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ABSTRACT
Type I (IFNα/β) interferon signaling represents a critical transduction pathway involved in recognition
and destruction of nascent tumor cells. Downregulation of this pathway to promote a more immuno-
suppressed microenvironment contributes to the ability of tumor cells to evade the immune system,
a known Hallmark of Cancer. The present study investigates the progesterone receptor (PR), which is
expressed in the vast majority of breast cancers, and its ability to inhibit efficient interferon signaling in
tumor cells. We have shown that PR can block the interferon signaling cascade by promoting ubiqui-
tination and degradation of STAT2. Targeting STAT2 is critical, as we show that it is an essential protein
in inducing transcription of interferon-stimulated genes (ISG); shRNA-mediated knockdown of STAT2
severely abrogates the interferon response in vitro. Importantly, we were able to reverse this inhibition
by treating with onapristone, an anti-progestin currently being investigated in breast cancer clinical
trials. Additionally, we have found that an interferon-related gene signature (composed of ISGs) is
inversely correlated with PR expression in human tumors. We speculate that PR inhibition of interferon
signaling may contribute to creating an immunosuppressed microenvironment and reversal of this
through anti-progestins may present a novel therapeutic target to promote immune activity within
the tumor.
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Introduction

Hanahan and Weinberg revolutionized our understanding of
cancer biology through the issuing of the “Hallmarks of
Cancer” close to two decades ago, with a vital update occur-
ring 10 y later.1,2 Among these updated hallmarks-i.e. char-
acteristics shared by virtually all tumors-was ‘evasion of the
immune system.’ As such, our understanding of how the
immune system is involved in all steps of the tumor life
cycle (initiation, progression, metastasis, etc.) has grown
exponentially and allowed for the development of specific
immune-targeting therapies.3,4

Multiple signaling pathways involved in the immune
response are responsible for identification and elimination of
malignantly transformed cells.4 Among these key signaling
mechanisms are a diverse group of cytokines called interfer-
ons. Type I interferons (IFNα/β) are cytokines canonically
released by immune cells during viral infection and act
through binding their cognate transmembrane receptor
(IFNαR1/2). This binding leads to dimerization of the recep-
tor, cross-phosphorylation of receptor associated Janus
Activated Kinases (JAK1 and TYK2), and recruitment of
Signal Transducer and Activator of Transcription family
members (STAT1 and STAT2) that are then subsequently
phosphorylated. Phosphorylated STAT1 and STAT2, in con-
junction with Interferon Regulatory Factor 9 (IRF9), form

a transcriptional complex that translocates to the nucleus,
binds DNA at interferon-stimulated response elements
(ISRE), and activates transcription of a diverse subset of
Interferon Stimulated Genes (ISGs).5 While canonically
a pathway activated in response to viral infection, growing
evidence has implicated type I interferons as crucial mediators
in tumor detection and destruction.6–8 Immune “cold”
tumors – those deficient in lymphocyte infiltration/activity –
characteristically lack efficient interferon signaling, justifying
the usage of Stimulator of Interferon Genes (STING) agonists
to bolster activity within this pathway.9 As such, induction of
interferon signaling is a key step in bridging the innate and
adaptive immune systems to mount an effective, anti-
tumorigenic response.

Breast cancer represents the second leading cause of can-
cer-related death in women within the United States.10 Of the
over 250,000 new cases diagnosed annually in the United
States, the vast majority of these express the estrogen (ER)
and progesterone (PR) receptors.11 PR is a ligand-activated
nuclear receptor that functions as a transcription factor, reg-
ulating a variety of genes involved in proliferation and differ-
entiation in the reproductive tract and mammary gland.12

Clinical trial data emerging over the last few decades have
suggested a role for PR, independent of ER, in the develop-
ment of breast cancer.13,14 In light of these data, there is
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clinical impetus for identifying how PR is signaling in breast
cancer in order to better inform treatments for patients with
hormone receptor (ER/PR) positive cancer.

Our previous studies have concluded that PR can inhibit
type I interferon signaling at multiple steps along the cascade,
including prevention of STAT1 phosphorylation, DNA bind-
ing, and ISG transcription.15,16 Because of the biological
importance of interferon signaling (prevention of infection
and disease spread), compensatory mechanisms have been
discovered in the absence of a functional STAT1 complex.
In some instances, STAT2 is able to propagate the interferon
response without STAT1, thus suggesting that multiple antag-
onistic mechanisms are necessary to fully hinder interferon
signaling.17 The present study investigates PR’s ability to
inhibit STAT2 signaling through a mechanism distinct from
PR’s ability to inhibit STAT1. Through inhibition of both
STAT1 and STAT2, PR effectively shuts down interferon
signaling, a vital pathway for the identification and destruc-
tion of nascent tumor cells.

Methods

Cell lines and treatments

T47D and BT474 cells were acquired from ATCC and cultured
in DMEM (Cellgro) supplemented with 5% FBS and 1% peni-
cillin/streptomycin. PR, STAT1, and STAT2 shRNA knockdown
cells were created using viral particles (GE/Dharmacon) target-
ing three different regions of each respective gene. Viral trans-
duction protocol was followed as per manufacturer’s
instructions. Transduced, stable cell line pools expressing NS,
PR, STAT1, or STAT2 shRNA were created in T47D cells fol-
lowing 14 d of selection in 2.5 ug/ml Puromycin (MP
Biomedicals). Target shRNA sequences are listed in
Supplementary Table 1. RFP and STAT1 overexpressing cells
were created using lentiviral ORF particles (GE/Dharmacon).
Transduced, stable cell line pools overexpressing RFP (control)
or STAT1were created in T47D cell lines stably expressingNS or
STAT2 shRNA following 14 d of selection in 15 ug/mL
Blasticidin S HCL (Corning). Sequences are shown in
Supplementary Table 1. Cells were treated with the following
reagents where indicated: R5020 (10 nM, Sigma), human rIFN-α
(1000 IU/mL, IFN-α2A, SPR4594; Sigma-Aldrich, vehicle-H20),
onapristone (10uM, provided through an MTA with Context
Therapeutics), cycloheximide (200ug/mL, Calbiochem), and
MG132 (5uM, Selleck Chemical).

Western blot analysis

Western blot analysis was performed as previously
described.15,16 Primary antibodies for immunoblotting are as
follows: PR (sc-7208; Santa Cruz Biotechnology), phospho-
STAT2 (4441; Cell Signaling), Total STAT2 (sc-1668; Santa
Cruz Biotechnology), IFIT3 (sc-393512; Santa Cruz
Biotechnology), IFIT1 (14769; Cell Signaling), STAT1 (9172;
Cell Signaling), Ubiquitin (3933; Cell Signaling), and beta-
tubulin (2128; Cell Signaling). Densitometry to quantify
immunoblots was performed using ImageJ.

Co-immunoprecipitation

Co-immunoprecipitation experiments were performed as pre-
viously described.15 In brief, 1000ug of protein from isolated
protein lysates were incubated with 2 mg of STAT2 (SC-1668,
Santa Cruz Biotechnology) or control IgG antibody and
rocked overnight at 4°C. Protein G agarose (Roche
Diagnostics) was added for the final 2 h of incubation time.
Beads were washed three times in supplemented RIPA buffer,
bound protein eluted in Laemmili sample buffer, then sub-
jected to immunoblotting as described above.

Quantitative RT-PCR

RNA isolation, cDNA generation, and qRT-PCR were per-
formed as previously described.15,16 qPCR primer sequences
are listed in Supplementary Table 1.

Chromatin immunoprecipitation

Chromatin immunoprecipitation (ChIP) experiments were per-
formed using the ChIP-IT Express Kit (Active Motif) according
to the manufacturer’s instructions. Isolated chromatin was
sheared using sonication and sheared chromatin was IP’d over-
night using the following primary antibodies (or species-specific
IgG control): STAT1 (ab47425; abcam), STAT2 (sc-1668; Santa
Cruz Biotechnology), and IRF9 (76684; Cell Signaling). IP’d
chromatin was analyzed using qRT-PCR with primers designed
to amplify specific ISG promoters. Data shown as percentage
IP’d DNA over input DNA. ChIP-qPCR primer sequences are
listed in Supplementary Table 1.

TCGA analysis

Gene expression data for the 50-gene IRDS signature18 (full
list of genes in IRDS shown in Supplementary Table 2) were
extracted from TCGA breast19 ‘Provisional’ dataset and asso-
ciated clinical metadata were accessed via the cBio portal.20

The IRDS signature score was calculated by summing the
normalized log2 Z-scores of the expression data from the 50
genes. Clinical metadata were used to stratify signature scores
by ER/PR status, and the degree of PR expression by IHC.
PGR gene expression was also extracted from the TCGA
dataset via the cBio portal.20

Statistical analyses

Statistical significance for all experiments was determined
using an unpaired Student’s t-test unless otherwise speci-
fied. A p value ≤0.05 is considered statistically significant.
The Delta method was used to calculate standard devia-
tion for the ratio of two variables using their individual
standard deviations, as seen when plotting fold relative
RNA expression data between two treatment groups/cell
lines.21
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Results

PR and STAT2 interact without affecting STAT2
phosphorylation

As we have previously shown that PR interacts with STAT1, we
proposed that PR may be interacting with multiple proteins in
the type I interferon signaling pathway to inhibit efficient signal
transduction. To test whether PR was interacting with STAT2,
we utilized co-immunoprecipitation in T47D cells (ER/PR-
positive human breast cancer). Following treatment with the
synthetic PR ligand, 10 nM R5020, we found an increase in the
formation of a PR:STAT2 complex when compared to
the vehicle control (Figure 1(a)). Importantly, this was inde-
pendent of STAT1, as STAT1 was not involved in PR:STAT2
complex formation (Supplementary Figure 1). Like other signal
transduction pathways, type I interferon signaling is heavily
regulated through the concerted addition and removal of post-
translational modifications such as phosphorylation, acetyla-
tion, ubiquitination, etc.22 To identify whether PR interacting
with STAT2 impeded phosphorylation of STAT2, we treated
with IFNα for 0–30 min in the presence or absence of PR
ligand (R5020) and found no differences in STAT2 phosphor-
ylation with PR activation (Figure 1(b)). These data suggest
that the interaction between PR and STAT2 does not affect
interferon-induced STAT2 phosphorylation.

PR activation promotes STAT2 ubiquitination and
subsequent protein degradation

Multiple mechanisms exist to inhibit effective interferon sig-
naling in the context of a viral infection – blocking the
production of the interferons themselves, prevention of phos-
phorylation of JAK/STAT proteins, promotion of JAK/STAT
degradation, etc.23 We observed that phosphorylation of
STAT2 was unaffected (Figure 1(b)), so we investigated how
PR activation affects STAT2 protein turnover. To investigate
whether PR is affecting STAT2 expression in this manner, we
utilized the inhibitor cycloheximide (CHX) which prevents
translation and allows for the observation of protein turnover.
We treated T47D cells with CHX and IFNα at varying time
points (0–24 h) in the presence or absence of PR ligand and
found that STAT2 protein was destabilized/degraded at
a higher rate when PR was activated with ligand
(Figure 2(a), Supplementary Figure 2). We observed this
phenotype in an additional PR+ breast cancer cell line,
BT474 (Supplementary Figure 3) Onapristone, a potent PR
antagonist, is currently being evaluated in a surgical window
of opportunity trial in treatment naïve, PR-positive breast
cancers (Onward 203, ONAWA trial). Additionally, onapris-
tone is currently being used in a Phase I clinical trial for
treatment of patients with late-stage breast cancer.24 When
treating with onapristone, we were able to effectively reverse
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Figure 1. PR and STAT2 interact without affecting STAT2 phosphorylation.
(a) STAT2 was immunoprecipitated (IP) from T47D whole cell lysate treated with vehicle (EtOH) control or R5020 (10 nM, 1 hr) followed by immunoblotting with PR-
specific antibody. Antibody for PR recognizes both isoforms (PR-A and PR-B), as labeled in Co-IP and input lysate blots. Mouse-specific IgG used as a control for the IP.
(b) T47D cells were treated with IFNα (1000 IU/mL, or vehicle [H20] in UT condition) for 0–30 min in the presence of vehicle (EtOH) or R5020 (10 nM). Isolated protein
lysate then analyzed for phosphorylated STAT2 (or total STAT2). Beta-tubulin shown as loading control. Densitometry of the ratio of p-STAT2/total STAT2, as
determined using ImageJ analysis, is shown to the right of the immunoblot. These experiments were performed in triplicate, and a representative experiment for
each is shown.
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the ability of PR to promote STAT2 turnover (Figure 2(b)).
This illustrates 1) this effect on STAT2 degradation is PR
dependent, and 2) a drug already in clinical development for
breast cancer prevents PR-mediated STAT2 degradation.

Importantly, we did not see an effect on STAT2 mRNA in
response to R5020 treatment indicating that this regulation is
exclusively post-translational (Figure 2(c)). Increased STAT2
turnover in the presence of PR ligand suggests that PR may be

Figure 2. PR activation promotes STAT2 ubiquitination and subsequent protein degradation.
(a) T47D cells were treated with cycloheximide (CHX, 200ug/mL) and IFNα (1000 IU/mL, or vehicle [H20] in UT condition) in the presence of either vehicle control or
R5020 (10 nM) for 12–24 hours. Isolated protein lysates were then analyzed to assess STAT2 degradation. Beta-tubulin shown as a loading control. Densitometry of
the ratio of STAT2/B-Tubulin, as determined using ImageJ analysis, is shown to the right of the immunoblot. (b) T47D cells were treated with CHX (200ug/mL) and
IFNα (1000 IU/mL, or vehicle [H20] in UT condition) and either vehicle (EtOH), R5020 (10 nM), or a combination of R5020 and Onapristone (10uM) for 12–24
h. Isolated protein was then analyzed to assess STAT2 degradation. Beta-tubulin shown as a loading control. Densitometry of the ratio of STAT2/B-Tubulin, as
determined using ImageJ analysis, is shown to the right of the immunoblot. (c) T47D cells treated with vehicle (EtOH) or R5020 (10 nM) for 6 or 18 h. Isolated mRNA
was then analyzed for STAT2 using quantitative RT-PCR. Gene values were normalized to an internal control (beta-actin). Error bars represent standard deviation (SD)
between biological triplicates. NS = non-significant as determined using a Student’s t-test. (d) T47D cells were pretreated with MG132 (5uM) (or with vehicle control)
and IFNα (1000 IU/mL) for 1 h then co-treated with R5020 (or vehicle) for 6 h. Whole cell lysates were subjected to IP with STAT2-specific antibody and
immunoblotted for ubiquitin. Rabbit-specific IgG used as control for IP. Densitometry of the ratio of Ubiquitin/STAT2, as determined using ImageJ analysis, is shown
to the right of the immunoblot. These experiments were performed in triplicate, and a representative experiment for each is shown.
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promoting ubiquitination of STAT2 protein, effectively target-
ing the protein for proteasomal degradation. To test this, we
used the proteasome inhibitor MG132 to observe the accu-
mulation of ubiquitinated protein. Following pre-treatment
with MG132 and IFNα and subsequent treatment with
R5020, we found that when PR is activated, we observed an
increased population of ubiquitinated STAT2 (Figure 2(d)).
Taken together, these data suggest that PR interaction with
STAT2 promotes ubiquitination, thereby targeting it for
degradation.

STAT2 is essential for type I interferon signaling

Much of the current knowledge regarding interferon signaling
has focused on the role of STAT1, as it is a major component
of multiple interferon-regulated transcriptional complexes.
Emerging data, however, has illuminated the essential role
for STAT2 in promotion of type I interferon signaling during
viral infection.25,26 The dependence on STAT2 to propagate
the immune response in breast cancer, however, has been
understudied. To tease apart how loss of STAT proteins affect
ISGF3 component DNA binding, we first utilized T47D cells
stably expressing either non-silencing (NS) or STAT1 shRNA
(mRNA to confirm STAT1 knockdown with shRNA shown in
Figure 3(a), protein in Figure 5(b)). Using chromatin immu-
noprecipitation (ChIP) assays, we found that in cells lacking
STAT1, STAT2, and IRF9 were still able to bind DNA at
Interferon Stimulated Gene (ISG) promoters (ISREs) in
response to IFNα (Figure 3(b), Supplementary Table 3);
recruitment at select representative ISGs is shown. To then
test the dependence upon STAT2, we used shRNA to stably
knockdown STAT2 (mRNA shown in Figure 4(a), protein in
Figure 5(b)). Contrary to what occurred when STAT1 was
knocked down, we observed abrogated recruitment of STAT1
and IRF9 to ISG promoters, suggesting STAT2 is necessary to
promote efficient DNA binding of other ISGF3 components
(Figure 4(b), Supplementary Table 4). These data suggest that
STAT2, not STAT1, is essential in mediating the interferon
response.

We next measured ISG transcription as a readout of activated
interferon signaling in both shRNA knock down (STAT1 and
STAT2) cell lines. We found that knocking down STAT1 did not
affect ISG transcription (Figure 5(a)), indicating compensatory
mechanisms involving STAT2 can effectively overcome the lack of
STAT1 in breast cancer cells. Studies in viral models have shown
that STAT2 can direct prolonged, constitutive interferon activa-
tion in the absence of a functional STAT1 complex.25,27 We
observe a similar phenotype in our breast cancer cells as exempli-
fied by increased recruitment of STAT2 and IRF9 to ISREs and
increased ISG transcription when STAT1 is knocked down.
Conversely, knocking down STAT2 severely hindered the ability
of these cells to respond to IFNα, further demonstrating the
indispensability of STAT2 in the propagating the interferon sig-
naling cascade (Figure 5(a)). Finally, observing ISG protein out-
put, we compared the interferon response between cells
expressing NS, PR, STAT1, or STAT2 shRNA. We found that
knocking down PR increased the response to IFNα (consistent
with previous data from our laboratory15,16). Furthermore, IFNα
response in STAT1 shRNA cells was comparable to the NS

control, and STAT2 knockdown completely eliminated ISG pro-
tein production (Figure 5(b)). As STAT1 itself is an ISG whose
expression is dampened in STAT2 shRNA cells (Figure 5(b)), we
performed a STAT1 re-expression experiment in these cells. Cells
without STAT2, but with overexpression of STAT1 via lentiviral
transduction, exhibited a similar phenotype in both STAT1 DNA
binding and ISG protein production when compared to STAT2
shRNA alone (Supplementary Figure 4). These data indicate that
the hinderance of the interferon response is solely a result of loss
of STAT2. These data taken together establish the essential role of
STAT2 in the type I interferon response in breast cancer, and
therefore underscore the consequences of PR-mediated degrada-
tion of STAT2 protein.

PR status in human tumors is correlated with decreased
interferon gene signature

To investigate how PR status affects interferon signaling in human
breast cancers, we analyzed data acquired from The Cancer
Genome Atlas (TCGA). Our data suggest PR promotes STAT2
degradation and thereby inhibits proper interferon signaling.
Because this regulation occurs post-translationally and not at the
gene/transcript level, we found that STAT2 gene expression was
expectedly not significantly different between PR-positive and PR-
negative tumors (data not shown). While protein expression data
is limited in TCGA, we can instead identify changes in gene
signatures among PR-positive and PR-negative breast cancers as
a readout for active interferon signaling.We utilized TCGA breast
cancer gene expression datasets (TCGA Breast, provisional19) and
assessed differences in expression of an established interferon
gene signature (that includes the ISGs shown herein, 18 full list
of genes shown in Supplementary Table 2) to identify any differ-
ences between PR-positive and PR-negative breast cancers
(Figure 6(a)). We found that PR expression was significantly
associated with a decrease in this interferon gene signature when
analyzing all tumors in this TCGA dataset. Moreover, when
stratifying PR-positive breast cancers based upon level of expres-
sion (< or >20% PR-positive cellular expression), we found that
expression of the interferon-related gene signature is inversely
correlated with level (% positivity) of PR in ER/PR-positive breast
tumors; tumors with higher percentage PR-positivity exhibited
lower expression of the interferon gene signature (Figure 6(b)).
Moreover, we see a negative correlation (spearman correlation
coefficient [r = −0.1; p = .008]) between PR (PGR) mRNA levels
and expression of the interferon gene signature in the TCGA
dataset containing all ER-positive tumors. Cumulatively, these
data show that PR expression in human breast tumors correlates
with decreased interferon signaling. These data suggest that PR
positivity promotes an immunosuppressive phenotype as mea-
sured by decreased interferon signaling; a potential mechanism by
which early malignancies progress to clinically relevant tumors.

Discussion

In the present study, we have shown that PR interacts with
STAT2. While this interaction does not affect STAT2 phos-
phorylation, we do observe an increase in STAT2 ubiquitina-
tion and degradation when PR is activated by ligand.
Previous studies in virally infected cells have discovered
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that in the absence of a functional STAT1 complex, compen-
satory STAT2-dependent signaling mechanisms are
employed to maintain active interferon signaling.17,25-29

A recent study established the indispensability of STAT2 in
interferon signaling in Hela cells and our work has shown
a similar vital role of STAT2 in breast cancer.30 As our
previous study examined PR’s ability to inhibit STAT1 func-
tionality in breast cancer, we have exhibited a mechanism by
which breast cancer cells attempt to overcome this inhibi-
tion. By inhibiting both STAT1 and STAT2 functionalities,
PR is able to fully abrogate the interferon response, as

exemplified through significantly decreased ISG transcrip-
tion (Figure 7). Data from our previous studies, as well as
analyzed TCGA data in the present study, have shown that
this PR-dependent downregulation of ISGs is seen in human
tumors as well.

For patients with ER/PR-positive breast cancer, the current
standard of care primarily involves ER-targeted therapies like
aromatase inhibitors or selective estrogen modulators/down reg-
ulators (i.e. fulvestrant, tamoxifen).31 While such therapies have
proven to be effective in these patients, they are accompanied by
undesirable side effects which can hinder compliance.
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Figure 3. Interferon-induced DNA binding is maintained in the absence of STAT1.
(a) RNA isolated from T47D cells stably expressing either Non-silencing (NS) or STAT1 shRNA then subjected to quantitative RT-PCR to assess efficiency of knockdown.
Gene values were normalized to an internal control (beta-actin). Error bars represent SD between biological triplicates. Statistical significance (p < .05) determined
using a Student’s t-test. (b) T47D-NS and T47D-STAT1 shRNA cells lines were treated with vehicle (H20) or IFNα (1000 IU/mL) for 4 h then fixed lysates were subjected
to ChIP analysis using antibodies specific for STAT2 and IRF9 (or species-specific IgG control). Isolated DNA was then analyzed using qRT-PCR using primers designed
to amplify the IFIT1 and IFIT3 promoters (TSS = Transcriptional Start Site). Percentage recruitment of STAT2 and IRF9 shown as ChIP’d DNA over input DNA. Numbers
above bar indicate fold recruitment over vehicle control for each cell line. These experiments were performed in triplicate, and a representative experiment for each
is shown. Results from replicate experiments are shown in Supplementary Table 3.
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Furthermore, many patients, even when compliant, will still
relapse.32,33 Our increased understanding of immune signaling
in tumorigenesis has led the development of multiple immu-
notherapies – checkpoint inhibitors (CTLA-4, PD-L1), CAR-T
therapy, vaccination, etc.34 These innovative approaches to cancer
treatment have proven to be effective in several tumor types but
have been largely disappointing in luminal breast cancer.35

Tumors more likely to respond to these therapies are considered
immune “hot” – higher mutational burden, cytotoxic lymphocyte
infiltration, increased antigen presentation, etc.36 Breast cancer,
particularly hormone receptor-positive breast cancer, lacks immu-
nogenicity and therefore is immune “cold”.37 Identifying

a mechanism by which immune signaling is hindered in PR-
positive breast cancer, and finding a way to target and convert
to a “hot” environment could open up the possible therapies these
patients will respond to and vastly improve clinical outcomes.38

The data shown herein illustrates that PR is repressing the inter-
feron response, which we speculate may contribute to the promo-
tion of an immunosuppressed microenvironment. Additionally,
data from this study and previous studies from our lab have
illustrated a ligand-independent effect of PR downregulating
interferon response, further reinforcing a potent effort in inhibit-
ing this particular immune response.15,16 It is essential to further
define how PR suppresses immune signaling, as it may be
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Figure 4. ISGF3 binding is severely hindered in the absence of STAT2.
(a) RNA isolated from T47D cells stably expressing either Non-silencing (NS) or STAT2 shRNA then subjected to quantitative RT-PCR to assess efficiency of knockdown.
Gene values were normalized to an internal control (beta-actin). Error bars represent SD between biological triplicates. Statistical significance (p < .05) determined
using a Student’s t-test. (b) T47D-NS and T47D-STAT2 shRNA cells lines were treated with vehicle (H20) or IFNα (1000 IU/mL) for 4 h then fixed lysates were subjected
to ChIP analysis using antibodies specific for STAT1 and IRF9 (or species-specific IgG control). Isolated DNA was then analyzed using qRT-PCR using primers designed
to amplify the IFIT1 and IFIT3 promoters (TSS = Transcriptional Start Site). Percentage recruitment of STAT1 and IRF9 shown as ChIP’d DNA over input DNA. Numbers
above bar indicate fold recruitment over vehicle control for each cell line. These experiments were performed in triplicate, and a representative experiment for each
is shown. Results from replicate experiments shown in Supplementary Table 3.
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a promising therapeutic target to prime tumors for immune-
directed therapies and current experiments are underway to
further characterize this connection.

Pre-clinical and clinical data have shown an essential role
for type I interferons in bridging the innate and adaptive
immune responses to promote dendritic cell (DC) priming
and cytotoxic T cell recruitment/activation.8 In particular,
mice lacking the interferon receptor (IFNαR) show defects
in CD8α+ DC ability to cross-present to cytotoxic CD8 + T
cells; lymphocytes established to be vital in tumor rejection.39

Interferon stimulated genes (ISGs), are a diverse group of
proteins produced in response to active interferon signaling.
Previous studies have shown that many of these proteins are
involved in lymphocyte trafficking, inhibition of proliferation
and cell motility, antigen presentation, and apoptosis.40

Additionally, PD-L1 expression is induced on immune cells
in response to interferons.41 As PD-L1 expression is necessary in
determining whether a patient will respond to anti-PD-1/PD-L1
directed checkpoint inhibitors, the implications of inhibiting
interferon signaling in the tumor microenvironment cannot be
overstated.42 The upregulation of PD-L1 on immune cells is not

unique to type I interferons, as crosstalk exists between type
I and type II (i.e. INFgamma) signaling via STAT1-dependent
mechanisms.43 Current studies are underway to identify the
impact of PR and progesterone on type II interferon signaling.
Finally, a study recently published by Anurag et al., showed that
endocrine therapy-resistant tumors exhibited an inverse correla-
tion between PR expression and immune checkpoint expression,
further illustrating the role of PR in promoting an immunosup-
pressive microenvironment.44 The initial data herein and pre-
vious studies from our lab have demonstrated a concerted effort
of PR to decrease interferon signaling in breast cancer cells
which warrants further investigation into hormone mediation
of the immune response in tumor development.

There is precedence for utilizing ubiquitination of STAT2
to inhibit type I interferon signaling. Multiple viruses employ
viral proteins to function as E3 ubiquitin ligases to promote
degradation of STAT2, thereby effectively inhibiting inter-
feron signaling and allowing for the progression of
infection.45–47 Much like viruses that need to overcome type
I interferon signaling to replicate within their hosts, trans-
formed cells need to downregulate or inhibit this pathway to
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Figure 5. STAT2 is essential for efficient ISG transcription.
(a) T47D-NS, T47D-STAT1 (Figure 3(a)), and STAT2 shRNA cells (Figure 4(a)) were treated with vehicle, R5020 (10 nM), INFα (1000IU), or a combination of both for 6
h. RNA was isolated and subjected to qRT-PCR to analyze ISG (IFIT1, IFIT3) transcription. Gene values were normalized to an internal control (beta-actin). Error bars
represent SD between biological triplicates. Fold induction (IFNα/Vehicle) labeled above bar to illustrate the effect of STAT1 and STAT2 knockdown on interferon
response. (b). T47D cells stably expressing NS, PR, STAT1, or STAT2 shRNA were treated with IFNα (or vehicle, H20) for 6 h then isolated protein was analyzed using
western blotting to assess ISG protein expression. Beta-tubulin shown as loading control. These experiments were performed in triplicate, and a representative
experiment for each is shown. Densitometry of the ratio of IFIT1/B-Tubulin and IFIT3/B-Tubulin, as determined using ImageJ analysis, is shown to the right of the
immunoblot.
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avoid immune detection. Immune evasion allows for nascent
tumor cells to avoid destruction by cytotoxic immune cells
and progress to palpable tumors. Interestingly, mutations in
STAT1 and STAT2 are not common in breast cancer.19 As the
majority of breast cancers are PR-positive and our data have
shown PR inhibits these pathways, genomic mutations of
these proteins would not be necessary to establish an

immunosuppressive, tumorigenic microenvironment; PR
inhibition of STAT1 and STAT2 activity circumvents the
need for loss/mutation of these proteins.

We have identified multiple ways in which PR attacks the
interferon signaling pathway, which we speculate may offer
a potential mechanism by which nascent breast cancer cells
(the majority of which are PR-positive) evade immune

Figure 6. PR status in human tumors is correlated with decreased interferon gene signature.
TCGA (Breast, provisional19) data analyzed for expression of interferon gene signature.18 Breast tumor data stratified based on ER/PR status (a) or on degree of PR
positivity as determined by IHC (b). Gene signature score calculated by summing the normalized log2 Z-scores of the expression data from 50 interferon-related
genes. Statistics were determined using a two-sided t-test. (c) A Pearson’s correlation was tested between the 50 interferon-associated gene signature and PGR gene
expression across clinically ER+ tumors.

Figure 7. PR inhibits type I interferon signaling by targeting both STAT1 and STAT2.
Summary of PR-mediated inhibition of type I interferon signaling through multiple mechanisms. Previous study showed that PR inhibits STAT1’s ability to be
efficiently activated (i),15 but this is not sufficient to fully shut down interferon signaling (Figures 3 and 5). STAT2 compensates for loss of STAT1 functionality and PR
intervenes by promoting STAT2 ubiquitination and degradation (ii) (Figure 2). Without STAT1 and STAT2, PR effectively shuts down interferon signaling in the tumor
cell, thus inhibiting a crucial signal transduction pathway necessary for immune recognition (iii).
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detection and effectively escape immune-mediated destruc-
tion. We have also demonstrated that treatment with onapris-
tone, a potent anti-progestin can reverse the ability of PR to
promote STAT2 degradation. Because of this, it is imperative
to investigate further whether targeting PR signaling could
offer an advantage as a chemopreventative agent to prime
immunosuppressed tumors to respond to other types of ther-
apy. Current studies are underway to further characterize PR’s
role in immune escape and how this affects tumor formation
and progression in vivo.
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