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Abstract: The paper analyzes the surface structure and phase state of Ti49.4Ni50.6 (at%) hydrogenated
at 295 K in normal saline (0.9% NaCl aqueous solution with pH = 5.7) at 20 A/m2 for 0.5–6 h. The
analysis shows that the average hydrogen concentration in the alloy increases with the hydrogenation
time tH as follows: slowly to 50 ppm at tH = 0.5–1.5 h, steeply to 150 ppm at tH = 1.2–2 h, and linearly
to 300 ppm at tH = 2–6 h. According to Bragg–Brentano X-ray diffraction data (θ–2 θ, 2 θ ≤ 50◦,
CoKα radiation), the alloy in its scanned surface layer of thickness ~5.6 µm reveals a TiNiHx phase
with x = 0.64 and x = 0.54 after hydrogenation for 4 and 6 h, respectively. The structure of this phase
is identifiable as an orthorhombic hydride similar to β1–TiFeH0.94 (space group Pmcm), rather than
as a tetragonal TiNiHx hydride with x = 0.30–1.0 (space group I4/mmm). Time curves are presented
to trace the lattice parameters and volume change during the formation of such an orthorhombic
phase from the initial cubic B2 phase in Ti49.4Ni50.6 (at%).
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1. Introduction

TiNi alloys, showing superelasticity and shape memory, good plasticity, high corro-
sion resistance, and biocompatibility, are efficient materials for manufacturing various
engineering devices [1,2] and medical implants [3,4]. At the same time, such alloys after
their long contact with a hydrogen-containing environment, e.g., biological, are prone to
embrittlement [5–8]. At near-room temperatures (290–310 K), the rate of diffusion process
in TiNi is low such that a large amount of hydrogen first goes into its surface layers and
then diffuses deep into the material [9,10]. As has been shown [10–12], the saturation of
TiNi alloys with hydrogen decreases the temperatures of thermoelastic martensite transfor-
mations from a cubic B2 phase to a rhombohedral R and a monoclinic B19′ phase, and this
impairs their superelasticity and shape memory effect [8,10,13,14] and causes their cracking
and fracture [15,16]. One of the contributory factors for such functional and mechanical
degradation is the formation of hydrides [16], and structural studies are needed to clarify
their effect on the properties of TiNi alloys. Note that the data currently available on the
state diagram of Ti-Ni-H system and the structures of hydride phases are rather scanty and
contradictory.

The most comprehensive studies of such hydrides concern TiNiH1.0 formed via sat-
uration in gaseous hydrogen [17,18]. The studies show that this type of hydride has
a tetragonal structure (space group I4/mmm) with orientation relations [100]H ‖ [100]B2,
[010]H ‖ [100]B2, [001]H ‖ [001]B2 and lattice parameters aH = bH ≈ 2 aB2 and cH ≈ 4 aB2 [18,19].
The lattice parameters of TiNiH1.0, according to [17,18], measure aH = 6.221 (1) Å,
cH = 12.363 (3) Å [17] and aH = 6.2165 (6) Å, cH = 12.326 (1) Å [18]. From electron mi-
croscopy data [19], it follows that the hydride formed in Ti–48Ni–2Al (at%) via electrolytic
hydrogenation in 4% H2SO4 water solution has the same tetragonal structure and space
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group I4/mmm as TiNiH in TiNi after gaseous hydrogenation [17,18]. The same phase ap-
pears after electrolytic hydrogenation in NaOH water solutions: TiNiHx with x = 0.95) [20]
and TiNiHx with x = 0.30 and 0.85 [21]. According to [15,21,22], electrolytic hydrogenation
in both NaOH and H2SO4 water solutions results in a tetragonal TiNiHx phase whose
lattice parameters depend on the hydrogen content. As the atomic ratio x varies from 0.30
to 0.55, the lattice parameter aH changes from 6.09 Å to 6.25 Å and cH from 11.40 Å to
12.60 Å. Tetragonal TiNiHx phases with x from 0.30 to 0.32 are found in Ti–50.8Ni (at%)
thin wires of diameter 0.4 mm immersed in hot (90 ◦C) H3PO4 [23].

Several papers analyze the state of binary TiNi and Fe-doped TiNi after gaseous
hydrogenation [24] and electrolytic hydrogenation in water solutions with 4% and 5%
H2SO4 [25–27]. As has been found [24–26], no tetragonal hydride TiNiHx appears even at
a hydrogen content in surface layers of up to 4500 ppm [24]. Instead, hydrogen-induced
martensite corresponding to a monoclinic B19′ phase (space group P21/m) is formed
during hydrogenation [24–27]. Such a hydrogen martensite phase appears during hydro-
genation at room temperature and even in those initially B2-structured alloys which escape
transformations to B19′ on cooling up to 77 K without hydrogenation. Unfortunately, no
discussion of factors that may provide the absence of tetragonal TiNiHx at a high hydrogen
content is presented in the cited papers [24–27].

Most of the studies of TiNi alloys hydrogenated in normal saline solutions (0.9% NaCl),
e.g., [9,28–31], mainly concern the influence of hydrogenation parameters on hydrogen ab-
sorption, the effect of hydrogen on the mechanical properties of TiNi alloys (embrittlement),
and the mechanisms of its thermal desorption. The structure of hydride phases is analyzed
qualitatively by comparing the form of diffraction patterns after hydrogenation [28–30]
with related data [17,18]. The lattice parameters of hydride phases in the majority of papers
are not given. However, it is noted that certain reflections resulting from hydrogenation
cannot be identified with a tetragonal hydride phase alone [9,16,23]. Besides, the presence
of TiH2 in surface layers after hydrogenation in normal saline is reported but without any
confirmation [31]. Thus, the studies of hydride structures formed during hydrogenation of
TiNi based alloys must be continued now.

Here we analyze the effect of electrolytic hydrogenation in normal saline (0.9% NaCl
aqueous solution with pH = 5.7) on the structure and phase state of Ti49.4Ni50.6 (at%).

2. Materials and Methods

The alloy under study was Ti49.4Ni50.6 (at%) supplied as rolled plates of thickness
1.2 mm by MATEK-SMA Ltd. (Moscow, Russia). The Axiovert-200M optical microscopy
(Carl Zeiss AG, Oberkochen, Germany) was used for the study of alloy microstructure.
In its as-received state, the alloy had a coarse-grained structure. The shape of grains in
the rolling plane was quasi-equiaxed with an average aspect ratio of 1.4, Figure 1. The
average grain size in this plane was 42 µm in the rolling direction and 29 µm crosswise,
and its value perpendicular to the rolling plane was 14 µm. The martensitic transformation
temperatures were analyzed from temperature dependences of sample resistivity measured
by four-probe potential method. The rate on cooling and heating was 3 K/min. The liquid
nitrogen was used at temperatures below 300 K. The temperature dependences of sample
resistivity on cooling and heating are presented in Figure 2. On cooling and heating, the
alloy undergoes B2↔B19′ martensitic transformations (MT), where B2 is a CsCl-ordered
cubic phase and B19′ is a monoclinic martensitic phase. The start (MS) and finish (MF)
temperatures of B2→B19′ MT are 234 K and 163 K, respectively. The temperature range of
B19′→B2 MT is from 227 K (AS) to 252 K (AF). Thus, at room temperature (near 295 K),
the alloy had a B2 structure. It must be noted that the Ti49.4Ni50.6 (at%) alloy is used in
reconstructive dentistry and cardiovascular implantation like the binary TiNi based alloys
with 50.7 and 50.8 at% Ni.
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Figure 2. Temperature dependences of electrical resistivity on cooling and heating of initial samples.

For studying the hydrogen distribution and phase state of Ti49.4Ni50.6 (at%), the
specimens were shaped as plates of dimensions 10 mm × 10 mm and thickness 1.13 mm.
Its specimens for studying the average hydrogen concentration were square bars of cross-
section 1.1 mm× 1.1 mm and length 50 mm. Both the plates and the bars were mechanically
grinded using an abrasive paper with gradual decrease in its grit to 2000 (Automotive
Aftermarket 3M United Kingdom PLC, Market Place Bracknell, Berks, UK), polished with
a diamond paste grained to 0.6 µm (Pasta Diamanta, Corsico (MI), Italy) and rinsed in
ethanol and warm distilled water.

The specimens were hydrogenated at room temperature (295 K) in normal saline (0.9%
NaCl aqueous solution with pH = 5.7) at a current density of 20 A/m2 for 0.5–6 h. The
increase of electrolyte temperature was about 2 K after hydrogenation for 6 h.

The structure and the phase state of Ti49.4Ni50.6 (at%) were analyzed at 295 K on
a DRON-7 diffractometer (CoKα radiation) with PDWin software (JSC IC Burevestnik,
St. Petersburg, Russia). It should be noted that in this geometry, the thickness of layers
with 95% of the diffraction intensity in CoKα radiation is 2.3–2.9 µm at 2 θ = 20◦–25◦ and
3.5–5.6 µm at 2 θ = 40◦–50◦, according to estimations proposed elsewhere [32]. The average
hydrogen content in Ti49.4Ni50.6 (at%) was determined on a LECO RHEN 602 gas analyzer
(Saint Joseph, MI, USA). The hydrogen distribution in Ti49.4Ni50.6 (at%) was studied by
glow-discharge optical emission spectrometry on a GD OES Profiler 2 (Jobin Yvon Emission
Horiba Group, Longjumeau Cedex, France). This method is based on the sputtering of
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the material of the samples, which are the cathode in the plasma of a glow discharge in
argon. The atomized atoms of the sample material are excited and ionized in the glow
discharge plasma and emit characteristic radiation. This radiation is analyzed with an
optical spectrometer. The sputtering of the sample with argon ions is continuously, layer
by layer, as the depth of the erosion crater increases. This makes it possible to obtain
profiles of the distribution of elements in the surface layers of the samples by registering
the signal of the optical spectrometer depending on the sputtering time. The quality of the
analysis depends on the shape of the craters. The craters formed during the sputtering
of the Ti49.4Ni50.6 (at%) samples had vertical walls and a flat bottom, which is optimal.
The depth of craters after sputtering for 900 s was 50 ± 3 µm. The average content of
hydrogen and its distribution profiles in Ti49.4Ni50.6 (at%) was determined within 1 h after
hydrogenation.

3. Results

Figure 3 shows the average hydrogen concentration CH in Ti49.4Ni50.6 (at%) versus
the hydrogenation time tH. It is seen that at up to tH = 1 h, the absorption of hydrogen
is slight. The average hydrogen concentration measures 50 wt. ppm (or ppm) even at
tH = 1.5 h. After hydrogenation for 1.5 h, its value increases steeply, reaching CH = 150
ppm at tH = 2 h. As the hydrogenation time is increased from 2 to 6 h, the average
hydrogen concentration increases almost linearly to CH = 300 ppm. The behavior of CH in
Figure 3 characterizes Ti49.4Ni50.6 (at%) with a uniform hydrogen distribution in its volume.
However, directly after hydrogenation, the hydrogen distribution over the alloy cross-
section is rather nonuniform. Figure 4 shows the cross-sectional hydrogen distribution
versus the hydrogenation time tH. The profiles in Figure 4 qualitatively characterize the
hydrogen distribution because the ordinate is not the absolute concentration of hydrogen
but the signal amplitude proportional to its concentration (in the first approximation). The
lower abscissa axis is the sputtering time, and the upper one is the depth from the alloy
surface calculated for respective time points on the assumption of equal sputtering rates of
the hydrogenated layer and initial material far from it.
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Figure 4. Qualitative profiles of signal distribution due to hydrogen atoms vs. sputtering time in
Ti49.4Ni50.6 (at%) after electrolytic hydrogenation in normal saline. (This figure is in color only in the
electronic version.)

It is seen from Figure 4 that the localization of hydrogen peaks in Ti49.4Ni50.6 (at%)
falls on its near surface region (3–4 µm thick) and that the highest peak occurs after
hydrogenation for 2 h. As tH is increased to 6 h, the signal gets smaller. By and large, the
thickness of the layer with high hydrogen content increases monotonically with tH due
to hydrogen diffusion deep into the material. Figure 5 shows the depth L0.1 at which the
signal level measures 10% of its near-surface maximum, allowing us to qualitatively judge
the layer thickness with a high hydrogen content compared to its value in the initial alloy
(10 ppm). It is seen from Figure 5 that the layer rich in hydrogen almost linearly increases
in thickness to ~17 µm as tH is increased to 6 h. Thus, about 90% of hydrogen atoms are
concentrated in zones of thickness 11 µm and 17 µm after hydrogenation for 4 and 6 h,
respectively. Note that the thickness of these zones is close to the average grain size in a
direction normal to the rolling plane (14 µm) coincident with the surface samples. The
maximum hydrogen content is in a narrow surface zone (Figure 4) whose width is smaller
than L0.1 (Figure 5).
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Figure 5. Depth L0.1 with hydrogen signal level of 10% from its maximum vs. hydrogenation time in
Ti49.4Ni50.6 (at%).

The surface structure and phase state of Ti49.4Ni50.6 (at%) after hydrogenation at 295 K
for different times can be judged from Figure 6, showing its diffraction patterns in the
Bragg–Brentano geometry (θ–2 θ, CoKα radiation). As it was noted above, the thickness
of analyzed layers equals 2.3–2.9 µm at 2 θ = 20◦–25◦ and 3.5–5.6 µm at 2 θ = 40◦–50◦.
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Thus, the diffraction patterns in Figure 6 reflect the evolution of the structure and phase
state of hydrogenated layers whose thickness is close to the surface layer thickness with
a maximum hydrogen content and is no greater than ~40% of the average grain size in
this direction. It is seen from Figure 6 that before hydrogenation, only a (110)B2 peak at
2 θ ≈ 49.7◦ is detected in the range of diffraction angles 2 θ ≤ 50◦. However, even after
hydrogenation for 0.5 h, the alloy reveals a weak peak at 2 θ≈ 22◦, and after hydrogenation
for 1 and 1.5 h, two peaks at 2 θ ≈ 22◦ and 2 θ ≈ 45◦, respectively, and an increase in the
(110)B2 asymmetry. After hydrogenation for 3 h and longer, a peak at 2θ ≈ 48◦ appears.
Increasing the hydrogenation time to tH = 6 h shifts the (110)B2 peak from 2θ ≈ 49.7◦ to the
range of smaller diffraction angles, suggesting that the corresponding interplanar spacing
gets larger. The peak intensity at about 2 θ = 22 ◦ and 45 ◦ increases most rapidly with
increasing tH to 1.5–2 h, and further, this increase slows down (Figure 7).
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Figure 6. X-ray diffraction patterns of Ti49.4Ni50.6 (at%) before and after hydrogenation at 295 K in
normal saline for 1.5, 3, 4, and 6 h (20 A/m2). (This figure is in color only in the electronic version.)
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Figure 7. Peak intensity at 2Q ≈ 22◦ (o) and 2Q ≈ 45◦ (•) vs. hydrogenation time.

Such peak intensities correlate with hydrogen distributions in a surface zone ~5.6 µm
thick: after hydrogenation for more than 2 h, hydrogen starts actively diffusing from this
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zone deep into the alloy but its concentration through a thickness of 2.9–5.6 µm becomes
maximal after hydrogenation for 6 h (Figure 4). Thus, the absorption of hydrogen by
Ti49.4Ni50.6 (at%) during electrolytic hydrogenation leads to the formation of the hydride
phase in its surface zone measuring no less than 5.6 µm. The structure of this phase is
analyzed in detail below.

4. Discussion

Of importance for our further analysis is to estimate the hydrogen content in the
surface layers of hydrogenated samples (zones with thickness ≤ 5.6 µm). This estimation is
based on the average hydrogen concentration CH (Figure 4) and the thickness of layers L0.1
in which the content of absorbed hydrogen is high (Figure 5). Let us assume that the total
content of hydrogen with its average concentration CH (Figure 5) is uniformly distributed
in a layer of thickness L0.1. Then, the average hydrogen concentration in this layer can be
estimated as follows:

CH(L0.1) =
CH

4
[(

L0.1
T

)
−

(
L0.1

T

)2
] , (1)

where T is the specimen thickness (1.13 mm). In the specimens hydrogenated for 4 and
6 h, CH equal, respectively, to 230 ppm and 300 ppm (1.20 at% and 1.56 at%) and L0.1 equal
to 11 µm and 17 µm. Then, CH(L0.1) equal, respectively, ~6000 ppm and ~ 5000 ppm in
these specimens. However, the actual hydrogen distribution is nonuniform: the hydrogen
content is highest near the surface and decreases in going deep from the surface to L0.1.
Assuming (in the first approximation) that the hydrogen content decreases linearly through
L0.1, its maximum near the surface will be about twice higher than CH(L0.1), i.e., ~12,000
ppm and ~10,000 ppm after hydrogenation for 4 and 6 h, respectively. It is easy to show
that the maximum hydrogen content in the surface layer of Ti49.4Ni50.6 (at%) hydrogenated
for 4 and 6 h is ~39.0 at% and ~35.1 at% and that the approximate chemical composition
of the layer in the two cases is represented by Ti30.1Ni30.9H39.0 and Ti32.0Ni32.9H35.1 (at%),
respectively.

The hydrogen content can be estimated in weight units (ppm) and atomic percent,
and also as the ratio of absorbed hydrogen atoms to metal atoms:

x =
NH

NMe
=

NH

NTi + NNi
=

aH

100− aH
, (2)

where Me is the number of Ti and Ni atoms and aH is the hydrogen content in atomic
percent. Then, the chemical composition of surface zones is represented by TiNiH0.64 and
TiNiH0.54 after hydrogenation for 4 and 6 h, respectively.

It should be noted that the diffraction patterns obtained in our study differ greatly
from those typical of TiNi alloys with a monoclinic B19′ and a hydrogen martensite struc-
ture (in particular, in interplanar spacing). The identification of TiNiHx on the assumption
of its tetragonal structure (with x = 0.30–0.55 [15,22] or x =1 [17–19]) is also doubtful be-
cause a rather large discrepancy is found between the lattice parameters of tetragonal
TiNiH0.54 after hydrogenation for 6 h and those of TiNiH0.55 [15,22]: a = 6.00 Å, c = 11.26 Å
against a = 6.25 Å, c = 12.60 Å, respectively. Besides, the volume changes induced by these
hydrides of approximate composition differ even in sign: (VH–16VB2)/16VB2 = + 11.7% for
TiNiH0.55 [15,22] and –4.4% for TiNiH0.54 (after hydrogenation in saline for 6 h). Hence,
the available data give no way of reliably identifying the hydride structure formed in
Ti49.4Ni50.6 (at%) during electrolytic hydrogenation in normal saline (0.9% NaCl). In
this connection, let us extend our analysis to TiMeHx in B2-structured TiMe alloys. Ac-
cording to [33], the hydrides formed in TiFe during saturation in gaseous hydrogen are
orthorhombic TiFeH0.94 and TiFeH1.40 (space group D5

2h – Pmcm) with lattice parame-
ters a = 2.954 (1) Å, b = 4.538 (1) Å, c = 4.381 (1) Å and a = 3.094 (3) Å, b = 4.513 (4) Å,
c = 4.391 (10) Å, respectively. The most intense reflections of these hydrides are due to
their orthorhombic structure: (111), (002), (020), and (010) in order of increasing interplanar
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spacing. Between the reflections (010) and (020), only (011), (100), and (110) are resolved
but their intensity measures 1–2% of the 100% intensity of the strongest reflection (111).
The probability of identifying these reflections on X-ray diffraction patterns is low, particu-
larly in view of the coarse-grained structure and texture of rolled specimens. In general,
the diffraction patterns of TiFeH0.94 and TiFeH1.40 presented in the cited paper [33] are
qualitatively the same as those suggesting the presence of an orthorhombic hydride phase
in Figure 6 with its lattice parameters versus the hydrogenation time in Figure 8.
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hydrogenation time tH in normal saline at 20 A/m2.

It is seen in Figure 8 that as the hydrogenation time (and, hence, the amount of ab-
sorbed hydrogen) is increased, the lattice parameter a first decreases (tH = 1.5–4 h) and
then increases (tH > 4 h) while the parameters b and c grow monotonically with tH. The
absolute values of the lattice parameters in Figure 8 suggest that the orthorhombic structure
of TiNiH0.54, like the tetragonal structure of TiNiHx with x = 0.30–0.55, has orientation rela-
tions with the initial B2 structure. Behind this assumption is the following reasoning. In Cu-
doped TiNi alloys (in particular, in Ti49.5Ni49.5Cu10 (at%) [34]), a B19 martensite phase with
a similar orthorhombic structure (space group D5

2h – Pmmb) and lattice parameters a = 2.881
Å, b = 4.279 Å, c = 4.514 Å is formed via B2→B19 transformation. The B19 phase has the fol-
lowing orientation relations with the initial B2 phase: [100]B19 ‖ [100]B2, [010]B19 ‖ [011]B2,
[001]B19 ‖ [011]B2 [34]. During its formation, aB19 < aB2 (3.030 Å), bB19 ≈ aB2

√
2 (4.285 Å),

and cB19 > aB2
√

2. On the assumption of similar orientation relations for orthorhombic
TiNiH0.54, whose lattice parameters are presented in Figure 8, we can estimate the vol-
ume change induced by the formation of this phase. From Figure 9, it is seen that as the
hydrogenation time is increased from 1.5 to 6 h, the ratio ∆V/2VB2 = (VH − 2VB2)/2VB2
increases almost linearly from +7.3% to +10.2%. Note that the volume changes induced
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by the formation of orthorhombic TiNiH0.54 (after hydrogenation for 6 h) and tetragonal
TiNiH0.55 [15,22] are positive and close: +10.2% and +11.3% [15,22], respectively.
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Figure 9. Volume change induced by orthorhombic hydride vs. hydrogenation time.

Surely, such an orthorhombic hydride structure needs a more detailed confirmation
(including its confirmation by transmission electron microscopy). At the same time, our
research data suggest that not only a tetragonal hydride, but other hydride structures may
arise in TiNi alloys during hydrogenation.

5. Conclusions

1. Our study of Ti49.4Ni50.6 (at%) hydrogenated at 295 K in normal saline at 20 A/m2 for
0.5–6 h shows that the average concentration of absorbed hydrogen increases with the
hydrogenation time tH as follows: slowly to 50 ppm at tH = 0.5–1.5 h, steeply to 150
ppm at tH = 1.5–2 h, and linearly to 300 ppm at tH = 2–6 h. Increasing the hydrogena-
tion time increases the diffusion of hydrogen deep into the alloy. The hydrogen-rich
layer thickness increases linearly with tH, measuring ~17 µm at tH = 6 h.

2. The maximum content of absorbed hydrogen in the alloy falls within its surface layer
~5.6 µm thick, which is equal to the layer scanned for diffraction with CoKα radiation
in the θ–2 θ geometry at 2 θ ≤ 50◦. The composition of this layer corresponds to
TiNiHx with x = 0.64 and x = 0.54 (atomic ratio of hydrogen to Ti plus Ni) after
hydrogenation for 4 and 6 h, respectively.

3. It is shown that no hydride phase reflections are identified, assuming the presence of
the known hydride phase TiNiHx (x from 0.30 to 1.0) with tetragonal structure (space
group I4/mmm).

4. It was found that the structure of hydride phase formed in Ti49.4Ni50.6 (at%) during
hydrogenation is similar to the structure of orthorhombic β1-TiFeH0.94 hydride phase
(space group Pmcm). After hydrogenation for 6h, the lattice parameters of TiNiH0.54
orthorhombic hydride phase are aH = 2.890 Å, bH = 4.726 Å, cH = 4.410 Å and the
volume change induced by it is +10.2%.
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