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Real causal systems are complicated. Despite this, causal learning research has

traditionally emphasized how causal relations can be induced on the basis of idealized

events, i.e., those that have been mapped to binary variables and abstracted from time.

For example, participants may be asked to assess the efficacy of a headache-relief pill

on the basis of multiple patients who take the pill (or not) and find their headache relieved

(or not). In contrast, the current study examines learning via interactions with continuous

dynamic systems, systems that include continuous variables that interact over time (and

that can be continuously observed in real time by the learner). To explore such systems,

we develop a new framework that represents a causal system as a network of stationary

Gauss–Markov (“Ornstein–Uhlenbeck”) processes and show how such OU networks

can express complex dynamic phenomena, such as feedback loops and oscillations.

To assess adult’s abilities to learn such systems, we conducted an experiment in which

participants were asked to identify the causal relationships of a number of OU networks,

potentially carrying out multiple, temporally-extended interventions. We compared their

judgments to a normative model for learning OU networks as well as a range of alternative

and heuristic learning models from the literature. We found that, although participants

exhibited substantial learning of such systems, they committed certain systematic errors.

These successes and failures were best accounted for by a model that describes people

as focusing on pairs of variables, rather than evaluating the evidence with respect to

the full space of possible structural models. We argue that our approach provides both

a principled framework for exploring the space of dynamic learning environments as

well as new algorithmic insights into how people interact successfully with a continuous

causal world.

Keywords: causal learning, dynamic systems, computational modeling, intervention, cognitive modeling, resource

limitations

INTRODUCTION

We live and act in a messy world. Scientists’ best models of real-world causal processes
typically involve not just stochasticity, but real-valued variables, complex functional forms,
delays, dose-dependence, and feedback leading to rich and often non-linear emergent dynamics
(Cartwright, 2004; Strevens, 2013; Sloman and Lagnado, 2015). It follows that learning successfully
in natural settings depends on accommodating these factors. Cognitive psychologists have explored
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many of these dimensions of complexity in isolation (e.g.,
stochasticity: Waldmann and Holyoak, 1992; Bramley et al.,
2017a; Rothe et al., 2018; interventions: Sloman and Lagnado,
2005; Waldmann and Hagmayer, 2005; Bramley et al., 2015;
Coenen et al., 2015; time: Buehner and May, 2003; Lagnado and
Sloman, 2006; Rottman and Keil, 2012; Bramley et al., 2018;
and continuous variables: Pacer and Griffiths, 2011). However,
we argue these components generally can not be isolated in
realistic learning settings, meaning a deeper understanding
of human causal cognition will require a new framework
that naturally accommodates inference from interventions in
continuous dynamic settings.

As an everyday example of a time-sensitive, dose-dependent
causal relationship, consider the complexities involved in
consuming alcohol. It is common for drinkers to adjust their
consumption based on their recognition that higher doses
affect inhibition or mental clarity, that will in turn have other
downstream effects on quality of conversation or willingness to
sing karaoke. The effects of alcohol consumption differ widely
in quality and quantity depending on dosage and time delays.
A small glass of wine with dinner will likely have little effect
on mental clarity whereas a few shots will have a stronger
effect. Further complicating the learning problem, these effects
of alcohol do not come instantaneously but are rather delayed
and distributed in time. Worse still, there can be complex
temporal dynamics, such as the feedback loop between lowered
inhibition and increased alcohol consumption, and innumerable
contributing factors, such as diet or amount of sleep, that
modulate alcohol’s effect. Thus, in settings like this, the learning
problem is non-discrete (how much alcohol did I drink) and
extended in time (when did I drink it), produces evidence that
is naturally time ordered (how you feel over the preceding
and subsequent hours), and involves complicated dynamics
(e.g., feedback loops). In the current paper, we study human
learning through real-time interactions with causal systems
made up of continuous valued variables. We see this setting
as capturing the richness of real world causal learning, while
remaining simple and principled enough to allow for a novel
formal analysis.

The structure of the paper is as follows. First, we
summarize relevant past work on causal structure inference
from interventions, temporal information, and different
representations of functional form. Next, we lay out our
new formalism for inference of causal structure between
continuous variables. We then report on an experiment, in
which participants interact with causal systems represented
by sliders on the computer screen. We provide an exploratory
analysis of the interventional strategies we observed in the
experiment before analyzing structure learning through the
lens of a normative Bayesian inference model and a range of
heuristic and approximate alternatives, finding evidence that
people focus sequentially on individual connections rather than
attempting to learn across the full space of possible causal models
at once. Finally, we discuss new opportunities provided by the
formalism introduced in this paper, including future questions
in causal cognition as well as applications to other areas, such as
dynamic control.

Past Research
Probabilistic Causation Over Discrete Events
Research in causal cognition has generally aligned itself with the
philosophical tradition of probabilistic causation, which defines a
causal relationship as one where a cause changes the probability
of its effect (Hitchcock, 2018). This definition implicitly operates
over particular representations: discrete states, such as events
or facts that have some probability of occurring or being
true. Because of this, experimental work in causal cognition
has primarily focused on causal relationships between discrete
valued (often binary) variables (e.g., Sloman, 2005; Krynski and
Tenenbaum, 2007; Ali et al., 2011; Fernbach and Erb, 2013;
Hayes et al., 2014; Rehder, 2014; Rothe et al., 2018). These are
typically presented in contexts in which temporal information
is either unavailable or abstracted away so that cases can be
summarized in a contingency table. See Figure 1 for a simple
example in which (A) continuous data is (B) snapshotted in time,
in order to (C) dichotomize and create counts of contingencies
and ultimately abstracted into a probabilistic causal relationship.
This approach is very common in part because there is a well-
established mathematical framework—Bayesian networks—for
efficiently encoding joint distributions of sets of variables in the
form of networks of probabilistic contingencies (Pearl, 2009;
Barber, 2012).

While the probabilistic contingencies paradigm has been
fruitful for exploring many aspects of causal cognition, we are
interested in other settings. As mentioned, we believe that many
real life systems may not lend themselves to discretization, nor
involve much independent and identically distributed data with
no temporal information. Instead, people are often have access to
autocorrelated, time-dependent, continuous information and we
are interested in they how represent and draw inferences on the
basis of this information.

Learning
A prominent question in causal cognition is how people
learn causal relationships from contingency data, such as that
presented in Figure 1C. Although the literature shows that
humans are often quite adept causal learners (Cheng, 1997;
Griffiths and Tenenbaum, 2005; Lu et al., 2008) there are a
number of important exceptions. One is that updates to beliefs
about causal structure on the basis of new information are
often made narrowly rather than globally. That is, in ways
that do not compare the evidential fit across all variables taken
together. Tomodel this, Fernbach and Sloman introduced a Local
Computations (LC) model, which posits that people focus on
“evidence for individual causal relations rather than evidence for
fully specified causal structures” (Fernbach and Sloman, 2009,
p. 680). By ignoring the possible influences of other causes, their
model captures a strong empirical tendency for human learners
to exhibit order effects and overconnect their causal hypotheses
(also see Taylor and Ahn, 2012). Bramley et al. (2017a) extended
this finding, finding evidence suggesting that people consider
local changes that modify their previously favored hypothesis.
Together, these studies suggest that people use a local updating
strategy, testing and evaluating individual causal links rather than
updating a posterior distribution over the global model space.We
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FIGURE 1 | Illustration of abstraction from full timeseries data to probabilistic contingency. (A) is a full time course of the health of 40 simulated patients throughout

the course of a classic randomized controlled trial. (B) demonstrates the type of information available when only evaluating the health of patients at the end of the trial.

(C) demonstrates the type of information available when categorizing patients into “sick” and “healthy” groups, rather than maintaining full continuous information.

ask whether this tendency toward local learning extends to the
continuous dynamic systems that are under study here.

Learning via Interventions
As well as capturing probabilistic relationships, Bayesian
networks can be used to reason about, and from, idealized
manipulations of causal systems, or “interventions” (Pearl, 2009).
Bayesian networks, at their core, deal with independence, not
dependence, relations. Because of this, if a cognizer passively
observes some variables but cannot observe the temporal
direction of their influences (i.e., perhaps they influence one
another too quickly to see) they can be equally consistent with
multiple causal hypotheses. For example, the common cause
X ← Y → Z and chain X → Y → Z are “Markov equivalent”
because, in both networks, X and Z are independent conditional
on Y . However, crucially, Markov equivalent networks do not
have identical data distributions under intervention. In the
example of Markov equivalent networks given above, intervening
to set Y to some value y as denoted with Pearl’s (2009) “Do()”
operator, would change the distribution for X under the common
cause—i.e., P(X) 6= P(X|Do[Y = y]) for at least some y—
but would not affect the distribution for X for the chain—i.e.,
P(X) = P(X|Do[Y = y]) for any y.

It has been shown that people are able to learn successfully
from interventions, and are often moderately efficient in their
intervention selection according to information–optimal norms
(Steyvers et al., 2003; Sloman and Lagnado, 2005; Waldmann
and Hagmayer, 2005; Coenen et al., 2015; Bramley et al., 2017a).
However, participants in these studies also typically exhibited
biases indicative of the influence of cognitive constraints. For
example, Coenen et al. (2015) found that, when deciding between
two potential causal networks, people appeared to follow a
heuristic of intervening on the node with the most downstream
causal links (averaged across the candidate networks) rather
than intervening to maximally distinguish between the two. Use
of this heuristic was more common when intervening under

time pressure. Bramley et al. (2017a) tested people’s learning
in a broader hypothesis space encompassing all possible 3 and
4 variable network structures. They found that people made
interventions that appeared to target uncertainty about a specific
individual link, node or confirm a single hypothesis, rather than
those effective at reducing their uncertainty “globally” over all
possible causal networks. Here we assess the efficacy of learners’
interventions on continuous dynamic systems for which variables
are potentially manipulated through a range of magnitudes over
an extended period of time.

Time
Time has long been seen as a powerful cue for causation
(Hume, 1959), especially with regards to identifying causal
direction. People rule out backwards causation, assuming that
effects cannot precede causes (Burns and McCormack, 2009;
Greville and Buehner, 2010; Bramley et al., 2014). Work in the
cognitive sciences on the use of time in causal judgments has
focused on point events separated by delays—that is, events
like explosions and collisions that occur at particular times
but with negligible duration (Shanks et al., 1989; Griffiths,
2004; Lagnado and Sloman, 2006; Pacer and Griffiths, 2012;
McCormack et al., 2015). From this line of work, we have
learned more than just that temporal order is relevant for
causal direction. The actual temporal dynamics of causal systems
affect judgments, for example shorter and more reliable delays
between cause and effect are more readily seen as causal
(Greville and Buehner, 2010).

In a systematic study of people’s use of temporal dynamics
to learn causal structure, Bramley et al. (2017b, 2018) combined
interventions and time to investigate people’s learning of
causal structure between components that exhibited occasional
(punctate) events that could also be brought about by
interventions. They found that people are sensitive to expected
delays, especially when they also expect the true delays to
be reliable, and are judicious and systematic in their use
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of interventions. While these studies have been valuable
in demonstrating that people are sensitive to the temporal
characteristics of causal systems, many everyday systems—
such as economies, ecosystems, or social groups—are more
naturally described as extended shifting influences than point
events. We thus see the current study as extending the analysis
of time’s role in causal cognition to explore these inherently
continuous settings.

Continuous Variables
As discussed above, many natural scenarios involve continuous
valued variables and causal influences that are typically extended
in time rather than punctate. Given the ubiquity of such systems,
continuous variables have received surprisingly little attention in
the study of causal cognition. In a reanalysis of data from Marsh
and Ahn (2009) and a novel experiment, Pacer and Griffiths
(2011) showed that people are capable of learning individual
cause-effect relationships between continuous variables. Soo and
Rottman (2018) investigated causal relations in non-stationary
time series, i.e., those where long term trends affect the average
values of the variables in ways that obscure and complicate the
causal relations between those variables. They proposed three
ways that the variables could be represented before assessing
their relationships: (1) state values, (2) difference scores, and
(3) trinarized difference scores (positive, negative, or zero). In
their task, causal strength judgments were best explained by the
correlation between the direction of changes in variables’ values
from one time point to the next, rather than direct correlation
between the variables.

Complex Problem Solving
This project connects to the literature on complex problem
solving (Berry and Broadbent, 1984)—also sometimes called
complex dynamic control (Osman, 2010). This line of work
explores goal-directed behavior in dynamic environments,
typically with a structure that is hidden and initially unknown
to participants. In particular, we follow Funke (2001) in studying
minimal complex systems (MICS) that change dynamically in
response to participants’ actions and their hidden structure, but
are not so complex as to prohibit formal analysis.MICS have been
used as psychometric measurement tools, having been shown to
provide individually stable and reliable predictors of real-world
achievement (Greiff et al., 2013). This suggests thatMICS tap into
fairly foundational cognitive abilities.

Research on complex problem solving has begun to
unpack the key features of such MICS, and of the cognitive
strategies recruited by participants that determine performance.
For example, when participants have narrow goals in a
new environment, they learn less about its overall structure
(Vollmeyer et al., 1996), a finding consistent with proposals that
monitoring goals induces cognitive demands (Sweller, 1988).
They are also less likely to engage in systematic strategies that
can aid learning, such as the Vary One Thing At a Time
(VOTAT, see Kuhn and Brannock, 1977; Tschirgi, 1980) or
PULSE strategy (Schoppek and Fischer, 2017). Other work has
identified a number of high level behavioral features, such as time
on task, number of interventions made, or strategies, that predict

likelihood of success (Greiff et al., 2016; Schoppek and Fischer,
2017; Stadler et al., 2019).

We build on previous work in the CPS literature in a number
of ways. For one, whereas tasks in the CPS literature are typically
self-paced, we are unusual (but not unique, see Brehmer and
Allard, 1991; Schoppek and Fischer, 2017) in studying time-
continuous systems. We take the task of reacting to dynamics
as they unfold in real time to be reflective of real world
dynamic control scenarios. More fundamentally, the research
area’s focus on predicting success in control has left a gap in
our understanding of what exactly participants are learning as
they interact with dynamic systems. The current work extends
on this line of enquiry by providing a close model-based analysis
of participants’ actions and learning.

In sum, our approach here is novel in two key respects.
First, we study a setting that, like reality, is continuous
in terms of both time and state space. This allows us
to study learning in the context of causal systems that
give rise to non-linear emergent dynamics through the
lens of a sophisticated normative and heuristic model
comparison. Second, we explore an interactive setting in
which participants intervene on the system of interest
in complex, extended ways, rather than merely passively
observing its behavior or setting states across discrete
trials, again mapping more onto real world actions than
the idealized interventions studied in much of the existing causal
learning literature.

THE TASK

We chose a simple and intuitive structure learning task interface
that allows for learners to use their mouse to interact with the
variables in a system represented by a set of moving sliders
on the computer screen. A depiction of how the sliders were
presented is shown in Figure 4. Participants could observe the
evolving sequence of variable values but also move and hold
the variables (one at a time) at positions of their choice by
using the mouse. As mentioned, this environment allows us to
test learning of causal systems with continuous valued variables
and feedback dynamics. It also allows us to assess learning
via interventions that are both extended over time (learners
choose how long to intervene) and non-stationary (learners
might “hold” the variable in a particular position or “wiggle” it
up and down).

CONTINUOUS CAUSALITY IN TIME

This section presents a formalism for modeling causal systems
that relate continuous variables in time. To define a generative
model for such systems, we first introduce the notion of
an Ornstein–Uhlenbeck (OU) process and then define how
multiple OU processes can be interrelated so as to form an
interacting causal system. We then describe normative inference
within this model class on the basis of both observational and
interventional data.
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FIGURE 2 | Visualization of the impact of a single cause (slider X ) on a single effect (slider Y ) in an OU network with different causal strengths. Slider X is held to a

value of 40 for 20 timepoints, leading slider Y to unfold over time to different values depending on the causal strength. Probability distributions are smoothed averages

of 100 runs of the network given different causal “strengths” θXY (colored shading) where ω = 0.1 and σ = 5.

Generative Model
The Ornstein–Uhlenbeck Process
An Ornstein–Uhlenbeck (OU) process is a stationary Gauss-
Markov process that reverts to a stable mean (Uhlenbeck
and Ornstein, 1930). It can be conceptualized as Brownian
motion with the addition of a corrective force that biases the
process’s expected value toward the mean of the distribution. The
magnitude of that force increases as a function of the distance
been that mean and the process’s current state. Formally, 1vti—
the change in variable i from time t to t + 1—is defined as

P(1vti |ω,µi, v
t
i , σ ) = ω[µi − vti ]+ N(0, σ ) (1)

where vti is the value of i at time t, µi is the mean of the process
for variable i, σ is its variance, and ω is a parameter > 0 that
determines how sharply the process reverts to the mean1. µi

is also referred to as the process’s attractor state because it is
the value to which the process will revert to at asymptote. See
Figure 3A for an example of an OU process with an attractor
state of 0.

OU Processes and Causality
This definition can be generalized to accommodate OU processes
with non-stationary means. In particular, we take the step of
assuming that the attractor state µ for a variable is determined
by some function of the most recent values of its cause(s). When
a variable has no causes we model its attractor state as being 0.

1Throughout this work we use subscripts to denote variables and superscripts to

denote time. Note that whereas vti is the value of i at time t, vi is the value of i at all

timesteps, vt is the value of all variables at time t, and v is the value of all variables

at all times.

The single cause case
For a variable i with a single cause j this function is simply,

µt+1
i = f (vtj ) (2)

where vtj is the value of j at time t. As j changes over time, so too

does the output of f (vtj ), which serves as the new attractor state of

variable i at the next timepoint. For simplicity, here we assume
that f (vtj ) is linear. Thus, the change in i at the next timestep

(1vti ) is

P(1vti |v
t
i , v

t
j ,ω, σ , θji) = ω[θji · v

t
j − vti ]+ N(0, σ ) (3)

where θji ∈ (−∞,∞) is a multiplier (or “strength”) mapping
the value of the cause j to the attractor state of effect i. Figure 2
presents how a variable Y changes as a function of its cause X for
a number of different values of θXY . We assume1t of 100ms (i.e.,
between t and t+ 1) and that ω and σ remain constant, although
these assumptions can be loosened (see Lacko, 2012).

The multiple cause case
In general, a variable may have more than one cause. Although
there are a variety of ways in which multiple causal influences
might combine (cf. Griffiths and Tenenbaum, 2009; Pacer and
Griffiths, 2011), here we simply assume that causes have an
additive influence on an effects’ attractor state, such that

P(1vti |v
t ,ω, σ ,2) = ω

[

[

∑

j

θji · v
t
j

]

− vti

]

+ N(0, σ ) (4)

where j now ranges over all causes of variable i and 2 is a
square matrix such that θji ∈ 2 is the strength of the causal
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relationship from j to i2. Simply put, the mean that variable i
reverts to is assumed to be a sum of the values of its causes, each
first multiplied by their respective θs.

A collection of connected OU processes, which we call
an OU network, defines causal relationships for all directed
relations between variables and unrolls these effects over time.
For example, for a system consisting of variables X, Y , and Z,
2 specifies the strengths of the six potential inter-variable causal
relationships: X → Y , Y → X, X → Z, Z → X, Y → Z, and
Z → Y . Note that non-relationships are specified in this scheme
by setting θji to zero. At each timestep, Equation (4) is used to

determine vt+1X , vt+1Y , and vt+1Z as function of their previous values
vtX , v

t
Y , and vtZ . For display purposes, it is sometimes necessary to

constrain v to be between some range. This is done by setting
all vt+1 that fall outside of the range to their nearest value in the
range. The clock then moves forward and the process repeats.

OU networks have some intuitively appealing features of
continuously varying causal relationships. Figure 3 demonstrates
some of the dynamics that emerge from causal systems simply
by varying the θs. Whereas, a positive θXY results in the
value of Y following some positive multiple of the value of X
(Figure 3B), a negative θXY means that a decrease in X drives
up the value of Y (e.g., decreasing interest rates is generally
thought to increase inflation, Figure 3C). Feedback loops are
naturally represented with non-zero values of θXY and θYX . A
positive feedback loop results if the θs are of the same sign and
have an average magnitude >1 (Figure 3D) whereas a negative
feedback loop results if they are <1 (Figure 3E). Oscillations
can be implemented with θs of mismatched signs (such as 5
and −5, Figure 3F). Such feedback loops can be implemented
between pairs of variables or as part of a cyclic causal structure
with potentially many variables. Combining feedback loops and
cycles and including asymmetrical forms can lead to even more
complex dynamics (e.g., Figure 3H). We invite the reader to
build their own network and observe the dynamics at https://
zach-davis.github.io/html/ctcv/demo_ctcv.html. Note that while
the discussed examples cover two or three variables, the OU
networks framework generalizes to any number of variables.

Inference
We follow Griffiths and Tenenbaum (2005) in modeling people’s
learning of causal graphs as inverting the generative model.
What must be inferred is the causal structure most likely
responsible for producing all variable values at all timepoints—
v—under interventions.

Note that to accommodate interventions, we adopt Pearl’s
(2009) notion of graph surgery. If variable i is manipulated at
time t, the likelihood that vti has its observed value is 1 (i.e.,
is independent of i’s previous value or the value of its causes).
We define ιti as an indicator variable that is true if variable i is
intervened on at t and false otherwise.

2Although the OU formalism allows it, throughout this work we ignore the

possibility of self-cycles, that is, instances in which variables is a cause of itself.

That is, we assume, 2ii = 0.

The Single Cause Case
Consider the inference problem in which the goal is to determine
whether variable j causes variable i, and if so, the sign of that
causal relationship. That is, assume a hypothesis space L with
three hypotheses. One is that θji is >0, a causal relationship we
refer to as a regular connection. A second is that θji is <0, referred
to as an inverse connection. Finally, θji = 0 denotes that j has no
impact on i. Assume that i has no other potential causes.

Computing the posterior probability of a causal hypothesis
lk ∈ L involves computing, for each timepoint t, the likelihood of
the observed change in i (1vti ) given the previous values of i and
j (vti and vtj ), a value of θji corresponding to the hypothesis, the

endogenous system parameters ω and σ , and any intervention
that may have occurred on i (ιti). If the learner did not intervene
on i at t, this likelihood is given by Equation (3). If they have,
it is 1. The product of these likelihoods over all timepoints is
proportional to the posterior probability of lk.

P(lk|vi, vj; ιi) ∝
∏

t

∫

ω

∫

θji

∫

σ

P(1vti |v
t
i , v

t
j ,ω, σ , θji; ι

t
i)

P(θji|li)P(lk)P(ω)P(σ )dσdθjidω (5)

P(ω) and P(σ ) represents the learner’s prior beliefs about ω

and σ . P(θji|lk) represents the priors over θji corresponding
to hypothesis lk. For example, if lk corresponds to a regular
connection, P(θji|lk) would be 0 for non-positive values of θji.
For positive values, it would reflect learner’s priors over θji for
regular connections (later we describe how these priors can be
estimated in our experiment on the basis of an instructional phase
that precedes the causal learning task). Applying Equation (5) to
each causal hypothesis and then normalizing yields the posterior
over the three hypotheses in L.

A complication arises if variable values v are truncated
between some range of values (in our task v ∈ [–100, 100]). In the
case where vti equals themaximum truncated value, the likelihood
is the mass of the likelihood distribution above the range of
values. For the minimum truncated value the likelihood is the
mass of the likelihood distribution below the range of values.

The Multiple Cause Case
This procedure for evaluating a single potential causal
relationship generalizes to determining the structure of an
entire OU network. Consider a hypothesis space G as consisting
of graphs where each graph defines, for every potential causal
relationship, whether it is positive, inverse, or zero. For a system
with n variables G would contain 32n distinct causal hypotheses;
for our example system with variables X, Y , and Z, G contains
729 graphs. The posterior probability of a graph gk ∈ G involves
computing for each variable i and timepoint t, the likelihood
of the observed 1vti given the θs defined by gk and the state of
the system’s variables at t (Equation 4), taking into account the
possibility of an intervention on i at t (ιti):

P(gk|v; ι) ∝

N
∏

i=1

∏

t

∫

ω

∫

θ

∫

σ

P(1vti |v
t ,ω, σ , θ; ιti)

P(θ |gk)P(gk)P(ω)P(σ )dσdθdω (6)
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FIGURE 3 | Examples of the dynamical phenomena resultant from varying θ weights. Solid red, dotted blue, and dashed green lines depict the values of variables X,

Y , and Z, respectively. (A) A system with a single variable Y whose distribution mean is stationary at 0 (i.e., µ = 0). (B) A system with variables X and Y and a θ weight

from X and Y of 1 (i.e., θXY = 1). µX = 0 for first 30 timepoints and then µX = 100 for next 70. The value of Y tracks the value of X. (C) The same as (B) except that X

and Y are negatively related (θXY = −1). The value of Y tracks but has the opposite sign of X. (D) A system in which X and Y are reciprocally related via θ weights that

are >1 (i.e., θXY = θYX = 2). Because the values of X and Y grow so large they are indistinguishable in the plot. (E) The same as (D) except that X and Y , which have

an initial value of 100, are reciprocally related via θ weights that are <1 (θXY = θYX = 0.5). The values of X and Y eventually fluctuate around 0. (F) The same as (D)

except that the reciprocal θs are large and of opposite sign (i.e., θXY = 5, θYX = −5). The values of X and Y oscillate. (G) A system with three variables whose θ

weights form a causal chain, θXY = θYZ = 1. µX= 0 for 10 timepoints but then is set to 100 via an intervention. Note that changes in Y precede changes in Z. (H)

Timeseries of actual data observed by participant 10 on trial 10, generated by a complex system with three variables and four non-zero θs. All variables were initialized

at 0 and there were no interventions.

EXPERIMENT: CAUSAL STRUCTURE
LEARNING

To test people’s ability to learn causal structure between
continuous variables in continuous time, we conducted an
experiment in which participants freely interact with sliders
governed by an OU network with hidden causal structure. Their
goal was to intervene on the system in order to discover the
hidden causal structure.

Method
Participants
Thirty participants (13 female, age M = 37.5, SD = 10.6) were
recruited from Amazon Mechanical Turk using psiTurk (Crump
et al., 2013; Gureckis et al., 2016). They were paid $4 for ∼30
min. In a post-test questionnaire, on a ten point scale participants
found the task engaging (M = 7.9, SD = 2.2) and not particularly
difficult (M = 3.9, SD = 2.6). All procedures were approved
by the Institutional Review Board of New York University
(IRB-FY2016-231).

Materials
Each of the three variables was represented by a vertical slider
that moved by itself according to the underlying OU network

FIGURE 4 | Sliders used by participants. (A) Shows that the sliders all jitter if

no interventions are made. (B) Shows that the sliders do not jitter if

intervened on.

but which could also be manipulated by clicking and dragging
anywhere on the slider, overriding the state it would otherwise
have taken (see Figure 4)3. A timer was presented at the top of
the screen. Participants responded using six additional sliders
presented beneath the trial window, one for each potential causal

3See https://zach-davis.github.io/publication/cvct/ for a demo.
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FIGURE 5 | All 23 structures participants were tasked with learning. Black arrowheads signify “regular” connections (θ = 1), white arrowheads signify “inverse”

connections (θ = −1).

relations. Responses were constrained to be one of three options:
“Inverted,” “None,” or “Regular,” corresponding to θ < 0, no
relationship (θ = 0), and θ > 0, respectively. Participants were
pre-trained on these terms in the instructions. The sliders were
constrained to be between−100 and 100, and the buttons on the
slider presented a rounded integer value in addition to moving
up and down.

Stimuli and Design
The 23 causal graphs shown in Figure 5 were selected for testing
on the basis of a number of criteria. They were roughly balanced
in the number of positive and negative links and the number of
links between each of the variables. More qualitatively, we tried to
select networks that would be interesting a priori. This includes
many of the classic causal graphs, such as chain networks,
common causes, and common effects, but also less-studied
graphs, such as those with feedback loops. The experiment
always began with two practice trials that were excluded from
all analyses. These were always the two Single cause networks
(Figure 5, top left). This was followed by 23 test trials, one for
each of the networks in Figure 5 presented in random order. The
OU parameters used during training and the test were ω = 0.1
and σ = 5. The true θs were either 1 (for regular connections), 0
(no connection), or−1 (for inverse connections).

Procedure
To familiarize them with the interface, participants were
required to first watch four videos of an agent interacting with
example causal networks. These videos informed participants
of the underlying causal structure and demonstrated an agent
interacting with the system. To minimize biasing participants
toward any particular intervention strategy, the videos displayed

a variety of basic movements, including wobbling the intervened
on variable, holding a variable at a constant level, and holding a
variable at a limit value (e.g., 100) by moving its slider to one end
of the scale. The four example causal networks included (1) no
causal connections, (2) a single regular (θ = 1) connection, (3)
a single inverse (θ = −1) connection, and (4) two connections
forming a causal chain in which one link was regular and one
was inverse. To ensure that they understood the task, participants
were required to pass a five question comprehension check before
starting. If a participant responded incorrectly to any of the
five questions they were permitted to retake the quiz until they
responded correctly to all five questions. This was designed to
ensure that they learned: the duration of each trial, the difference
between a regular and inverted connection, that there can be
more than one connection per network, and that they must
provide a response for all six possible connections.

In themain task that followed, participants completed 25 trials
lasting 45 s each. The first two of these involved a single regular
and single inverse connection that, unknown to participants, we
considered practice trials to familiarize them with the interface
and excluded from all analyses. A trial was initiated by pressing
the “Start” button, whereupon the sliders started moving with
values updating every 100 ms. Perceptually, they would appear
to “jitter” according to the noise associated with the underlying
OU network plus move systematically according to the unknown
causal relationships. At any time, participants were free to
intervene on any variable by clicking, holding, or dragging the
requisite slider. While it was pressed down, the position of the
mouse determined the value of the variable. Once it was released
the variable would continue from that point according to the
OU network. Participants were free to make (and revise) their
judgments at any point after initiating a trial but were required
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FIGURE 6 | Judgment options for participants. Participants were presented with a ternary choice between “inverted,” “none,” and “regular”.

to enter a judgement for all six causal relations by the end of
the trial (see Figure 6). No feedback was provided at any point.
After completing the 25 trials, participants completed a brief
post-test questionnaire reporting their age, gender, engagement
and subjective difficulty as well as any comments.

Results
Participants were substantially above chance (0.33) in correctly
classifying causal links into one of the three response categories
(M = 0.82, SD = 0.22), t(29) = 17.48, p < 0.001. They were
slightly more successful in identifying regular causal links (M =
0.92, SD = 0.12) than inverse causal links (M = 0.90, SD = 0.13),
t(29) = 2.12, p = 0.04. Participants also correctly classified a
higher proportion of causal relationships as the trials progressed,
as demonstrated by a simple linear regression of accuracy on trial
number, t(21) = 2.91, p = 0.008, although this relationship was
modest with participants being 0.25% more likely to correctly
identify a link for each new trial.

In identifying overall causal networks (correctly identifying all
six of the possible directional causal relationships), participants
were also well above chance (3−6 = 0.0014), (M = 0.44, SD =
0.22), t(29) = 10.81, p < 0.001. The probability of selecting the
correct network was 0.79, 0.60, 25, and 0.07 for networks with
1, 2, 3, and 4 causal links, respectively. Accuracy varied sharply
with the complexity of model as shown by a repeated measures
ANOVA, F(3,84) = 74.0, p < 0.001. Note that participants’
responses did not reflect a preference toward simpler models, as
they marked slightly over half of the possible connections (M =
0.52, SD = 0.13), which was greater than the true proportion of
connections in the test networks (0.39), t(29) = 5.62, p < 0.001.
See the SupplementaryMaterial for results for all tested networks.

Errors
While participants were generally well above chance in
identifying causal relationships, there was some systematicity
to their errors. In particular, these errors closely followed the

qualitative predictions of Fernbach and Sloman (2009) local
computations (LC) model. The first qualitative prediction is an
over-abundance of causal links. Eighty-two percent (SD = 0.17)
of the errors that participants made involved adding causal links
that didn’t exist, significantly greater than chance4 (0.59); t(29) =
7.33, p < 0.001. The second qualitative prediction of the LC
model as defined in this paper is an inability to distinguish
between direct and indirect causes (e.g., in the network X →
Y → Z, incorrectly also judging X → Z). While in general
participants correctly classified 82% of the causal links, they were
far more likely to erroneously add a direct link between two
variables when in fact the relationship between those variables
was mediated by a third variable, with below chance (0.33)
accuracy on those potential links (M = 0.16, SD = 0.21); t(29) =
−4.48, p < 0.001.

Figure 7 shows participant judgments for three classic causal
structures in causal cognition: common cause, common effect,
and chain networks. It shows that participants were quite good
at detecting any causal relationship in a network that existed
between two variables. In the figure, these results correspond
to the blue bars, which indicate that they correctly classified a
regular connection as regular (as mentioned, participants were
also good as classifying inverse connections as inverse). Figure 7
also shows that participants were often good at classifying
absent connections as absent (the gray bars) with one important
exception: in the chain network Y → Z → X the relationship
between Y and X was judged to be nearly as causal as Y →
Z and Z → X. That is, they failed to appreciate that the
(apparent) relationship between Y and X was in fact mediated
by Z. These patterns held for the other instances of the common
cause, common effect, and chain networks defined in Figure 7.
Moreover, we found that, for any of the more complex networks

4For the structures used in this experiment, a hypothetical participant who

responded “inverse,” “none,” and “positive” with equal probability would

erroneously add a causal link 59% of the time.
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in Figure 7, participants had a strong tendency to infer a
direct causal relationship between two variables whenever those
variables were in fact mediated by the third variable. Figure S1
presents how causal links were classified for all 23 networks.

Interventions
To achieve this level of performance, participants made heavy use
of interventions. We define a single intervention as beginning
when a participant clicked on a variable’s slider and ending when
the mouse was released. The average number of interventions
made on a single trial was 4.94 (SD = 2.46). However, because
a few participants made a large number of interventions on most
trials, this distribution was modestly skewed with a median of 4
and mode of 3. One participant made no interventions at all.

Interventions lasted an average of 3.46 s (SD= 3.00) and had a
range (themaximum value of the variable during the intervention
subtracted from its minimum value) of 138.3 (SD = 58.89).
This latter measure was strongly bimodal with modes around
100 and 200, indicating that interventions typically consisted of
participants dragging a variable from about 0 to one end of the
scale (−100 or 100) or then in addition dragging it to the opposite
end of the scale. Apart from these large swings, participants
typically held the variable steady at a constant value during an
intervention. This conclusion is supported by the fact that, within
an intervention, the percentage of 100 ms time windows in which
the variable had the same value as during the previous window
was 71.2%. Four participants had some tendency to “wiggle” the
variable through a small range during an intervention but they
were the exception.

The interventions were spread about evenly over the three
variables. Indeed, all three network variables were manipulated
at least once on more than 99% of the trials. Interventions varied
modestly as a function of whether the manipulated variable was
a cause of other variables in the network. When it was, the
intervention was both shorter (3.21 s) and had a narrower range
(132.9) than when it wasn’t (3.99 s and 149.5), t(28) = 3.19
and t(28) = 6.39, respectively, both ps < 0.0055. Apparently,
it was easier for participants to identify causes, which involves
observing a state change in other network variables, than non-
causes, which involves the absence of such changes. Interventions
on causes did not vary substantially, in length of time or range
of values, as a function of whether they had one or two effects.
Interventions also did not vary as a function of whether or not
the variable was affected by other variables in the network. In
summary, participants recognized that interventions help causal
learning, that manipulating all variables is necessary to identify
the correct causal structure, and that large interventions are more
useful than small ones.

Results Summary
Participants exhibited considerable ability to intervene effectively
and learn causal structure in our task. Despite these abilities,
they also made systematic errors consistent with the predictions
of the LC model. It is not clear whether the data considered as

5There were 28◦ of freedom for these analyses, rather than 29, because one of the

30 participants did not intervene.

a whole is more consistent with normativity or a more locally
focused model. Indeed, it is not even clear that participants are
using the OU functional form to infer connections, rather than
a more general model, such as one that assumes linearity. For a
more granular analysis of people’s causal structure learning, we
now turn to a number of theoretical accounts of how people learn
causal structure.

MODELING

In this task we compare a total of nine models corresponding
to different accounts of how people learn causal structure.
These accounts can be roughly categorized as modeling people
as normative, local, linear, or random in their causal learning
behavior. We compare the ability of these models’ to predict
participants’ causal structure judgments.

OU Models
Normative Model
Normative inference for the current task requires that a learner
maintain a distributional belief over all possible causal structures
and update it according to the data they experience. Equation (6)
above defines normative inference in this task. There has been
much work suggesting that adults and children are capable
learners of causal structures and act roughly in accordance with
the normative model, at least in sufficiently simple scenarios
(Gopnik et al., 2004; Griffiths and Tenenbaum, 2009). We ask
whether these conclusions generalize to the sort of causal systems
under investigation here.

Recall that Equation (6) assumes that learners have priors
over ω, σ , and the θs. We assume for simplicity that learners
acquire a rough approximation of the true values of these
parameters [i.e., ω = 0.1, σ = 5, and θ ∈ (−1, 0, 1)] while
watching the four instructional videos, but assume some spread
to accommodate uncertainty. The distributions we assumed over
parameters were thus6

θ ∼ Ŵ(shape = 5× θtrue, rate = 5)

ω ∼ Ŵ(shape = 100× ωtrue, rate = 100)

σ ∼ Ŵ(shape = 100× σtrue, rate = 100)

Note that θ values are defined by the graph. For regular
connections, θ is distributed as above. For inverse connections,
the sampled values are negated. For non-connections θ is 0.

Local Computations Model
We compare the normative model to a “local computations” (LC)
model that has been advocated as a general-purpose account of
causal learning behavior (Fernbach and Sloman, 2009; Bramley

6The 5 and 95% quantiles associated with these distributions are 0.39 and 1.83 for

θ , 0.054 and 0.157 for ω, and 4.64 and 5.37 for σ . These variances were chosen

to accommodate a moderate amount of uncertainty in beliefs about each of the

higher-level parameters, while still being consistent with the qualitative behavior

of the system under the true parameters.
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FIGURE 7 | Participant judgments of causal relationships for three tested networks. Bar colors correspond to the true causal structure, namely, blue for regular

connections and gray for no connection. Bar heights represent mean θ reported by participants (regular = 1 and none = 0). Because these networks included only

regular causal relationships, no instances of inverse relationships are shown. Error bars Denote 95% confidence intervals.

et al., 2017a). Applied to an OU network, the LC model entails
deciding, for each potential causal relationship considered in
isolation, whether the observed values of those two variables
implies a regular, inverted, or zero causal relation. It thus involves
applying Equation (5) above to each potential causal relationship.
The LC model assumes the same priors over ω, σ , and the θs as
the normative model.

A key distinction between the normative and LC models of
course is their ability to detect whether a relationship between
two variables is mediated by a third. For example, in the network
X → Y → Z, X and Z have many of the hallmarks of a
direct causal relationship: They are correlated, changes in X
precede changes in Z, and intervening on X later affects Z (but
not vice versa). Whereas, the normative model would take into
account the mediated relationship between X and Z (by noting
the absence of an X/Z correlation when controlling for Y), LC,
which evaluates individual causal links without consideration of
the entire graph, would not recognize the mediating role of Y and
so infer X → Z in addition to X → Y and Y → Z. Of course,
we have already seen partial evidence that participants may be
poor at detecting mediated relationships (Figure 7). Modeling
will reveal whether the LCmodel is a good account of all the data,
or if it only accounts for participants’ errors.

Alternative Models
We compare the two OU-based models to alternatives that
assume linear relationships between cause and effect. In
particular, we compare two approaches to modeling timeseries
information from the literature: time-lagged correlation and
Granger causality. Each of these approaches is applied to
three candidate representations for learning causal structure
between continuous variables, as introduced by Soo and Rottman
(2018); state representations, difference scores, and trinarized
difference scores.

In these linear models, the value of variable i at time t is
modeled as

P(vti |v
t−1, σ ,β) =

∑

j

[

βji · v
t−1
j

]

+ N(0, σ ) (7)

where j denotes all causes of variable i (including i itself) and
βji denotes the partial slope coefficient or strength of that cause
on the effect. Analogously to our treatment of θ values in the
OU models, for the linear models we assume some uncertainty
about the strength parameter p(β) but that these differ in sign
for regular and inverse connections, and also model people as
having uncertainty over standard deviation p(σ ). The marginal
likelihood of vi for a graph thus involves computing, for each
timepoint, the likelihood of that variable’s value given the β

predictors defined by the graph and the value(s) of its cause(s),
and marginalizing over p(β) and p(σ ). We treat interventions in
the same manner as the OU models. As before, we compute the
total likelihood as the product of the marginal likelihoods of all
variables at all timepoints under each graph, assume an initially
uniform prior over graphs and compute the resulting posterior.
The unnormalized posterior probability of a causal graph given
all values of all variables at all timepoints is thus

P(gk|v; ι) ∝
∏

t

∏

i

∫

β

∫

σ

P(vti |v
t−1, σ ,β; ιi)P(β|gk)

P(gk)P(σ ) dσdβ (8)

This general procedure can be applied to each of the linear
models by modifying the state representation v or prior over β .
For the three candidate representations introduced by Soo and
Rottman (2018): State representations involves inference over the
actual variable values; difference scores involves inference over
variable values after computing vt − vt−1; trinarized difference
scores involves inference over difference scores that have been
converted to−1 when negative and 1 when positive.
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The difference between time-lagged correlation and Granger
causality is just whether βii is included as a predictor, that is,
whether vti is influenced by vt−1i as well as its causes. Granger
causality includes this term while Time-lagged correlation
does not.

Unlike the OU models, there is no natural ground truth
parametrization for the linear models on which to center
reasonable distributional parameter beliefs. Thus, we must find
another way to choose reasonable settings for p(β) and p(σ ).
We chose the mean of our distributions by fitting the β̂ii, β̂ji,
and σ̂ values that maximized the posterior probability of the
true causal graphs across all subject data (including βii for the
Granger models). We then made analogous assumptions about
the spread around these means as we did for θ and σ in the
OU models—namely,

β ∼ Ŵ(shape = 5× β̂ , rate = 5)

σ ∼ Ŵ(shape = 100× σ̂ , rate = 100).

β values are treated the same as in the OU models. Regular
connections are distributed as above, inverse connections
are negated.

Comparing the Models
We compare participants’ structure judgments to the predictions
of thesemodels across all the test trials in our experiment. In total,
we consider nine models. These are eight described above: (1)
normative, (2) local computations (LC), and three variants of both
(3–5)Granger causality and (6–8) Time lagged correlation varying
whether they were based directly on states, difference scores, or
trinarized difference scores. Finally, we compare these against
(9) a Baseline model that assumes each judgment is a random
selection from the space of possible graphs. We marginalized
over θ , ω, σ by drawing 1,000 samples from their respective
distributions and averaging the likelihood within each causal
model. To account for decision noise in selecting causal graphs
from their posterior distributions, for each model apart from the
baseline we fit (by maximum likelihood using R’s optim function)
a single softmax parameter τ that maximized the posterior
probability of participant selections.

Results and Discussion
Table 1 details the results of our comparison. For each inference
model we report the overall proportion of the true connections
identified across all trials assuming the most probable graph
is selected at the end of each trial (Accuracy column), the
proportion of participant’s edge judgments that correspond with
the most probable graph under the model (Judge column), the
Bayesian Information Criterion of all participant’s judgments
according to that model (BIC column); and the number of
participants best fit by each model7.

Unsurprisingly, the normative model was the most successful
at recovering the underlying structure, but many other models

7A post-hoc power test was computed for the null hypothesis that the number of

participants best fit by each of the nine models would be equally distributed. For a

chi-squared test with 30 participants, 8◦ of freedom, and the observed effect size of

1.91, the probability of observing an α < 0.05 is 0.999.

were also successful. The only models that struggled were those
that used trinarized difference scores as their representation,
showing that the magnitude of changes in the variables is
important to capturing the structure of the data.

Next, we compared the maximum a posteriori estimates of
causal structure of the models to participant judgments. In this
coarse measure, the OUmodels were roughly equal to each other
in matching participant judgments, and were also similar to some
of the linear models.

The results of the more sensitive posterior probability
analysis were clearer in distinguishing between models. Over all
participants, the LC model had the highest log-likelihood. On a
per participant basis, of the 30 participants 21 were best fit by
the LC model, with the normative model being the best account
of four participants. The remaining five participants were split
among the linear models or were at baseline.

GENERAL DISCUSSION

In this paper, we introduced a generative model of causal
influence relating continuous variables over time. We showed
how such systems can exhibit emergent behaviors, such as
excitatory or inhibitory feedback and oscillations, depending on
specific settings of relative causal strengths between variables.
When learning from this rich data, people were best described
as considering individual pairs of variables, rather than updating
their beliefs over entire structures. This finding accords with
an intuitive description of how people handle continuous
information flowing in real time: they focus their attention on
smaller, more manageable problems rather than attempting to
tackle the full torrent of information.

Local Inference
A key result in our task was that most participants evaluated
pairwise relationships between variables rather than updating
their beliefs over all possible causal structures. This conclusion
was drawn from the superior fit of the locally focused LC model,
and corroborated by qualitative results, such as the finding that
participants often inferred direct causal relationships between
variables that were in fact only indirectly related (through a
third mediating variable). These results are consistent with
previous findings suggesting that, rather than representing a full
hypothesis space, people tend to consider a single hypothesis to
which they make small alterations (Quine, 1960; Fernbach and
Sloman, 2009; Bramley et al., 2017a). Here we show that this
principle of causal learning extends to much richer scenarios.
Indeed, it may be the case that real time continuous information
places stronger demands on attention and memory than the
original settings that provided evidence for the LC model. If this
were true, it would be especially reasonable to use the resource-
efficient local strategy in these more demanding environments.

A potential alternative conceptualization of the LC model is
that it instantiates the idea that distal causes are still considered as
causal. For example, most people would not find it inappropriate
to say that the reintroduction of wolves to Yellowstone National
Park caused changes to the ecosystem, even if many of these
changes came indirectly through other variables, such as changes
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TABLE 1 | Summary of model accuracy and performance.

Model State representation Accuracy Judge BIC Px

1 OU local computations 0.89 0.82 6,163 21

2 OU normative 1.00 0.82 6,475 4

3 Granger causality States 0.91 0.78 7,079 1

4 Difference scores 0.82 0.69 8,415 1

5 Trinarized diff scores 0.49 0.42 9,859 0

6 Time-lagged correlation States 0.89 0.74 7,901 1

7 Difference scores 0.82 0.69 8,407 0

8 Trinarized diff scores 0.63 0.50 9,793 0

9 Baseline 0.17 0.17 9,888 2

Accuracy, proportion of links drawn that match ground truth; Judge, proportion of links drawn that match participant judgments; BIC, Bayesian Information Criterion; Px, number of

participants best fit by that model.

in the movement of elk (Fortin et al., 2005). While this is a
reasonable conceptualization, we believe that it is not as good
an account of our data as the LC model. For one, we explicitly
provided participants with an example in the instructions that
showed the movement of a chain network without the additional
indirect connection. This should have reduced the possibility that
participants were unclear about whether they should consider
distal causes as causal. This accords with findings in the literature
that people exhibit locality despite feedback, incentives, and
explicit instruction with examples that encourage people to not
draw the additional causal link (Fernbach and Sloman, 2009;
Bramley et al., 2015, 2017a). More fundamentally, this “distal”
account makes assumptions about how people are approaching
the task that we consider unlikely. It models them as doing
full normative inference, and then having a response bias
to draw indirect connections. Figure S1 shows that indirect
connections were less likely to be responded to as causal than
the direct connections, which would imply a response bias
where participants have the full causal model but would only
on occasion draw the additional indirect connection. The LC
model, in contrast, naturally considers indirect connections as
less causal due to the underlying dynamics of OU networks.
While indirect causal relationships do have many hallmarks
of direct causal relationships (correlation, temporal asymmetry,
asymmetric results of interventions), they are not identical. In
X →Y →Z, changes to Z in response to X are more temporally
removed and noisier than would be predicted if there were a
direct X → Z connection, and therefore the LC model assigns
a lower (but still reliably non-zero) probability to these potential
connections. Because the LC model accounts for the patterns
of errors as naturally arising from the interaction of system
dynamics and cognitive limitations, rather than as a response bias
over normative inference, we consider it a better account of the
behavior of participants in our task.

Interventions
One contribution of the OU network framework is the
introduction of a qualitatively different type of intervention.
In a typical study of causal cognition learners are able to, on
a particular trial, turn a variable on or off and observe the
values of other variables. In contrast, interventions in our task
are extended through time and can encompass a wide range of

variable values. Participants generally recognized that the most
informative actions involved large swings in variable values and
systematic manipulation of each variable in the system8.

Nevertheless, note that while their interventions were
informative they were less than optimal. In fact, the most
efficient interventions in this task involve rapid swings between
the ends of the variable’s range. But whereas participants used
the full range, they tended to hold a variable at one value for
longer than necessary. Doing so yields useful but somewhat
redundant information. Of course, perhaps this strategy reflected
participants’ need for redundant information imposed by
cognitive processing limits. It may also reflect their inability or
unwillingness to engage in the rapid motor movements required
by the optimal strategy.

Although participants could intervene on any variable at any
time to set it to any value, they were constrained to manipulating
one variable at a time. Future studies could expand the action
space by, for example, allowing participants to “freeze” one
variable at a value while manipulating others. Of course, an
ability to “control for” one variable while investigating the
relationship between two others might help learns identify
mediating relationships. For example, freezing Y and then
manipulating X in X → Y → Z would result in to no change in
Z, perhaps reducing the chance that the learner would conclude
X → Z. This approach could be considered an application
of learning strategies from the CPS literature to environments
without sharp distinctions between input and output nodes
(Kuhn and Brannock, 1977; Schoppek and Fischer, 2017), with
the additional information generated by the “Do()” operator’s
graph surgery.

Future Directions
The proposed OU network framework can be extended across
a variety of dimensions in future research. For example, in this
paper’s instantiation of OU networks, a cause impacts an effect
on the next timepoint. The impact of a cause on effect could be
distributed over multiple timepoints, or at some stochastically
selected timepoint. Such studies could contribute to debates

8The observed systematic strategy of manipulating a single variable, holding it at

a value, and observing the downstream effects closely corresponds to successful

learning strategies from the CPS literature, such as VOTAT and PULSE.
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about the influence of time on causal learning, such as that
judgments of causality are strengthened by temporal contiguity
(Shanks et al., 1989) or the reliability of delays (Buehner and
May, 2003; Bramley et al., 2018). Varying the gap between
timepoints (in this task t to t+1was 100ms)may result in different
approaches by participants. Use of continuous variables naturally
allows consideration of a greater number functional forms
relating causes and effects (Griffiths and Tenenbaum, 2009).
Latent causes can be introduced to model implicit inference of
mechanisms relating cause and effect. Complex, non-linear data
can be generated to study people’s learning from time series
data (Soo and Rottman, 2018; Caddick and Rottman, 2019). The
outcomes of experiments using these richer causal systems will
help to evaluate the generalizability of models of causal cognition
that have heretofore been tested mostly on Bayes nets applied to
discrete events.

The formalism developed in this paper also has potential
application to the domain of control. Many aspects of everyday
life, as well as interesting domains in AI and machine learning,
can be can be classed as control problems in which there is initial
or ongoing uncertainty about the structure of the control domain.
As discussed in the introduction, there is an extensive literature
known as Complex Problem Solving that has participants
manipulate environments that are reactive to their decisions to
maximize gain (for review, see Osman, 2010). One limitation
of extant work is that they do not include learning models that
can help distinguish between learning and control performance.
In parallel, much recent attention in machine learning has been
given to demonstrations of successful control in small worlds,
such as atari and board games. However, generalization to new
goals or related environments continues to be poor (Lake et al.,
2017). In recent work, we propose OU networks as a systematic
class of control environments. This approach allows research into
human control to ask new questions, such as what structures are
inherently easy or hard to identify or control and under what
circumstances does successful control depend on an accurate
model of a system’s structure (Davis et al., 2018).

Functional Form
Given people’s well-known bias toward assuming linear
functional forms (Brehmer, 1974; Byun, 1996; DeLosh et al.,
1997; Kalish et al., 2004, 2007; Kwantes and Neal, 2006), it
may be a surprising result that the alternative models assuming
linearity did not match people’s judgments as well as those
using the Ornstein–Uhlenbeck functional form. This result
has a number of possible explanations. For one, as discussed
before, Ornstein–Uhlenbeck processes appear to be relatively
common across a range of domains, and people may have
a developed representation of the functional form that they
brought to the task. It is also possible that participants do not
have a direct representation of Ornstein–Uhlenbeck processes,
but were able to recognize higher-order movement statistics
that are not present in linear models (e.g., OU processes, unlike
linear relationships, exhibit acceleration toward their attractor
basin). For example, people may have applied a general function
approximator, such as a Gaussian Process to the relationship

between cause and effect and abstracted a function closer to
OU processes than linearity. Future work could explore settings
where learning the functional form between cause and effect is
not possible (such as one-shot learning) or settings where the
impact a cause has on its effect is linear.

Limitations
There are a number of limitations to the current project that
could be addressed with further experiments. For one, while we
did account for uncertainty over parameters of our models, we
did not account for other sources of noise, such as the likelihood
that people cannot attend to all three variables simultaneously9.
This issue will likely compound as more variables are added.
Additionally, the presented analyses in this paper discuss but do
not model intervention decision-making, a critical component
of the active learning of causal structure. Future analyses would
naturally involve, as a benchmark to compare against humans,
models for selecting actions that maximize expected information
gain. This information maximizing strategy could be compared
to other strategies from the Complex Problem Solving literature
that involve changing a single variable at a time (Kuhn and
Brannock, 1977; Schoppek and Fischer, 2017).

Conclusions
Wehave no doubt that the canonical causal relationships between
discrete events (e.g., take a pill→ headache relieved) that have
been the main focus of causal cognition often serve as highly
useful and approximately correct parts of human’s semantic
representation of the world. But sometimes details matter.
Causal influences emerge over time, may reflect functional
relationships that are as complex as the underlying mechanisms
that produce them, and afford interventions that vary in
their duration and intensity. Complex patterns of feedback
may be the rule rather than the exception (Cartwright, 2004;
Strevens, 2013; Sloman and Lagnado, 2015). Apprehending
these properties may even be a precondition to forming the
(highly summarized and approximate) causal relations between
discrete events that are so simple to represent and easy
to communicate.

We instantiated a learning task in which people were
confronted with some of these challenges, including
continuously-observed continuous variables, feedback cycles,
and the ability to carry out extended interventions. We found
that they exhibited considerable success identifying the correct
causal structure but also committed systematic errors, errors
consistent with a model that describes people as narrowly
investigating individual causal relationships rather than
updating their beliefs wholesale. We hope that the formalism
presented in this paper will be help spur greater study of the
mechanisms for learning and action in this important class
of problems.

9Although Vul et al.’s (2009) finding that people optimally allocate attention to

particles moving according to an OU process may ameliorate the latter concern.
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