucose values on the OGTT.

In a recent study analyzing a multiethnic cohort of ~1600 obese youths,45 we showed that 

36.6% and 43.6% of the obese adolescents in the study had 2-h glucose concentrations 

within the higher category, while only 19.8% showed 2-h glucose lower than 100 mg/dl.45 

Moreover, we observed a decline of insulin sensitivity and secretion across the categories of 

DI, which in turn is associated with an increased risk of progressing to IGT later in life).45 

These observations indicated that beta-cell function relative to insulin sensitivity is impaired 

even in youth with high 2-h glucose concentrations within the “non-pathologic range”. 

Notably, at baseline the DI, that is a robust index of beta-cell function in the context of 

insulin sensitivity, predicted the risk of developing prediabetes or type 2 diabetes over 

time.45, 46

The DI is likely shaped by genetic/epigenetic factors that limit the ability of the obese child 

to compensate for insulin resistance. Indeed, it has been shown that a history of gestational 

diabetes, reflecting exposure to both the genetic background of T2DM and to 

hyperglycemia, results in a lower DI for a given degree of obesity in childhood and predicts 

deterioration of glucose tolerance over time.47

The role of insulin resistance

The link between obesity and prediabetes is ectopic fat accumulation. Obesity-related 

ectopic fat accumulation in key insulin responsive organs like skeletal muscle and liver alters 

insulin signaling pathway, leading to increased insulin resistance, characterized by defects in 

the non-oxidative pathway of glucose metabolism, a higher intramyocellular lipid content 

and greater visceral and hepatic fat content.48 Fat accumulation in the liver is an important 

trigger of insulin resistance and its severity is associated with the presence of pre-diabetes in 

adolescents.49 As indicated above, the directionality of the associations between lipid 

accumulation in insulin-responsive tissues and tissue specific insulin resistance may be bi-

directional, ie – it has been shown that acute delivery of free fatty acids causes a significant 

reduction in muscle insulin sensitivity.50 On the other hand – liver insulin resistance may 
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lead to further hyperinsulinemia and additional hepatic lipid deposition.51 Recent pediatric 

studies shed light on the role of fatty liver on insulin resistance and metabolic syndrome. In a 

multiethnic group of obese youth it has been shown that the severity of fatty liver is 

associated with a decline in beta-cell function and higher rates of pre-diabetes.49 Moreover, 

it was also shown that increasing amounts of intra-hepatic fat were paralleled by an 

increased prevalence of the metabolic syndrome, suggesting that fatty liver disease may be a 

predictive factor of metabolic syndrome in children.49 Importantly, in obese adolescents the 

negative effect of fatty liver on insulin sensitivity is independent of the degree of visceral fat 

and intramyocellular lipid content.52 D’Adamo et al. studied 23 obese adolescents with and 

20 obese adolescents without fatty liver, matched for age, Tanner stage, BMI z score, and 

percentage of body fat, visceral fat, and intramyocellular lipid.52 While baseline hepatic 

glucose production was similar between the groups, the suppression of hepatic glucose 

production in the face of comparable insulin concentration was significantly lower in those 

with fatty liver indicating hepatic insulin resistance. Moreover, the group with fatty liver 

showed a higher degree of muscle insulin resistance, expressed as glucose disposal rate. The 

investigators also showed a trend for individuals with fatty liver having lower ability to 

suppress glycerol turnover indicating adipose insulin resistance. These data clearly suggest 

that intra-hepatic fat accumulation is a major determinant of liver, muscle and adipose tissue 

insulin resistance.52 Moreover, data from Alderete et al. show that the association of high 

intra-hepatic fat content and poor beta-cell compensation is more pronounced in African 

Americans than in other ethnic groups, suggesting that the relationship between fatty liver 

and insulin sensitivity might be modulated be race/ethnicity.53 A recent longitudinal study 

has shown that baseline hepatic fat content is associated with changes in glucose metabolism 

over time and that it correlates with 2-hour glucose, insulin sensitivity and insulin secretion 

at 2 years follow-up.54 These data indicate that intra-hepatic fat accumulation is more 

deleterious for glucose metabolism than ectopic fat accumulation elsewhere in the body.55

Of note, a unique property of obese adolescent is their transition through phases of puberty. 

It is well established that mid puberty (tanner stage III) is characterized by a ~30% reduction 

in whole body insulin sensitivity.56 This reduction may be completely or partially recovered 

by the end of puberty (Tanner stage V).57 This issue is of major importance when assessing 

insulin sensitivity and glucose tolerance in this age group as some obese youth that are 

tested at mid-puberty may improve their glucose tolerance upon repeated testing at a later 

pubertal stage.

Glucose effectiveness

Glucose has the ability to facilitate its own uptake via a mass effect in peripheral tissues and 

to suppress hepatic glucose production depending on basal insulin concentrations.58 This 

property of glucose is known as “glucose effectiveness” (GE), and it tends to increase with 

greater insulin concentrations.59 GE is difficult to measure and thus its major role in glucose 

metabolism tends to be overlooked. The contribution of GE to whole body glucose disposal 

in fasting conditions (fasting/basal insulin concentrations) is estimated at ~70% of total, 

while at typical post-absorptive insulin concentrations imposed during a hyperinsulinemic-

euglycemic clamp, the contribution of GE to whole body glucose disposal drops to ~30%. It 

is thus estimated that the contribution of insulin-independent glucose disposal (GE) to the 
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maintenance of glucose homeostasis in typical physiological post absorptive conditions is 

similar to that of insulin.59

When glucose tolerance deteriorates, GE is impaired and is unable to reduce blood glucose 

levels via suppression of hepatic glucose production or acceleration of muscle glucose 

uptake, independent of increased insulin concentration. In combination, the defects in GE 

and beta-cell insulin secretion promote a further rise in circulating blood sugar. Lower GE 

has been demonstrated in adult patients with T2DM60 and in children and adolescents with 

altered glucose metabolism.61 Of note, baseline levels and the dynamics of GE are 

independent predictors of changes in 2-h glucose levels over time,61 emphasizing the role of 

this factor in the development of altered glucose metabolism in obese children.

The role of gut-derived incretins and glucagon

Incretins are hormones released from the gastrointestinal tract in response to food intake and 

regulate islet hormone secretion. The two major incretins known at present are glucose-

dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). Both 

potentiate glucose-induced insulin secretion and decrease the release of glucagon from the 

pancreatic islets.62 This manifests as an enhanced insulin response to oral glucose in 

comparison to intravenous glucose administration when both are matched for plasma 

glucose concentrations. Obesity and altered glucose metabolism in obese children are 

associated with reduced fasting and variable post-prandial GLP-1 concentrations.63 Obese 

children with IGT and T2DM manifest a significantly reduced incretin effect compared to 

those with normal glucose metabolism in the face of comparable GIP and GLP-1 

concentrations.64 Moreover, obese African American children seem to have a reduced 

GLP-1 response during an OGTT compared to Caucasians. 65 The role of GIP is less clear in 

the context of altered glucose metabolism in childhood, as it has been shown to be released 

in comparable amounts in lean and obese children at euglycemia and in post prandial 

hyperglycemic conditions.66 Fasting GLP-1 has been associated with increased resting 

energy expenditure and fat oxidation in adults.67 Further investigation is needed to decipher 

whether the lower fasting concentrations of GLP-1 observed in obese youth may provide a 

mechanism for the development of altered glucose metabolism associated with adiposity in 

childhood and serve as a therapeutic pharmacological target in the future.

Intra-islet communications between beta and alfa cells via adjacent cell junctions and 

paracrine effects normally ensure coordinated secretion of insulin and glucagon. T2DM is 

characterized by disinhibited glucagon secretion in the face of relative systemic 

hyperinsulinemia.29 It has been shown that prior to the development of overt T2DM in obese 

youths, basal glucagon levels are increased and are less suppressed in the face of 

hyperinsulinemia in subjects with IGT.68 Moreover, obese children with NGT that were 

more insulin resistant had greater basal glucagon levels than those who were more insulin 

sensitive. In this study, deterioration from normal to impaired glucose tolerance over time 

was accompanied by significantly increased fasting glucagon.
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The role of fat derived hormones and cytokines (figure 3)

Adipose tissue is an active endocrine organ characterized by a unique profile of secreted 

hormones and cytokines. Adiponectin is a fat derived hormone that is paradoxically at lower 

concentrations in those with greater degrees of obesity.69 Receptors of this hormone are 

present in the major insulin responsive tissues related to glucose metabolism and its effects 

culminate in increased fat oxidation. It is thus not surprising that concentrations of this 

hormone are negatively related to intramyocellular, 70 intra-hepatic71 and visceral fat 

depots37 in obese children. Moreover, low concentrations of adiponectin were shown to be 

associated with higher C-reactive protein (CRP) concentrations and with components of the 

metabolic syndrome, such as low HDL-cholesterol and a high triglyceride-to-HDL-

cholesterol ratio.72 Thus, adiponectin may be one of the signals linking inflammation and 

obesity. Importantly, there appear to be racial variations in concentrations of adiponectin 

amongst obese adolescents yet its tight relation with insulin sensitivity, independent of the 

amount of visceral fat, is consistent.73

Leptin is the also secreted from adipose tissue yet its concentrations increase with greater 

adipose tissue (in contrast to adiponectin). Leptin concentrations have been shown to be 

associated with insulin sensitivity in obese youth, independent of body fat.74 Leptin has been 

shown to induce fatty acid oxidation thus reducing liver75 and beta-cell76 triglyceride 

concentrations and can thus be considered a “favorable” player in the context of childhood 

obesity. Lower leptin level has been shown in obese adolescents with T2DM compared to 

matched equally obese adolescents with normal glucose metabolism, 77 suggesting that 

relative hypoleptinemia in obese youth may be a biomarker indicating the presence of an 

adverse metabolic phenotype.

Prediabetes and the Progression to T2DM

Although prediabetes is a high-risk state for developing overt diabetes, many people with 

prediabetes will not progress to severe glucose intolerance.13, 14 Indeed, the prevalence of 

prediabetes and diabetes in the obese pediatric population varies dramatically across 

different countries and ethnicities.17, 18, 20, 78, 79 Rates of progression of IFG to overt T2DM 

appear to be lower in the pediatric obese population than in adults.80 On the other hand, the 

transition from IGT to T2DM has been shown to be more rapid in children and adolescents 

than adults.35 The prediabetic stages IGT and IFG do not necessarily coexist15, 24, 79 which 

emphasizes that these two conditions are distinct metabolic abnormalities.81 Therefore, 

subjects with both IFG and IGT have additive metabolic defects and are more likely to 

progress to overt T2DM.82 Importantly, the repeatability of prediabetes detection using an 

OGTT in obese children is not ideal yet the presence of elevated post oral load glucose 

concentrations, even on a single study, probably indicates the presence of substantial defects 

in glucose metabolism.25

Genetic markers of pediatric prediabetes

Several genome wide association studies (GWAS) have helped highlighting the genetic basis 

of T2DM and several single nucleotide polymorphisms (SNPs) for example in genes 

involved in insulin metabolism and the inflammatory response have been discovered to be 

associated with T2DM.83 The majority of gene variants associated with prediabetes and 
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T2DM are in genes expressed in beta-cells. Because of the lack of large pediatric cohorts, 

the majority of GWAS have been conducted in adults and information about the genetics of 

prediabetes in youth is limited. Barker et al. genotyped 16 SNPs, previously found to be 

associated with diabetes by GWAS, in 6000 children and adolescents and determined their 

association with fasting glucose concentrations.84 The authors observed that 9 loci were 

indeed associated with the fasting glucose concentrations, specifically confirming 5 

previously discovered SNPs and discovering 4 additional loci. More recently, it has been 

shown that common variants in or near genes modulating insulin secretion are associated 

with a high risk for developing prediabetes in youth.85 The co-occurrence of risk alleles in or 

near genes expressed in the beta-cell is associated with defects of insulin secretion, that may 

results in the development of prediabetes when severe insulin resistance occurs.85 Although 

the number of relevant T2DM susceptibility genes has climbed over the past decade, the 

rs7903146 SNP in the TCF7L2 gene remains the single strongest known T2DM genetic risk 

factor in adults. Recently we observed in a young cohort, that each copy of the T allele of 

the rs7903146 SNP is associated with almost 2 fold increased odds of showing IGT 

(p=0.0001).86 Moreover, our longitudinal data showed that the TCF7L2 risk genotype is 

associated with a high risk of maintaining IGT or progressing toward T2DM (OR 2.419; 

95% CI 1.291–4.532, p=0.006).86 To unravel the mechanisms underlying the genotype/

phenotype association we employed the oral minimal model in a large multiethnic cohort of 

youths, assessed the proinsulin processing by measuring the circulating fasting proinsulin/c-

peptide ratio and used the euglycemic clamp coupled with tracer methodologies to more 

accurately assess hepatic and peripheral insulin sensitivity. We observed that the T allele of 

TCF7L2 rs7903146 has profound effects on beta-cell function as reflected by a reduced DI 

(and an altered proinsulin secretory efficiency). The effect of the TCF7L2 rs7903146 

probably involves the liver by reducing the ability of insulin to suppress hepatic endogenous 

glucose production.86

Conclusions and future perspectives

Taken together, altered glucose metabolism in obese children is preceded by early defects in 

insulin secretion in the face of low insulin sensitivity as well as inadequate suppression of 

glucagon. These defects can be detected within the “high-normal” range of normal glucose 

concentrations, emphasizing that glucose tolerance represents a continuous spectrum. A 

combination of low insulin sensitivity tightly linked to adverse lipid partitioning patterns, 

along with inadequate beta-cell compensation, impaired glucose effectiveness, and elevated 

basal glucagon secretion drives deterioration of glucose tolerance that may be progressive 

and culminate in overt diabetes. Despite the fact that pre-diabetes indicators such as IFG and 

IGT may be reversible, their detection implicates that the individuals’ beta-cell function 

reached it maximal capacity and has already failed once and is thus predisposed to fail in the 

future facing a similar metabolic challenge.

As the role of gut hormones as trophic agents for beta-cells and of inflammation as a major 

driver of beta-cell destruction and failure, interventions targeting these metabolic pathways 

are being investigated. These could be used in the future to treat T2DM or more importantly 

to prevent it in patients with pre-diabetes. The impact of anatomical modifications of the 

gastrointestinal tract on glucose metabolism, either via hormonal and metabolic effects or by 
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changes in the gut microbiome is another topic of interest. The effects of surgical 

manipulations of the gut on the prevention of T2DM in obese youth with prediabetes over 

time need further investigation.

From a therapeutic point of view, several questions remain unanswered. It would be 

important to understand whether early interventions might help recover the beta cell function 

and stop the progression from prediabetes towards overt diabetes. Although some 

multicentric studies are ongoing in adults and adolescents, 7 more studies targeting obese 

adolescents with prediabetes are needed. Moreover, despite our knowledge in the field of 

biomarkers has gained in the last few years, so far we have not been able to translate this 

knowledge in clinical setting. Therefore, the next step in pediatric prediabetes should be to 

try to understand how we can leverage the current knowledge in this field to develop more 

sensitive and more specific diagnostic tools.
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Key messages of the paper

• Prediabetes in obese children involves inadequate insulin secretion the face of 

significant insulin resistance.

• There are strong associations between lipid partitioning in insulin-responsive 

tissues (such as the liver and muscle) and whole body insulin resistance

• The development of pre-diabetes involves multiple metabolic dfecets that 

involve gut-hormone profiles, hyperglucegonemia and reduced glucose 

effectiveness

• Genome wide association studies have identified specific SNPs that are 

associated with tissue specific insulin resistance and/or beta-cell dysfunction 

making their carriers more prone to the adverse metabolic impact of obesity

Weiss et al. Page 16

Lancet Child Adolesc Health. Author manuscript; available in PMC 2018 November 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Search strategy and selection criteria

The authors used the Pubmed database using the search terms : prediabetes, impaired 

fasting glucose and impaired glucose tolerance with the age limits of birth to 18 years of 

age. Studies included were written in English, preferably using “gold standard” 

methodology to assess insulin sensitivity and secretion (clamps or IVGTTs). Prevalence 

studies from across the globe were selected based on the sample size. The data range was 

between the years 1980 to the April 2017.
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Figure 1. Insulin secretion during a hyperglycemic clamp in obese youth
Those with NGT (solid line) show normal first and second phase insulin secretion. Those 

with IGT (dashed loine) show reduced first phase along with preserved second phase insulin 

secretion. Those with T2DM (dotted line) show defects in both first and second phase 

insulin secretion.
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Figure 2. The disposition index across glucose tolerance categories
Data from youths followed at Yale Obesity-Diabetes Clinic. Per given degree of insulin 

sensitivity, obese youths with NGT (solid line, n=2568, z-score BMI 2.24±0.61) have greater 

insulin secretion than those with IGT (dashed line, dashed-dotted line, n=693, z-score BMI 

2.38±0.48) and those with T2DM (dot-dashed line, n=72, z-score BMI 2.38±0.48). While 

less prominent in insulin sensitive subjects, at lower levels of insulin sensitivity (greater 

insulin resistance), these differences are highly significant and insulin secretion is 

insufficient to maintain normal glucose metabolism. (unpublished data)
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Figure 3. Interplay between fat derived hormones and cytokines
The excess of visceral adipose tissue is linked to ectopic fat deposition and abnormal 

adipokines secretion. Obese patients with higher visceral adiposity show lower adiponectin 

and relatively low leptin levels despite similar body mass index and body fat percentage. 

Lower Adiponectin is associated with higher ectopic fat deposition in skeletal muscle and 

liver. Lower Leptin is associated with lower insulin sensitivity.
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