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Abstract
T cell receptor (TCR) repertoire diversity enables the orchestration of antigen-specific immune responses
against the vast space of possible pathogens. Identifying TCR/antigen binding pairs from the large TCR
repertoire and antigen space is crucial for biomedical research. Here, we introduce copepodTCR, an
open-access tool for the design and interpretation of high-throughput experimental assays to determine
TCR specificity. copepodTCR implements a combinatorial peptide pooling scheme for efficient
experimental testing of T cell responses against large overlapping peptide libraries, useful for
"deorphaning" TCRs of unknown specificity. The scheme detects experimental errors and, coupled with a
hierarchical Bayesian model for unbiased results interpretation, identifies the response-eliciting peptide
for a TCR of interest out of hundreds of peptides tested using a simple experimental set-up. We
experimentally validated our approach on a library of 253 overlapping peptides covering the SARS-CoV-2
spike protein. We provide experimental guides for efficient design of larger screens covering thousands of
peptides which will be crucial for the identification of antigen-specific T cells and their targets from
limited clinical material.

Introduction
Identifying antigen-specific T cell responses and their targets is crucial in numerous applications, includ-
ing vaccine research1, the development of cancer immunotherapy2, and autoimmunity treatment3. A T
cell’s ability to mount a targeted immune response is defined by the specificity of its T cell receptor (TCR).
TCRs are generated semi-stochastically by somatic rearrangement of germline-encoded gene segments4.
This process generates TCRs which will be able to respond with unique specificity against their cognate
epitope. For conventional T cells, these are short peptide sequences presented onmajor histocompatibility
complexes (MHC). MHC molecules are present on the surface of all nucleated cells in the body (MHC class
I) and, in addition, on professional antigen presenting cells (MHC class II). While there are large efforts to
predict peptide-MHC binding5 and TCR-epitope specificity computationally6, these are still limited due to
lack of unbiased, true positive and negative training data7 and also vary greatly depending peptide-MHC
context8. Thus, there is still a critical role for efficient, empirical epitope discovery for T cells.

Identifying the peptide specificity of a given TCR requires an experimental assay in which T cells express-
ing the TCR of interest interact with antigen presenting cells that express candidate peptide(s)-MHC
complexes on their surface, coupled with a quantitative read out of T cell activation upon this peptide:MHC
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encounter. An ideal experiment will allow high-throughput screening of a large peptide library against a
given TCR, with mechanisms to detect experimental errors (false positives and false negatives), and a
simple experimental setup. The design of the peptide libraries proves crucial to address these points.

First, to detect activating epitopes and ensure confidence in negative results, the library should tile i.e.
cover the whole protein or proteome space of potential antigenic peptides. Comprehensive coverage
can be achieved by using a ‘sliding window’ approach where the protein space of interest is sliced into
overlapping peptides of defined length and overlap that together cover the whole space (Figure 1A).
However, while optimal for coverage, the use of overlapping peptides introduces a significant challenge
in designing and interpreting a high throughput T cell activation assay (as outlined below), particularly
because the epitope recognized by the T cell will be present in multiple peptides of the library.

The most simple experimental design where each peptide is individually tested against a given TCR is
time- and reagent-consuming (e.g. as in9; Supplementary Fig 1A). An alternative approach called matrix
pooling10 partially overcomes these limitations. In matrix pooling (Supplementary Fig 1B), a 𝑛 row × 𝑚
column experimental plate with single peptide per well are combined into 𝑛 row and 𝑚 column peptide
pools. In this design, each peptide is present in one row and one column pool, and a TCR-specific peptide
should thus lead to the activation of two pools. These can then be mapped back as the intersection
of the respective row and column pool to identify the single peptide. Matrix pooling is more efficient
compared to testing each peptide individually as it requires less time and fewer reagents. To further
reduce the number of peptide pools that need to be tested, combinatorial peptide pooling (CPP) using a
table of addresses for combining peptides into pools instead of the simple row and column mixing11,12

(Supplementary Fig 1C) can be used. Each peptide is added to a unique subset of pools (binary "address"),
which leads to matching activation patterns in T cells stimulated by combinatorial pools. The benefit of
this approach is that a large number of peptides can be encoded by a few pools. However, for overlapping
peptide libraries, a TCR will recognize more than one peptide which can make the results hard to interpret.

Here, we developed copepodTCR– Combinatorial Peptide Pooling Design for TCR specificity –an algorithm
for TCR deorphaning that addresses the three critical challenges outlined above: it i) considerably reduces
experimental resources and time required for testing by using a CPP approach, ii) accounts for overlapping
peptides, and iii) enables the detection of errors in the experimental process and even in case of the error
still significantly narrows down the list of peptide candidates. We demonstrate its ease of application and
robustness of experimental design across a wide range of parameters, simulate erroneous experimental
outcomes and their implications for experimental validation, and show its power in reducing experimental
complexity. We experimentally validated our approach on a library of 253 overlapping peptides covering
the SARS-CoV-2 spike organized into 12 pools, and provide a pooling scheme for a larger 1879 overlapping
peptide library covering the entire SARS-CoV-2 proteome with 18 pools. Our algorithm is open-source,
and available as a Python package. For ease of use, we have developed a ShinyApp web service to design
custom experimental peptide pooling assays against any antigen and aid in the interpretation of the
acquired experimental results.

Results

Requirements on a combinatorial peptide pooling scheme tiling the whole protein space
For the development of the protocol, we translated the three experimental design considerations outlined
above into computational constraints that we address in our algorithm design.

Unique addresses and uniqueness of their unions allow overlapping peptide design. Tiling the
peptide space with overlapping peptides leads to epitope sharing in successive peptides, thus an epitope
evoking T cell activation will do so in all pools the successive peptides are distributed to. We describe the
pools that each peptide is added to as its address, encoded as a binary string where each position (bit) in
the string indicates a pool, with 1 for presence and 0 for absence of the peptide from the pool. For each
peptide, we require a unique address, and to accommodate overlapping peptides, we also require that the
union of addresses for successive peptides is unique. This ensures that each peptide overlap results in a
distinct combination of activated pools, allowing for a clear interpretation of results.

Error detection by maintaining a constant number of activated pools for any given epitope. The
expectation in the T cell activation assay for a tiled peptide space is the activation of the T cell by two
overlapping peptides containing the T cell’s cognate epitope. However, activation assays may yield false
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Figure 1. Combinatorial peptide pooling design. A. Experimental setup: synthetic peptides, with predefined
overlap from a protein/proteome of interest are mixed according to the pooling algorithm (B) and tested
for their ability to elicit a T cell response in a T cell activation assay. The results of the activation assay
indicate a pair of overlapping peptides, with the overlapping section (asterisks) identified as the cognate
antigen. B. Computational design: a branch-and-bound algorithm (BBA) creates a peptide mixing scheme
by optimizing the peptide distribution into a predefined number of pools 𝑛 (here 𝑛 = 6). The distribution
of each peptide is encoded into an address (edges in the graph), which connect nodes in the graph (circles)
that represent a union between two addresses. The peptide mixing scheme constitutes the path through
these unions and connecting addresses that ensure a balanced pool design. The algorithm provides the
experimental layout, and uses a Bayesian mixture model to identify activated pools in the T cell activation
assay (experimental read out), and returns the corresponding peptides and the overlapping antigen (B, lower
panel). C. Empirical runtime analyses showing that the BBA algorithm depends on the number of pools and
peptides (displayed for constant number of pools per peptide = 4). D. Deviation of BBA-derived experimental
balance (𝐵𝑎𝑐𝑡𝑢𝑎𝑙) from optimal balance (𝐵𝑑𝑒𝑠𝑖𝑔𝑛). The difference is displayed for a simulation of 16 pools and
a constant number of pools per peptide = 4. E. Examples of the peptide pooling setup, with the indicated
number of peptides and pools (number in the last circle), where yellow circles indicate the number of pools
an individual peptide is added to. F. The number of possible candidates depends on the number of tested
peptides and the number of erroneous non-activated pools. With any number of tested peptides, if the number
of erroneously non-activated pools equals zero, the algorithm returns two peptides whose shared sequence
contains the cognate epitope. Results display a simulation with 18 pools and a constant number of pools per
peptide = 6.
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negative results if the activation of a given pool fails. False positive results might be observed in for
instance pipetting errors, or in rarer cases, might be perceived false positives if two epitopes in the tiled
space evoke an activation signal. To robustly detect these errors, we require that the number of pools
each peptide in the tiling assay is added to is known and remains constant. Any observed deviation in the
number of activated pools therefore indicates a false positive or negative result. To achieve a constant
number of expected activated pools, while maintaining the uniqueness of addresses and their unions (see
above), each address and its successive unions should differ from their successors by exactly one pool,
corresponding to a constant Hamming distance of two for the binary encoding of successive addresses
and their unions.

Balanced pool design for low and uniform error rates. T cell activation based onTCR-pMHC interaction
is influenced by a number of factors including the TCR binding strength and the ‘hit rate’ of encountering
the cognate antigen. While TCR binding strength will be specific for each TCR and cognate peptide, the
hit rate can be influenced in the experimental setup by ensuring sufficient peptide presentation to the
tested T cells. Crucially, in a multiplexed assay as proposed here, the hit rate should be constant across
the multiplexing axis, i.e. pools, to ensure consistent peptide exposure across experimental units. For
the algorithmic design, we therefore require that the number of peptides per pool should be consistent
and balanced across pools. Such balance not only ensures uniform error rates across all pools but also
minimizes the overall error probability, as the error rate is spread evenly among the pools. To achieve the
peptides per pool balance, the algorithm keeps track of the positional changes in the addresses, where
the 0/1 transitions per position are optimized to be constant across address length.

Consequently, the requirements for the produced address arrangement are: 1) each address should be
unique; 2) the union of two neighboring addresses should be unique; 3) the Hamming distance between
two neighboring addresses, and the unions thereof should be identical and constant throughout the entire
address arrangement; 4) the number of peptides in each pool should be similar.

The algorithm we have developed as part of copepodTCR operates on the principle of searching for a
Hamiltonian path in a graph space representing all possible unique addresses and unique unions thereof.
For a fast implementation of this path search, we devised a branch-and-bound algorithm (BBA, Figure 1B)
that traverses a graph with addresses as edges and the unions of addresses as nodes. While navigating the
address-union space, the BBA also simultaneously checks for union and address uniqueness coupled with
the balance of the produced scheme.

Using copepodTCR to test TCR specificity against a large, tiling peptide library
The experimental setup starts with defining the protein/proteome of interest and obtaining synthetic
peptides tiling its space. This set of peptides, containing an overlap of a predefined length, is entered into
copepodTCR (Figure 1A). The BBA part of copepodTCR (Figure 1B, Branch-and-Bound algorithm) generates
a peptide pooling scheme and, optionally, provides the pipetting scheme to generate the desired pools as
either 384-well plate layouts or punch card models which could be further 3D printed and overlay the
physical plate or pipette tip box (see Methods for details). Following this scheme, the peptides are mixed,
and the resulting peptide pools tested in a T cell activation assay. The activation of T cells is measured for
each peptide pool (Figure 1A, experimental layout, T cell activation assay, and experimental read out) with
the assay of choice, such as flow cytometry- or microscopy-based activation assays detecting transcription
and translation of a reporter gene. The experimental measurements for each pool are entered back
into copepodTCR which employs a Bayesian mixture model to identify activated pools. Based on the
activation patterns, it returns the set of overlapping peptides leading to T cell activation (Figure 1B,
Results Interpretation).

Consistent, fast performance of copepodTCR for peptide screen design
We first assessed empirical run times for designing peptide pooling schemes with copepodTCR. Its BBA
allows for the design of complex peptide pooling libraries in less than a minute. For instance, to design
a peptide pooling scheme with 1,000 overlapping peptides distributed over 16 pools and each peptide
added to 4 pools takes 16 seconds ( Figure 1C, E). BBA run time is not dependent on the number of pools
per peptide (Supplementary Fig 2B).

We next tested copepodTCR’s ability to achieve balanced peptide pools. We assessed balance by comparing
the theoretical balance expected given the total number of peptides, pools, and peptide occurrences
across pools, with the actual balance generated by the pooling scheme. copepodTCR consistently achieves
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a near-perfect balance in the distribution of peptides across pools irrespective of the total number of
peptides being tested (Figure 1D). For instance, in the above example with 16 pools, and 4 pools per
peptide the number of peptides per pool deviates by no more than 6 peptides from the ideal balance. On
average, we achieve as low as 0.75 and 1.75 peptides deviation from the theoretical number of peptides
per pool for pooling schemes of 50 and 950 peptides, respectively.

The peptide pooling scheme produced by the BBA ensures that the number of activated pools remains
constant for any given epitope (Figure 1F, number of erroneously non-activated pools equal to 0). This
consistency is a crucial feature that facilitates straightforward error detection in the experimental process.
When an error is detected, such as a pool not being activated when it should have been, the tool effectively
narrows down the list of potential peptide candidates responsible for the activation. The extent to
which the list of candidates is reduced is influenced by the number of peptides tested and the number of
erroneous non-activated pools. For instance, with the presence of one erroneous non-activated pool, the
algorithm can refine the list of potential peptide candidates to approximately 10 (Figure 1F, number of
erroneously non-activated pools equal to 1).

copepodTCR peptide pooling scheme successfully validates known TCR peptide specificity
To test that copepodTCR’s experimental design allows for the robust detection of true positive and negative
TCR specificity, we designed a CPP assay for an NFAT-GFP reporter Jurkat TCR-transgenic cell line with
known peptide specificity.

We first tiled and synthesized the SARS-CoV-2 spike protein into 253 17 amino acid (aa) long peptides
with a 12 aa overlap between consecutive peptides. Peptides were mixed according to the CPP scheme
generated by copepodTCR. The T cell activation assay was performed in triplicates for the NFAT-GFP
reporter Jurkat 76.7 cell line stably expressing TCR6.3 from ref.13 recognising the𝑆167−180 epitope in context
of DBP1*04:(01/02). The activation signal for each pool was determined as the fraction of GFP+ (activated)
T cells and measured by both flow cytometry (Figure 2A) and fluorescence microscopy (Supplementary
Fig 3A).

To accurately identify which pools led to T cell activation, we applied the results interpretation module
of copepodTCR based on a Bayesian mixture model (Supplementary Fig 3D). The model considers the
activation signal to be drawn from two distinct distributions arising from the activated and non-activated
pools (Figure 2B, Supplementary Fig 3B) and provides the probabilities that the value was drawn from
either distribution as a criterion for pool classification (Figure 2C, Supplementary Fig 3C). The CPP scheme
in conjunction with the mixture model correctly identified the known, cognate peptide of the TCR6.3
reporter cell line.

To assess the sensitivity of the approach, we mixed all 253 peptides in a single pool and then diluted the
mixture 5- and 25-fold. The dilution caused a gradual decrease in the number of activated T cells, but
the activation was still distinguishable when compared to the negative unstimulated control (Figure 2D).
These data suggest that pools with a much larger number of peptides and thus lower concentration of
each individual peptide will still trigger detectable activation. Thus, it allows one to use copepodTCR for
larger overlapping peptide libraries covering entire viral proteomes. Applying copepodTCR to the 1879
peptides tiling the SARS-CoV-2 proteome resulted in 18 pools, on average containing 625 peptides each
(SI table 1), but we have not validated this pooling scheme experimentally.

Lastly, we compared the experimental read out obtained by flow cytometry and fluorescent microscopy
(Supplementary Fig 3A-C). Both methods yield consistent results with high correlation (𝑅2 = 0.94;
Figure 2E).

Discussion
We have successfully demonstrated how copepodTCR can aid in the design of CPP screens and their
interpretation. Here, we address some remaining challenges in the design of peptide tiling screens and
potential approaches to overcome them.

Tiling the protein sequence by overlapping peptides leads to the first and last peptide in the protein
only sharing overlapping sequences with their successor or predecessor, respectively. If the TCR-specific
peptide sequence is located within these peptides, pools from only one address will be activated, contrary
to all other peptide sequences leading to the activation of the union of two addresses. While this could be
interpreted as a false negative result as one pool fewer than expected is activated, the careful design of
the pooling scheme will allow the interpretation of this result within the context of the peptide library.
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Figure 2. CopepodTCR design successfully recapitulates known TCR specificity. CopepodTCR’s experimental
design was tested for its ability to confidently identify the known, cognate peptide (blue letters in peptide
sequence) of the T cell reporter cell line expressing MHC class II restricted TCR6.3. The algorithm correctly
determined that the cognate peptide is located in the overlap of the two peptides, that were uniquely
identified in the activated pool scheme. A. Flow cytometry read out as percentage of GFP-producing (activated)
cells in the T cell activation assay (y-axis) for each pool in the design (x-axis), with pools detected as
activated/non-activated in green and grey, respectively (as in C.). B. Bayesian mixture model (green and
orange) of observed (black) pool activation signal for the read out obtained by flow cytometry. C. The probability
of each measurement coming from the distribution of activated pools (green) and from a distribution of
non-activated pools (gray). D. Sensitivity of the assay. Left: activation of TCR6.3 cell line by PMA/ionomycin,
single cognate peptide and baseline activation levels without peptide stimulation. Right: The activation
signal from all pools mixed together (1x, all pools mixed), and a 5-fold (5x), or 25-fold (25x) dilution thereof.
All dilutions show activation levels above unstimulated negative control. E. Correlation of flow cytometry and
microscopy-based read out of the T cell activation assay, each represented by percentage of activated cells
and color-coded as in A.
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CopepodTCR will alert the user if the activation scheme corresponds to an address associated with an
end-position peptide.

Another limitation arises when dealing with peptide sets that do not have a consistent overlap length
across all peptides. This inconsistency can lead to variable numbers of pools being activated, with
more activated pools for increased epitope sharing across peptides and vice versa. Such inconsistency
complicates the interpretation of experimental results, as these scenarios look indistinguishable from
false positives or false negatives in the assay. However, copepodTCR contains an inconsistency check in
the experimental set-up, will alert the user of such issues and adjusts the interpretation of the results as
addresses assigned to these peptides are known.

Potential peptide cross-reactivity poses amore significant challenge. In the case of cross-reactivity, several
peptides containing similar epitopes would lead to the activation of the tested T cell. Cross-reactive
epitopes often trigger different degrees of activation, which might aid in identifying these in post-hoc
analyses. While cross-reactivity of TCRs in general is not a rare scenario, with potentially millions of
different peptides recognized by a single T cell14, it is still unlikely that two of these peptides will co-occur
in a relatively small viral proteome.

For a large number of peptides to be tested, either the number of required pools or the number of peptides
per pool will increase (Supplementary Fig 2A). For instance, testing 50,000 possible overlapping peptides
would require a minimum of 35 pools, where each pool consists of approximately 5,700 peptides. For a
stock peptide concentration of 10mM as we tested in this study, the individual peptide concentration after
pooling in this set-up would be 1.75 𝜇M. At this low concentration, the hit rate of a T cell to encounter and
thus get activated by its true cognate peptide is significantly decreased. To avoid this potential problem,
the number of pools or the number of pools per peptide in the experimental setup can be adjusted to have
a lower number of peptides per pool. However, from our dilution experiment (shown in Figure 2D), we
were able to detect activation of the MHC-class II restricted T cell line even with a 25-fold dilution for a
pool with 253 peptides, corresponding to an individual peptide concentration per pool of 1.58 𝜇M, which
is lower than the estimated concentration in the large screen exemplified above.

The application of the CPPmethod for the deorphanization of anMHC-class I restricted T cell line remains
to be explored. Peptides presented on MHC class I molecules are shorter than those presented on MHC
class II molecules15,16. Prior to MHC loading, antigen presenting cells use a multi-step process including
proteases and transporter molecules to process the pooled peptides and achieve the required lengths.
Differences in processing efficiency for peptides of short lengths might result in a weakened activation
signal, potentially lowering the assay efficiency for MHC class I restricted TCRs.

In this work we validated the algorithm on a single MHC class II restricted cell line with known specificity,
but our approach can scale to multiple cell lines, especially if the fraction of activated cells is measured
by fluorescence microscopy. CPPs generated with copepodTCR could also be used for investigating the
activation of primary cells, as suggested for a subset of non-overlapping SARS-CoV-2 peptides in ref.17.
In this protocol, sequencing of TCRs from T cells expressing activation surface markers after stimulation
with peptide pools allows the identification of T cell clones co-occurring with peptide addresses, allowing
identification of hundreds of TCR-peptide pairs in a single experiment. We expect that the small number
of combinatorial pools combined with optimal assignment of peptides and robust error-correction enabled
by copepodTCR algorithm will be beneficial for this assay.

Methods

Algorithmic constraints for the combinatorial peptide pooling scheme
Let’s consider a single protein 𝐸. We create a library of peptides by a sliding window approach across its
sequence, i.e., each peptide overlaps with its predecessor and successor by the constant number of amino
acids. The only exception is the first and last peptide in the protein, which only overlap with the successor
and predecessor respectively. In our experiment, we have a total number of𝑀 overlapping peptides 𝐸𝑗

derived from 𝐸:

𝐸 = {𝐸1, ..., 𝐸𝑀}, with 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐸𝑗 , 𝐸𝑗+1) = 𝑐𝑜𝑛𝑠𝑡 (1)

for which we want to find a mixing scheme, into 𝑛 pools 𝑝:

𝑝 = {𝑝1, ..., 𝑝𝑛.} (2)
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The algorithm needs to find the optimal distribution of peptides into the pools, such that the number of
pools 𝑛 is minimized, the total occurrence of each peptide across pools equals 𝑥, where 𝑥 is minimized,
and the total number of peptides per pool is approximately constant.

We consider the distribution of peptides 𝐸𝑗 into pools 𝑝𝑖 as assigning addresses 𝑎𝑗 to each peptide 𝐸𝑗 . An
address 𝑎𝑗 is represented by a binary string with 𝑛 number of digits, digit 𝑏𝑖 encoding the presence of a
peptide 𝐸𝑗 in pool 𝑝𝑖. The number of digits equal to 1 in any address 𝑎𝑗 should equal 𝑥:

∀𝑗 ∶
𝑛
∑

𝑖=1
𝑏𝑗𝑖 = 𝑥 (3)

The construction of the pools is limited by the combination of the following constraints:

• The number of peptides per pool should be approximately the same for each pool:

𝑝𝑖 ≈ 𝑤 where 𝑤 = 𝑀 ∗ 𝑥
𝑛

(4)

• Each address 𝑎𝑗 differs only in one pool from its successor 𝑎𝑗+1:

𝑎𝑗+1 with 𝐷𝐻 (𝑎𝑗 , 𝑎𝑗+1) = 2 (5)

where 𝐷𝐻 is the Hamming distance.
• For all other addresses, the Hamming distance is greater than 2:

𝐷𝐻 (𝑎𝑗 , 𝑎𝑘) > 2 where |𝑗 − 𝑘| ≥ 2 (6)

• The Hamming distance between the union of two adjacent addresses and any other union of adjacent
addresses is equal or greater than 2:

∀𝑗, 𝑘 ∶ 𝐷𝐻 (𝑎𝑗 ∪ 𝑎𝑗+1, 𝑎𝑘 ∪ 𝑎𝑘+1) ≥ 2 (7)

Branch-and-bound algorithm
The algorithm searches for an arrangement of addresses 𝐴:

𝐴 = {𝑎1, 𝑎2, 𝑎3, ..., 𝑎𝑀} (8)

where𝑀 is the total number of tested peptides. Each address 𝑎𝑗 corresponds to a peptide𝐸𝑗 . The produced
arrangement should meet all criteria described above.

Each address is encoded as a binary string with 𝑛 bits, where 𝑛 is equal to the total number of pools. Each
digit 𝑏𝑖 in an address 𝑎𝑗 corresponds to a pool 𝑝𝑖, where 𝑏𝑖 = 1means the presence of a peptide 𝐸𝑗 in pool
𝑝𝑖, and 𝑏𝑖 = 0means the absence of a peptide 𝐸𝑗 in pool 𝑝𝑖. Two consecutive addresses 𝑎𝑗 and 𝑎𝑗+1 form a
union 𝑢𝑗:

𝑎𝑗 ∪ 𝑎𝑗+1 = 𝑢𝑗 (9)

Together, alternating addresses and unions form an extended arrangement 𝐴𝑈 :

𝐴𝑈 = {𝑎1, 𝑢1, 𝑎2, 𝑢2, 𝑎3, 𝑢3, ..., 𝑎𝑀−1, 𝑢𝑀−1, 𝑎𝑀} (10)

The union 𝑢𝑗 also is encoded as a binary string with each digit 𝑏𝑖 corresponding to a pool 𝑝𝑖. 𝑏𝑖 = 1 in 𝑢𝑗
means that 𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝐸𝑗 , 𝐸𝑗+1) is present in pool 𝑝𝑖, and 𝑏𝑖 = 0 indicates its absence in pool 𝑝𝑖.

The arrangement of addresses 𝐴 is characterized by its balance:

𝐵 = {𝑤1, 𝑤2, 𝑤3, ..., 𝑤𝑛} (11)

where 𝑛 is the total number of pools, and𝑤𝑖 represents total number of peptides in pool 𝑝𝑖 and is calculated
as:

𝑤𝑖 =
𝑀
∑

𝑘=1
𝑎𝑘[𝑖] (12)

where𝑀 is the total number of peptides, 𝑎𝑘 is an address, and 𝑎𝑘[𝑖] is its 𝑖 bit.

The algorithm works as follows:

1. initiate with arbitrary 𝑎1 and 𝑢1:
𝐴𝑈 = {𝑎1, 𝑢1} (13)
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2. produce all possible next addresses that can together with 𝑎1 form 𝑢1, and discard addresses already
present in 𝐴;

3. calculate the distortion 𝐷 to balance 𝐵 introduced by adding each address to 𝐴 with the addition of
a small random number 𝜖:

𝐷 = Var(𝐵𝑛𝑒𝑤) − Var(𝐵) + 𝜖 (14)

where 0.0 ≤ 𝜖 < 1.0.
4. sort the list of possible addresses based on 𝐷 and add the first one to the arrangement 𝐴 and to the
extended arrangement 𝐴𝑈 :

𝐴 = {𝑎1, 𝑎2} (15)

𝐴𝑈 = {𝑎1, 𝑢1, 𝑎2} (16)

5. take the two last components of 𝐴𝑈 (𝑢1 and 𝑎2), generate a list of all possible unions based thereon
and discard unions already present in 𝐴𝑈 ;

6. calculate the distortion 𝐷 to balance 𝐵 introduced by adding each union to 𝐴 with the addition of a
small random number 𝜖.

7. sort the list of possible unions based on 𝐷 and add the first one to the extended arrangement 𝐴𝑈 :

𝐴𝑈 = {𝑎1, 𝑢1, 𝑎2, 𝑢2} (17)

8. take the two last components of 𝐴𝑈 and continue with 2., which leads to traversing through space
of all possible addresses and unions.

9. stop when the length of the arrangement 𝐴 is equal to𝑀:

𝐴 = 𝑀 (18)

In copepodTCR, the algorithm is implemented recursively, allowing for backtracking if it reaches a dead
end, enabling it to select another address in the list of next addresses, and another union in the list of
next unions.

Peptide mixture scheme
The address 𝑎𝑖 from the produced arrangement 𝐴 corresponds to peptide 𝐸𝑖. Based on 𝑎𝑖, the peptide
pooling scheme is generated, where an address indicates to which pool 𝑝𝑖 each peptide is added.

To aid with the experimental procedure, copepodTCR offers the creation of STL files, encoding the pipetting
scheme necessary to create peptide pools based on the arrangement of experimental peptides 𝐸𝑖 in a
384-well plate. STL files are generated in Python using Trimesh (v3.23.5)18. Each card represents one pool,
with holes positioned at the coordinates corresponding to the peptides designated for addition to that
pool.

Bayesian mixture model
We developed a hierarchical Bayesian mixture model (Supplementary Fig 3D) to interpret the results
of pooled T cell activation assays. As input, the model requires an activation signal, 𝐴𝑐𝑡, expressed
as a percentage of activated cells. We measured activation by either flow cytometry or microscopy and
computed the percentage of activated cells divided by all cells in one sample (flow cytometry) or the number
of activated cells per sample divided by total number of activated cells across all samples (microscopy).

We assume 𝐴𝑐𝑡 is composed of two distributions, reflecting activated and non-activated pools. We model
these as two truncated Normal distributions 𝜇Pos and 𝜇Neg with parameters 𝜇, 𝜎 and lower truncation limit
𝑎:

𝜇Pos ∼ TruncatedNormal(𝜇, 𝜎, 𝑎 = 0) (19)

𝜇Neg ∼ TruncatedNormal(𝜇, 𝜎, 𝑎 = 0) (20)

For each replicate of the pool experiments, we model 𝐴𝑐𝑡 as a TruncatedNormal distribution with parame-
ters 𝜇𝑝𝑜𝑜𝑙, 𝜎𝑝𝑜𝑜𝑙, and lower truncation limit 𝑎:

𝐴𝑐𝑡 ∼ TruncatedNormal(𝜇𝑝𝑜𝑜𝑙, 𝜎𝑝𝑜𝑜𝑙, 𝑎 = 0) (21)
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𝜇𝑝𝑜𝑜𝑙 is drawn from the truncated Normal distribution assigned to each pool with parameters 𝜇𝑃𝑜𝑠 or 𝜇𝑁𝑒𝑔,
𝜎, and lower truncation limit 𝑎:

𝜇𝑝𝑜𝑜𝑙 ∼ TruncatedNormal(𝜇Neg or Pos, 𝜎, 𝑎 = 0) (22)

𝜇𝑃𝑜𝑠 or 𝜇𝑁𝑒𝑔 are assigned to each pool according to 𝐿 following the Bernoulli distribution:

𝐿 ∼ Bernoulli(𝑝 = 0.5, 𝑞 = 0.5) (23)

To assign a pool activation status, we compute the probability of being drawn from the distribution of
non-activated pools 𝐿 and of being drawn from the distribution of activated pools 1 − 𝐿.

A pool is considered to be activated if 𝐿 is less than 0.5. The model was developed and fitted on the
observed data using PyMC (version 5.9.2)19.

Peptide pooling
Individual 17-mer peptides, overlapping by 12 amino acids from the SARS-CoV-2 Spike protein (Uniprot
acc. P0DTC2, synthesized by Mimotopes), were diluted to 10mM in a matching solvent according to the
manufacturer’s solubility test. The diluted peptides were transferred to a 384-well plate (951020702,
Eppendorf).

For the dilution experiment, we mixed all 253 peptides in a single pool and then diluted the mixture 5-
and 25-fold, corresponding to concentrations for each individual peptide in these pools of 39.5 𝜇M, 7.91
𝜇M, and 1.58 𝜇M, respectively.

We used copepodTCR to design a peptide pooling scheme and corresponding STL files for punched cards
matching an empty 12.5 𝜇l GripTIPS box (Integra), generated G-code with Cura v. 5.1.0 (Ultimaker), and
printed them with PLA on a 3D printer (Ender V3, Creality). Each punched card encoded the pooling
strategy for a single combinatorial pool: we placed a card on top of an empty tip box, filled open holes
with tips, and then use this patterned pipette tip array to transfer 2.5 𝜇l from the source plate to the lid
of the tip box using a ViaFLO 384-channel electronic pipette (Integra). The tip box lid was then pulse
centrifuged at 1000g to collect droplets in the corner and pooled peptides were transferred into an 8-tube
strip and stored at -80◦C before use.

Stimulation of reporter T cell lines with combinatorial pools
For validation of our approach, we used a NFAT-GFP reporter Jurkat 76.7 cell lines from ref.13 (TCR6.3) with
known specificity. Jurkat cells (105) were co-cultured in a round-bottom 96-well cell culture plate (Corning
3799) in 100 𝜇l RPMI-1640 media (Gibco) supplemented with 10% FBS, 1% penicillin-streptomycin,
containing 1 𝜇g/ml anti-CD28 antibody (BD Biosciences, 555725) and 1 𝜇g/ml of anti-CD49d antibody
(BD Biosciences, 555501), with 105 PBMCs from a healthy HLA-DPB04:02+ donor pulsed with 1 𝜇l of the
given combinatorial pool for 16 hours. For positive controls we used PMA/Ionomycin cocktail (Invitrogen,
00-4970-93) according to manufacturer protocol, or single CTFEYVSQPFLMDLEGK peptide (known
TCR6.3 target epitope) at final concentration in media 1𝜇M. Each coculture experiment was performed in
triplicates. Plates were washed with 300 𝜇l of FACS buffer (DPBS with 0.05% BSA and 2mM EDTA) and
resuspended in 300 𝜇l of FACS buffer. Subsequently, 150 𝜇l were transferred into a 96-well flat-bottom
plate (Corning 3596) and acquired on the Incucyte S3 (Sartorius) with a 4x objective. Green object count
for each well was determined using Incucyte Analysis Software with Surface Fit segmentation, no edge
split, 2.0 GCU Threshold and < 750𝜇𝑚2 Area filter. Simultaneously, a second plate was acquired on BD
Symphony A2 with a high throughput sampler (Supplementary Fig 4 for gating strategy). Flow cytometry
data was analysed with FlowJo (v. 10.8.1).

Results were interpreted using the Bayesian Mixture model of copepodTCR.

copepodTCR Python package
A python package for copepodTCR is available via pip. It relies on python packages CVXPY (version 1.3.2)20,
pandas (version 1.5.3)21, NumPy (version 1.23.5)22, Trimesh (version 3.23.5)18, and PyMC (version 5.9.2)19.
Its detailed documentation be accessed at copepodTCR.readthedocs.io.

copepodTCR tool
Wedeveloped an interactive user interface for copepodTCR using Shiny for Python (version 0.5.1)23. Besides
the copepodTCR Python package, the tool uses Seaborn (version 0.12.2)24, pandas (version 1.5.3)21, and
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Matplotlib (version 3.8.0)25.

CopepodTCR assists the user in all stages of the combinatorial peptide pooling experiment. It helps to
select the appropriate number of pools and peptide occurrence, checks the list of given peptides for
overlap consistency and simulates activated pools for any epitope of a given length; it generates the
peptide pooling scheme and produces STL files for peptide mixing; it analyzes the experimental results,
and returns a set of peptides responsible for those results.

CopepodTCR can be accessed on https://copepodtcr.cshl.edu/.
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