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Abstract: Membranous extracellular matrix (ECM)-based scaffolds are one of the most promising
biomaterials for skin wound healing, some of which, such as acellular dermal matrix, small intestinal
submucosa, and amniotic membrane, have been clinically applied to treat chronic wounds with
acceptable outcomes. Nevertheless, the wide clinical applications are always hindered by the poor
mechanical properties, the uncontrollable degradation, and other factors after implantation. To
highlight the feasible strategies to overcome the limitations, in this review, we first outline the current
clinical use of traditional membranous ECM scaffolds for skin wound healing and briefly introduce
the possible repair mechanisms; then, we discuss their potential limitations and further summarize
recent advances in the scaffold modification and fabrication technologies that have been applied to
engineer new ECM-based membranes. With the development of scaffold modification approaches,
nanotechnology and material manufacturing techniques, various types of advanced ECM-based
membranes have been reported in the literature. Importantly, they possess much better properties
for skin wound healing, and would become promising candidates for future clinical translation.

Keywords: chronic wounds; extracellular matrix; membranous scaffolds; skin substitutes; wound healing

1. Introduction

Chronic nonhealing wounds, including diabetic ulcers, pressure ulcers, venous ulcers
and arterial ulcers, remain a major medical problem that poses a heavy burden on the
patients, their families, and the healthcare system [1,2]. The situation may become worse
because of a growing population of the elderly and an increasing morbidity of patients [3].
Undoubtedly, there is an urgent need for effective biomaterials to repair wounds in a
shorter period of time, to improve the functional restoration of injured skin, and to reduce
scar tissue formation.

Body membranes are thin layers of cells or tissues covering the surface of body, the
internal organs, or the body cavities. Generally, they can be classified into two categories:
(1) the epithelial membranes, and (2) the connective tissue membranes [4]. The epithelial
membranes, which are composed of epithelial tissue and fibrous connective tissue, can
be further divided into (1) the cutaneous membrane (i.e., skin), (2) the serous membranes,
such as pleura, peritoneum, and amniotic membrane, and (3) the mucous membranes [4].
Unlike epithelial membranes, connective tissue membranes (e.g., periosteum, fascia, and
synovial membrane) are typically composed of cells, ground substance, and connective
tissue fibers [4].

After decellularization, extracellular matrix (ECM) scaffolds obtained from different
types of body membranes retain a variety of bioactive substances such as the growth factors,
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collagen, laminin, fibronectin, and polysaccharide. Notably, they possess ultrastructure
features similar to that of the natural tissues [5–7]. These microporous thin films have a
distinct advantage in the mass exchange between tissues [8,9]. Particularly, scaffolds in
a thin planar form are favorable for high density cell seeding and the migration of repair
cells from adjacent tissues [8,10]. These merits make membranous ECM scaffolds extremely
attractive for skin wound healing.

Indeed, the safety and efficiency of several membranous ECM scaffolds have been
verified in many clinical practices; however, some of their physicochemical properties, such
as the mechanical strength and the degradation characteristics, are far from satisfactory
for broad applications. This is partially due to the damage of the crosslinked networks of
natural tissues during scaffold preparation, especially the use of acids, alkalis or proteases
for decellularization. It is well-known that an ideal scaffold for tissue repair should possess
good biocompatibility, robust bioactivity, suitable degradation, and proper mechanical
properties. Therefore, attempts to endow traditional membranous ECM scaffolds with
desired properties have been the focus of many researches. For instance, to meliorate the
physical or chemical defects of traditional ECM scaffolds, different crosslinking methods
have been developed [11]. Furthermore, diverse macromolecules, either natural or syn-
thetic, have been used as functional additives to produce ECM-based implants [12–16]. In
light of the functional requirements of normal wound healing, many types of biomolecules,
nanoparticles, and drugs have been utilized to engineer new generations of ECM-based
biomaterials, which can stimulate a specific wound healing stage or event to facilitate
chronic wound healing.

In this article, we aim to review the development of membranous ECM-based scaffolds
for skin wound healing. After a brief introduction of the traditional scaffolds, recent
advances in the scaffold modification and the fabrication of new ECM-based membranes
are summarized. Future research directions and perspectives on the scaffolding strategies
are provided.

2. Traditional ECM Scaffolds Derived from Body Membranes for Skin
Wound Healing

Traditional ECM membranes derived from human or animal tissues, such as peri-
cardium, peritoneum, and chorion, have been utilized to facilitate skin wound heal-
ing [17–22]. Among them, acellular dermal matrix (ADM), small intestinal submucosa (SIS),
and acellular amniotic membrane (AAM) are representative biomaterials that have been
commercialized and extensively applied in the clinic [21,23,24]. The exact wound repair
mechanism of membranous ECM scaffolds in living organisms remains to be fully under-
stood. But it has been assessed that, besides physical support, traditional ECM membranes
have functions of immunomodulation, growth factor stimulation and ECM regulation,
which can trigger several crucial events during wound healing process (Figure 1) [10].
Chronic wounds usually experience a prolonged inflammation phase with some abnormal
healing events. Some ECM membranes, like SIS and acellular pericardium, were proved
to have immunomodulatory ability. They are capable of triggering the macrophages to
express a predominant M2-like phenotype, which can secret pro-healing cytokines to ini-
tiate the anti-inflammatory and pro-remodeling process [25,26]. Moreover, some ECM
components possess bioactive motifs to regulate cell adhesion and proliferation, such as the
Arg–Gly–Asp (RGD) motif. The special domain of RGD peptide is capable of converting the
inflammatory response towards a pro-healing response through the binding with integrins
of macrophages to modulate signaling pathways involved in cell migration, adhesion, and
inflammatory activation [27]. Besides, the inherent growth factors of ECM membranes may
provide a complex signaling milieu to stimulate granulation tissue formation, moderate
cell transition, angiogenesis, and matrix formation and remodeling during the wound
healing phases [28,29].
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Figure 1. Diagram depicting concept and mechanisms of skin wound healing assisted by traditional ECM membranes.
ECM membranes have multiple functions in the different phases of cutaneous wound healing. ECM: extracellular matrix;
GFs: growth factors.

2.1. Acellular Dermal Matrix (ADM)

Produced from human or animal skin, ADM is favorable for full-thickness skin wound
healing and can reduce scar tissue formation [21,30–32]. After transplantation in the
wound bed, ADM enhances the synthesis of hyaluronic acid and induces wound angiogen-
esis [29,33,34]. Currently, there are several ADM products from human skin, such as the
AlloDerm™, GraftJacket®, and SureDerm® [35]. AlloDerm™ has been utilized to cover
deep burn wounds in a case series. The application of AlloDerm™ resulted in excellent
graft take, good elasticity, little contracture, and few scarring [36]. GraftJacket® has been
recommended in the treatment of diabetic wounds or the replacement of damaged or
inadequate integumental tissue [37]. When compared with standard wound care, it was
reported that a single application of GraftJacket® can reduce the mean wound healing time
of diabetic foot ulcers [38].

Comparing with ADM derived from human skin, animal ADM products are more
cost-effective and more frequently applied for large skin defects [21]. Some animal ADM,
such as those from bovine, porcine, and fish skin, have been approved by the US Food
and Drug Administration [39–41]. For instance, Kerecis™ graft, a newly-approved ADM
product from fish skin, is very attractive for wound management because of the anti-
inflammatory property of its exclusive omega-3 polyunsaturated fatty acids [42]. Further,
the Kerecis™ graft avoids the risk of potential viral and prion transmission, which might
be seen in mammalian-derived products [34]. According to recent clinical studies, the
Kerecis™ graft can heal acute or chronic deep skin wounds with a shorter healing time
than conventional wound treatment [41,42].
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2.2. Small Intestinal Submucosa (SIS)

SIS is a membranous ECM scaffold derived from porcine small intestine. It has
attracted considerable attention in clinical applications for tissue regeneration, mainly
because of the good capabilities of activating immune mediators, inducing angiogenesis,
and promoting reepithelialization [7,43,44]. These effects are likely due to the release
of growth factors, such as basic fibroblastic growth factor, transforming growth factor-
β (TGF-β), and vascular endothelial growth factor (VEGF) [45,46]. Mechanistically, SIS
can orchestrate wound remodeling by eliciting a response of macrophages towards a M2
phenotype rather than a M1 phenotype, where the M1 phenotype can lead to prolonged
inflammation and scarring [47,48]. Furthermore, SIS has a unique effect on the inhibition
of matrix metalloproteinases [49]. Based on these merits, SIS is applicable for treating
chronic wounds, where the microenvironment is harsh and the matrix metalloproteinases
are abundant [46,50,51].

Taking Oasis® Wound Matrix as an example, the clinical safety and efficiency of this
SIS product have been confirmed by a clinical trial, in which 130 chronic leg ulcer cases
were involved [52]. In this study, Oasis® Wound Matrix demonstrated 40% of complete
healing at 12 week after treatment, while the standard care group just resulted in 29% of
complete healing [52]. In another study, chronic venous ulcers treated with SIS Wound
Matrix resulted in a significant decrease in the expression of matrix metalloproteinases
and pro-inflammatory cytokines, while the level of TGF-β was significantly increased [53].
These results revealed that SIS Wound Matrix healed chronic wounds by leading the
healing process to a more acute wound state [53].

2.3. Acellular Amniotic Membrane (AAM)

Amniotic membrane is the innermost layer of fetal placenta. ECM scaffolds derived
from human amniotic membranes, termed AMM, have been commercialized for skin
wound healing, such as the SURFFIXX®, AmnioBand®, Biovance®, and EpiFix® [21,54].
Featuring anti-bacterial, immunomodulatory, and pain-reducing properties, AAM can
significantly promote the healing of various kinds of cutaneous wounds, such as superficial
or partial thickness burns, pressure sores, and chronic leg ulcers [55,56]. According to
a systematic review and meta-analysis study, the safety and efficiency of AAM have
been confirmed in the treatment of split-thickness skin graft donor sites [57]. For chronic
diabetic foot ulcers, a shorter time to complete healing and a higher proportion of complete
healing were observed in the AAM group when compared with the standard wound care
group [58].

2.4. Other ECM Membranes

Beyond ADM, SIS and AAM, other ECM membranes have been investigated for
skin wound healing, such as decellularized membranes derived from mesothelium and
forestomach. Decellularized mesothelium membranes are scaffolds obtained from a simple
squamous epithelium, which lines the walls of body cavities, such as the pleura, peri-
toneum, and pericardium [17,30]. In 2020, Alizadeh et al. have developed an ovine
decellularized pericardium, which seems appealing for skin regeneration [17]. In another
example, Endoform®, a forestomach-derived ECM membrane, was efficient in inhibiting a
broad spectrum of matrix metalloproteinases and has been used for the healing of acute
and chronic wounds [46,59].

3. Limitations of Traditional ECM Membranes

Although traditional ECM membranes possess excellent biological characteristics and
have shown efficiency in the clinical treatment of skin wounds, there are some shortcomings
hindering their broad applications. Firstly, the reagents and decellularization methods
used in the preparation of scaffolds usually damage the network of natural tissues, which
can lead to a rapid degradation and poor mechanical behavior of the final products [60].
Secondly, it is well-known that the accumulation of bacteria in the wounds can mediate
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the production of inflammatory cytokines and thus promote wound inflammation [61].
Considering that most ECM membranes do not possess antibacterial property, the risk of
possible transmission of fungal, bacterial, or viral infections should be carefully addressed
to avoid any unfavorable complications [62]. Furthermore, due to the heterogeneity of
bio-derived materials, developing standard protocols to improve the consistency of ECM
membranes is necessary for future clinical applications [60]. To conquer these limitations,
various scaffold modification strategies, such as crosslinking, blending with other materials,
and adding bioactive substances and/or functional particles, have been studied to improve
the performance of traditional ECM scaffolds [21]. In the following sections, we will
summarize current strategies to address these challenges.

4. Scaffold Modification for Advanced ECM-Based Membranes
4.1. Crosslinking

Crosslinking is a widely used scaffold modification strategy, which can greatly increase
the enzymatic resistivity of ECM scaffolds and improve their biomechanical features.
To prepare crosslinked ECM-based membranes, the common methods include chemical
crosslinking and physical crosslinking.

4.1.1. Chemical Crosslinking

Many chemical crosslinking agents can serve as a powerful tool to crosslink the
polymeric backbone of ECM scaffolds with a high crosslinking degree [63,64]. It should
be noted that the feasibility of biomedical applications of some traditional crosslinking
agents, such as glutaraldehyde, is still controversial because of the relatively high toxicity
and the unfavorable results after implantation, especially the severe immune rejection
of scaffolds, the reduced hemocompatibility, and tissue calcification [60,65–68]. In that
case, naturally occurring small molecule agents, which possess lower toxicity, have been
explored for the potential applications for ECM scaffold modification [11,69]. Particularly,
some of these naturally occurring crosslinkers have attractive characteristics for broad
biomedical applications, such as the abilities to alleviate inflammatory responses and to
inhibit the initiation of tissue calcification [65,70,71].

For traditional ECM membranes, the applications of some natural crosslinking agents,
such as genipin, quercetin, and proanthocyanins, have been investigated in recent years
(Table 1) [65,72,73]. Gobinathan et al. reported that genipin-crosslinked AAM possessed a
slower degradation rate and a lower swelling percentage than those of the AAM alone [73].
In addition, the genipin-crosslinked ADM showed significant reductions of amino acids, re-
sulting in 37.75% in lysine, 22.89% in arginine, 21.88% in asparagine, 28.81% in glycine, and
19.48% in alanine [72]. Comparing with genipin-crosslinked ADM, quercetin-crosslinked
ADM was more suitable for the applications where a lower crosslinking degree and a lower
scaffold stiffness were required [72]. In vitro assays of proanthocyanins-crosslinked SIS
showed that the crosslinking procedure resulted in an improved mechanical property and
better anti-calcification potential [65].

Interestingly, some natural macromolecules can serve as crosslinking agents after
proper modifications. As the modified products of chitosan, some chitosan derivatives
preserve the antibacterial property, hemostatic and analgesic effects of chitosan, and impor-
tantly they acquire several unique properties such as excellent solubility and pH sensitivity
(Table 1) [74]. These properties make them promising candidates for crosslinking wound
healing biomaterials. For instance, after crosslinking ADM with oxidized 2-hydroxypropyl
trimethylammonium chloride chitosan (OHTCC), the obtained scaffolds possessed better
physicochemical characteristics, including improved tensile strength, enhanced antibac-
terial activity, and better enzymatic stability [75]. To further avoid the possible cyto-
toxicity of OHTCC, Zheng et al. have synthesized epoxidized N-(2-hydroxypropyl)-3-
trimethylammonium chitosan chloride (EHTCC) and successfully produced an EHTCC-
crosslinked ADM, which showed not only improved mechanical properties, thermal sta-
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bility, and hydrophilicity but also excellent cellular compatibility and wound healing
capacity [76].

Table 1. Recent studies about crosslinked ECM-based membranes.

Materials Crosslinking Methods Physical and Chemical
Properties Biological Results Ref.

GP-AAM GP crosslinking Lower swelling ratio Improved anti-collagenase
degradation ability [73]

Quercetin-ADM Quercetin crosslinking
Improved mechanical strength
and stiffness; Reorientation of

the amino groups
/ [72]

PC-SIS PC crosslinking
Improved max load and elastic

modulus; Improved
anti-calcification property

Improved anti-collagenase
degradation ability; Facilitated cells

organization, enhanced ECM
deposition, and promoted functional

gene expression

[65]

OHTCC-ADM OHTCC crosslinking Improved thermal stability;
Improved tensile strength

Improved anti-collagenase
degradation ability; Improved

antibacterial activity; Preserved good
cytocompatibility

[75]

EHTCC- ADM EHTCC crosslinking

Improved mechanical
properties; Improved thermal

stability; Improved
hydrophilicity

Excellent cellular compatibility and
wound healing capacity [76]

Riboflavin/UV-AAM
UV crosslinking with

riboflavin as
photosensitizer

Improved young’s modulus
and ultimate tensile strength;

Decreased water content

Improved anti-collagenase
degradation ability; Preserved good

cytocompatibility
[77]

ECM: extracellular matrix; GP: genipin; AAM: acellular amniotic membrane; ADM: acellular dermal matrix; PC: procyanidins; SIS: small in-
testinal submucosa; OHTCC: oxidized 2-hydroxypropyltrimethyl ammonium chloride chitosan; EHTCC: epoxidized N-(2-hydroxypropyl)-
3-trimethylammonium chitosan chloride.

4.1.2. Physical Crosslinking

Physical crosslinking provides a safe and simple method for introducing new crosslinks
within the acellular matrices. Ultra-Violet (UV) irradiation, which can crosslink and ster-
ilize materials simultaneously without the introduction of exogenous toxic chemicals, is
a commonly employed physical crosslinking technique for ECM-based membranes. Im-
portantly, UV irradiation often forms bonds between the aromatic residues of polypeptide
chains rather than the basic and acidic side chains, which may affect cell behaviors [64,78].
However, due to the unsatisfied crosslinking efficiency of UV irradiation, this technique is
usually utilized as an adjunctive method. To increase the crosslinking efficiency, researchers
often combine UV irradiation with photosensitizers, such as the addition of riboflavin
(Table 1) [79,80]. In an interesting study by Arrizabalaga et al., riboflavin/UV-crosslinked
AAM showed superior anti-biodegradation behavior, and maintained the ability to support
the proliferation and differentiation of adipose-derived stem cells [77]. Meanwhile, the
mechanical properties of riboflavin/UV-crosslinked membrane were about triple that of
the noncrosslinked AAM [77].

4.2. Combining ECM with Other Biomaterials

In addition to the high process flexibility and fine biocompatibility, synthetic bio-
materials are advantageous in controlling the degradation and mechanical properties of
scaffolds [81,82]. Various synthetic polymers, such as polyurethane, polyvinyl alcohol,
and polycaprolactone, have been used to fabricate composite scaffolds to meet the need
of physicochemical properties for skin wound healing [83–87]. For example, trough the
assembling of an AAM sheet with a polycaprolactone nanofiber mesh, it was reported that
a four- to ten-fold improvement in the suture retention strength, toughness, and ultimate
tensile strength can be achieved in the bilayer membrane [84].

Besides synthetic polymers, bio-derived materials have been utilized as additives to en-
hance the performance of traditional ECM membranes [88–91]. In 2019, Dhasmanathe et al.
fabricated a series of composite silk fibroin (SF)/ADM membranes through the dip-coating
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of ADM in SF solutions at concentrations of 5%, 10%, and 15%, respectively [92]. Among
them, ADM modified with 5% SF protein, whose porosity and pore size were closest to
ADM, showed faster wound contraction, better re-epithelization, and scarless healing in
the full-thickness skin wounds as compared to the pure ADM group [92]. In another study,
Yang et al. successfully developed a novel chitosan/AAM bilayer membrane by using the
freeze-casting method; importantly, the bilayer membrane possessed good wound healing
ability for diabetic wounds [88]. Interestingly, it has been observed that blood components
can promote the activity of traditional ECM membranes. Activated by platelet rich plasma
and calcium chloride composition, AAM showed better wound healing outcomes in a
mouse skin wound model, which was evidenced by better regeneration of epidermis, hair
follicles and basement membrane [90].

4.3. Loading ECM with Therapeutic Agents

Normal skin wound healing involves multiple pathways to go through the phases
of hemostasis/inflammation, proliferation, and remodeling [10]. Bacterial pathogens can
reach the wound sites and produce endotoxins at the wound beds [93]. The endotoxins can
stimulate the secretion of proinflammatory cytokines, which in turn decrease the syntheses
of growth factors and collagens that are favorable for wound healing, and finally result in
critical colonization and invasive infection of pathogens [94]. Therefore, in cases of ECM
membranes with little antibacterial property, wound infection and inflammation are crucial
issues that need to be well addressed.

4.3.1. Loading with Antibacterial Agents

To enhance the antibacterial property of ECM-based wound dressings, different an-
tibacterial drugs, including rifampicin, ciprofloxacin, gentamycin, and minocycline, have
been used as additives (Table 2) [13,95–97]. Gentamicin loaded SIS, for instance, was
proved to exert sufficient antimicrobial activity against a broad array of pathogens (E. coli,
S. epidermidis, methicillin-resistant S. aureus, P. aeruginosa, S. marcescens, and S. aureus), and
particularly, the antibacterial effects could be maintained for up to 7 days [98]. Similarly,
Goller et al. have loaded the chitosan (CS)-porcine urinary bladder (UBM) wound dressings
with minocycline or rifampicin [99], which resulted in antimicrobial activities against E.
coli and S. aureus. The drug release rate and the antibacterial effect of these scaffolds could
be adjusted by regulating the ratio of CS and UBM [99].

Further, antibacterial nanoparticles with high surface area-to-volume ratios have also
been developed as popular additives [109–111]. The unique physiochemical properties of
nanoparticles facilitate them to penetrate the skin tissue and inhibit the growth of bacterial
through multiple mechanisms such as the blocking of cellular respiration, the disrupting
of bacterial membranes, and the condensing of bacterial DNA [100,112]. In particular, the
antibacterial efficacy of nanoparticles can be modulated by changing their micromorphology,
zeta potential, surface functionalization, and hydrolytic stability [112,113].

Currently, various kinds of antibacterial metal nanoparticles, like silver nanoparticles, zinc
oxide nanoparticles, and titanium oxide nanoparticles, have been incorporated into membra-
nous ECM scaffolds to produce advanced wound dressings (Table 2) [100–102,114,115]. Among
them, silver nanoparticles have been widely used in the treatment of acute and chronic
wounds. Through the immersion of scaffolds in silver nanoparticle suspensions at concen-
trations of 0% to 1%, ADM have been used to fabricate nanoparticle-loaded ADM [100].
These silver nanoparticle-functionalized ADMs were without significant cytotoxicity, but
showed a concentration dependent suppression of the growth of Pseudomonas aeruginosa
and Staphylococcus aureus [100]. Furthermore, by using a similar scaffolding method, silver
nanoparticles have been loaded onto SIS membranes, and the modified scaffolds were
effective in the treatment of Pseudomonas aeruginosa-infected burn wounds [101]. In the
wounds treated with silver nanoparticles loaded SIS membranes, the expression levels of
IL-6 and C-reactive protein were significantly lower than that of the pure SIS group, accom-
panying with less inflammation, more re-epithelization, and better neovascularization [101].
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Zinc oxide nanoparticles, another frequently used agent to avoid wound infection, are
compatible with biological system, and their biocompatibility and antimicrobial activity
are related to the particle size [116]. After loading with zinc oxide nanoparticles, it was
observed that AAM wound dressings showed a dose-dependent antibacterial activity of
Gram-positive (S. mutans, S. aureus, L. fusiformis, and E. faecalis) and Gram-negative bacteria
(P. vulgaris, S. sonnei, C. freundii, and P. aeruginosa) [102].

Table 2. Various therapeutic agents contained ECM scaffolds and their biological characteristics.

Materials Developing Methods Biological Characteristics Ref.

Gentamicin-SIS Hydrated SIS in a 40 mg/mL gentamicin
solution for 2 min

Anti-E. coli; Anti-S. epidermidis;
Anti-methicillin-resistant S. aureus, Anti-P.

aeruginosa; Anti-S. marcescens; Anti-S. aureus
[98]

Antibiotic-CS-UBM

Dissolved the antibiotic powder (3 mg
minocycline/dish or 0.5 mg

rifampicin/dish) to the CS: UBM slurry in
a 60 mm petri dish

Anti-E. coli; Anti-S. aureus; Adjustable drug release
rates and antibacterial effects [99]

Silver NP-ADM
Immersed ADM into a silver NP

suspension at concentrations of 0 to 1% for
1 min

Anti-P. aeruginosa; Anti-S. aureus;
No significant cytotoxicity [100]

Silver NP-SIS Immersed SIS into a 50 mg/mL silver NP
suspension for 24 h

Anti-P. aeruginosa; Lower expression levels of IL-6
and C-reactive protein, less inflammation, more

re-epithelization, and better neovascularization in
the wounds of the silver NP-SIS group than that of

the pure SIS group.

[101]

ZnO NP-AAM Immersed AAM into a 75 µg/mL ZnO NP
suspension for 3 h

Anti-Gram-positive bacteria (S. aureus, S. mutans,
E. faecalis, and L. fusiformis); Anti-Gram-negative
bacteria (S. sonnei, P. aeruginosa, P. vulgaris, and

C. freundii)

[102]

THDP-ADM
Coated ADM with a 10 mL THDP solution

at concentrations of 0.647, 1.62 and
3.24 mM

Anti-Gram-positive bacteria (S. aureus);
Anti-Gram-negative bacteria (E. coli, P. aeruginosa);

Endotoxin-blocking property
[103]

Dex-SIS
AgS-SIS

Electrospun solutions containing Dex-SIS
or AgS-SIS Suppressed macrophage infiltration [13]

CeO2 NP-ADM
Immersed ADM into a CeO2 NP

suspension at concentrations of 1 to
20 mg/mL for 24 h

Antioxidant property [104]

CN-CS-ADM Added CN to the CS-ADM at a
concentration of 1.5 mg/mL Good ROS scavenging property [105]

EGF-HA-DP Immersed HA-DP into a 1 µg/mL EGF
solution for 12 h

Raised wound healing rate; Promoted regeneration
of skin appendages; The regeneration of thicker

epidermis and dermis layers
[106]

Curcumin-SIS
Added SIS to the curcumin solutions at

concentrations of 0.1, 0.5 and 1% for
30 min

Anti-E. coli; Anti-S. aureus;
Free radical scavenging capability [107]

Honey-ADM
Immersed ADM into the honey solutions

at concentrations of 5%, 10%, 15% for
30 min

Anti-E. coli; Anti-S. aureus;
Controlled immune response [108]

ECM: extracellular matrix; SIS: small intestinal submucosa; CS: chitosan; UBM: porcine urinary bladders; ADM: acellular dermal matrix; NP:
nanoparticle; ZnO: Zinc oxide; AAM: acellular amniotic membrane; THDP: thrombin-derived host defense peptides; Dex: dexamethasone; AgS:
silver sulfadiazine; CeO2: cerium oxide nanoparticles; CN: carbon nanodots; EGF: epidermal growth factor; DP: decellularized peritoneum.

In addition to drugs and nanoparticles, antiseptic peptides have been utilized to
generate antibacterial biomaterials for wound healing. For instance, Kasetty et al. showed
that, after the addition of thrombin-derived host defense peptides, the modified ADM
scaffolds exert antibacterial activity against E. coli, P. aeruginosa, and S. aureus [103]. Fur-
thermore, these peptides can protect ADM from bacteria-mediated degradation and endow
the biomaterial with endotoxin-blocking property [103].

4.3.2. Loading with Anti-Inflammatory Agents

Because prolonged inflammation may impair normal wound healing, many anti-
inflammatory substances, such as drugs and nucleic acids, have been loaded on wound
dressings to accelerate wound healing. For example, dexamethasone (Dex) and silver
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sulfadiazine (AgS) have been used to strengthen the anti-inflammatory function of SIS
(Table 2) [13]. With the release of Dex and AgS, the SIS scaffolds effectively suppressed
macrophage infiltration [13].

To accelerate chronic wound healing, it is feasible to introduce therapeutic nucleic
acids into scaffolds to inhibit or support the expression of specific proteins [117]. ECM
scaffolds loaded with anti-inflammation nucleic acids are promising scaffolds for wound
healing [117]. For anti-inflammatory purpose, miRNA-223 5p mimic has been used as
an additive to control the polarization of macrophages into a M2 phenotype [118]. Other
therapeutic nucleic acids like TNF-α siRNA and miR-146a can also endow skin wound
healing scaffolds with anti-inflammatory properties [119].

4.3.3. Loading with Antioxidant Agents

At the wound bed, the phagocytizing of microorganisms or foreign debris by inflam-
matory cells may lead to the generation of high concentrations of reactive oxygen species
(ROS) [120]. Excessive ROS can induce oxidative stress, which can result in a series of
unfavorable effects including deferred cellular behaviors, extended inflammation period,
reduced re-epithelization, and diminished angiogenesis. Thus, excessive oxidative stress is
detrimental to normal wound healing [105,121,122].

Antioxidant agents, such as ferulic acid, alpha-lipoic acid, and Keap1 siRNA, are
capable of eliminating free radicals and have been successfully loaded in different nanopar-
ticulate delivery systems to treat skin wounds [104,105,119]. For example, to strengthen the
antioxidant ability of ADM scaffolds, Pesaraklou et al. have immersed the ADM scaffolds
in a cerium oxide nanoparticle (CeO2 NP) solution to produce a CeO2 NP-ADM scaffold
(Table 2) [104]. Compared to ADM alone, the CeO2 NP-ADM scaffold showed improved
free radical scavenging ability, enhanced cell survival rate, better collagen content, and
higher tensile strength [104]. Besides CeO2 NP, carbon nanodots (CN) present another novel
antioxidant agent that can accelerate skin wound healing [123]. In 2020, Bankoti et al. have
modified CS-ADM with CN to achieve a good ROS scavenging property (Table 2) [105].
After 21 days of treatment, diabetic wounds covered with CN-CS-ADM scaffolds, in which
human amniotic membrane derived stem cells were also loaded, showed rapid wound
closure, complete reepithelialization, and distinct formation of organized dermal epidermal
junctions, suggesting that it may serve as a promising therapeutic strategy for chronic
wounds [105].

4.3.4. Loading with Other Therapeutic Agents

Growth factors, which are capable of mediating tissue repair through the interaction
with specific cell surface receptors, play a vital role in the acceleration of chronic wound
healing [124]. Several growth factors, such as fibroblast growth factor, epidermal growth
factor (EGF), VEGF, platelet-derived growth factor (PDGF), and TGF-β, have been in-
troduced to skin wound healing as therapeutic agents [125–127]. For instance, Su et al.
reported an EGF loaded hyaluronic acid (HA)-decellularized peritoneum (DP) scaffold, in
which a sustained release of EGF was observed (Table 2) [106]. The addition of EGF was
proved to be efficacious in the treatment of skin wounds, which resulted in a raised healing
rate, promoted regeneration of skin appendages, and thicker layers of epidermis and der-
mis [106]. Similarly, another study showed that the healing rate and relative expressions of
a-SMA and lumican were accelerated and increased after loading ADM with PDGF [128].

In addition to growth factors, other bioderived natural compounds, such as curcumin,
tea tree oil, and honey, are promising therapeutics, because they have manifold functions in
skin wound healing [108,129,130]. Curcumin, for example, is a natural polyphenolic phyto-
constituent extracted from turmeric. It is favorable for skin wound healing because of its
antioxidant, antimicrobial, anti-inflammatory, and antimutagenic characteristics [131,132].
After the incorporation of curcumin, modified SIS membranes were found to acquire
good antibacterial ability and free radical scavenging capability, thus making them po-
tent to neutralize the problems of oxidative stress and biofilm formation in skin wounds
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(Table 2) [107]. As a carbohydrate-rich natural component, honey possesses the advantages
of anti-inflammatory, antibacterial, and wound healing promoting properties [133]. After
its incorporation with ADM, the antimicrobial activity of honey-ADM is significantly en-
hanced, with a maximum bacterial growth inhibition up to 60 h for E. coli, and 30 h for
S. aureus (Table 2) [108]. In addition, results of in vivo wound healing test demonstrated
that the honey-ADM treated skin wounds showed controlled immune response and better
wound healing results as compared to that of the ADM alone [108].

5. Fabrication Technologies for Advanced Membranous ECM-Based Scaffolds

With the development of scaffold fabrication technologies, particularly the electro-
spinning methods and the three-dimensional (3D) bioprinting approaches, advanced ECM-
based membranes with improved performance and/or tunable properties have emerged
in the area of skin wound healing [45–51].

5.1. Electrospinning

Electrospinning is a versatile and relatively economic technique, which enables easy
fabrication of fibrous mats [134]. An electrospinning device usually comprises high voltage
or low voltage supplies, syringe pumps, spinnerets, and collectors [135,136]. During the
operation of the devices, the potential difference established between the spinneret and
the collector facilitates the formation and deposition of fibers with controllable diameters
ranging from nano-size to micro-size [134,135]. In the literature, electrospun ECM-based
membranes have been reported by electrospinning the ECM raw materials with organic
solvents and/or macromolecules such as gelatin, silk fibroin, poly hydroxyalkanoate, poly-
caprolactone, and polylactic acid [136–142]. Based on the requirement of scaffolds, various
electrospinning approaches, including the emulsion electrospinning, blend electrospin-
ning, coaxial electrospinning, simultaneous electrospin-electrospraying, and post spinning
modifications, are optional for the fabrication of scaffolds (Figure 2) [139,143–148].
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With high surface-to-volume ratios, electrospun fibers are capable of recruiting re-
pair cells and have deep interactions with the wound area [149–152]. They can be de-
signed for specific purposes, such as to improve the mechanical strength of scaffolds, to
enhance the anti-degradation ability, to carry therapeutic agents, and for gene therapy
applications [13,153,154]. For example, by using the method of blend electrospinning,
Kim et al. have developed an electrospun poly(l-lactide-co-caprolactone) (PLCL)/ECM
wound dressing, whose tensile stress (2.23 ± 0.44 MPa) was similar to that of the PLCL
group, but the E-modulus (2.04 ± 0.34 MPa) was significantly greater than the PLCL group
(0.19 ± 0.01 MPa; p < 0.01) [155]. Notably, when compared with the PLCL scaffolds, the
PLCL/ECM wound dressing can significantly enhance wound angiogenesis, regenerate
tissues, and reduce scarring [155]. In another study, poly(ε-caprolactone-ran-L-lactide)
(PCLA) was used to improve the electrospinning performance of SIS [13]. By adjusting
the ratio between SIS and PCLA, scaffolds with suitable micro morphology and tensile
strengths were successfully developed [13]. After loading with anti-inflammatory drugs,
the scaffolds were proved to sustain a drug release period over the in vivo implantation
and successfully suppressed macrophage infiltration [13]. In addition to anti-inflammation
drugs, other bioactive molecules such as substance P (SP), a 11-amino-acid-long neu-
ropeptide, can be added in the SIS/PCLA system for better wound healing performance.
Compared with the PCLA and SIS/PCLA groups, SP-loaded SIS/PCLA showed more
blood vessel formation, more epidermal regeneration, higher collagen density, and fewer
macrophage infiltration in the wounds [91].

5.2. Three-Dimensional (3D) Bioprinting

Three-dimensional (3D) bioprinting is a versatile technique to produce design-driven
scaffolds [156–158]. After the loading of medical image data or specific software, bioinks
can be deposited in the correct coordinates to create a 3D structure based on a predefined
spatial model [159,160]. The ECM solutions with suitable concentrations and rheological
properties can be utilized as bioinks for 3D bioprinting [161]. Generally, the solubilization
of raw ECM materials can be achieved by a series of operations, such as pulverization,
enzymatic digestion, and neutralization [162,163]. However, because of the fragility and
poor printability of ECM-based bioinks, the bioprinting process is very challenging [161].
To tackle this obstacle, several strategies have been developed. For instance, through the
addition of photo initiator at proper concentrations, a novel SIS-based photocrosslinkable
bioink has been manufactured [164]. Besides photo initiator, the performance of ECM-
based bioinks can be modulated by other biomaterials [157]. Kim et al. reported that the
printability and mechanical properties of ECM-based bioink could be enhanced by loading
the ECM powder with a mixture of gelatin, hyaluronic acid and fibrinogen [165].

Among various kinds of 3D printing techniques, two approaches are commonly used
for the printing of ECM-based bioinks, namely the extrusion-based printing method and
the digital light processing (DLP) printing method [157,162,166,167]. In the extrusion-based
printing technique, ECM-based bioinks are extruded through a needle-syringe-type system
and deposited at the pre-defined spatial locations through an automated robotic system
(Figure 3) [168,169]. With excellent printing accuracy, efficiency, and working conditions,
DLP printing is an attractive technology to fabricate photosensitive scaffolds. During the
process of DLP printing, the photocrosslinkable bioinks are crosslinked by a projection
light generated by the optical micro-electromechanical technology, and finally form a
stable structure with proper mechanical properties (Figure 3) [166,170]. In addition to the
SIS-based photocrosslinkable bioink, other types of photocrosslinkable bioinks have been
reported, mainly through the addition of a mixed solution containing gelatin methacrylate
hydrogel and photoinitiator [166].
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To print SIS ink, the employment of a specialized free-form extrusion bioprinting
system, which is composed of a 3D robot platform, a pneumatic dispensing system, and a
cryogenic stage (Figure 3), have been reported [171]. After crosslinking with 1-ethyl-3-(3-
dimethylaminopropyl) carbodiimide, the fabricated scaffolds showed a porous microstruc-
ture and possessed adequate strength for cell growth during skin wound repair [171]. In
addition, full thickness 3D human skin composed of cells and skin-derived ECM could
be established through a combination of the extrusion-based printing technology and the
inkjet-based printing technology [169].

In addition, to fabricate skin grafts with structure closer to natural skin, a perfus-
able/vascularized skin equivalent composed of epidermis, dermis, and hypodermis has
been created by printing multiple bioinks through an in-house-built hybrid printing sys-
tem [172]. In another study, a 3D printed multilayer skin has been produced, in which
human skin keratinocyte loaded gelatin methacrylamide served as the epidermal layer,
fibroblasts loaded ADM as the dermis, and human umbilical vein endothelial cells loaded
gelatin methacrylamide as the vascular network and framework [173]. In vivo results
showed that the printed multilayer skin equivalent accelerated wound healing, as seen by
improved re-epithelization, dermal ECM secretion, and angiogenesis [173].

6. Future Perspectives

Although the use of traditional ECM membranes for skin wound healing can go
back decades, new types of decellularized membranes, such as those produced from
forestomach, chorion, pleura, and peritoneum, are emerging [20,59,174]. The development
of new convenient cell extraction strategies, such as the use of supercritical carbon dioxide
for scaffold decellularization, has been reported in the literature [175–178]. This progress
offers more technical options and raw ECM materials for the development of new wound
dressings. Particularly, advances in chemistry, composite materials, nanotechnology, and
process technology enable the production of advanced membranous ECM-based scaffolds.

However, there are many “bottle neck” problems that need to be tackled. For instance,
in large skin wounds, to achieve efficient tissue regeneration and functional recovery, it is
necessary to build scaffolds with precise tissue details of natural skin, especially the hair
follicles and sweat glands. However, this remains a big technical challenge. Future research
should put a strong emphasis on the development of appendage-bearing scaffolds, in which
the specific macromolecular components and the cells of skin appendages are arranged
in a predefined architecture. With the emergence of 4D printing and the development
of the handheld skin printer, these apparatuses may bring a revolutionary breakthrough



Pharmaceutics 2021, 13, 1796 13 of 20

to facilitate the rapid production of a desired ECM-mimicking scaffold with larger areas,
more exquisite structures, and diversified functions [10,162,179].

It is well known that many therapeutic agents work well in the wound healing stages.
At the early stage of wound healing, anti-inflammatory agents and coagulation factors
are required, whereas growth factors are required in the proliferation and ECM remod-
eling stages [180]. The development of ECM-based scaffolds that can release particular
therapeutic agents to meet the need of different stages of wound healing will contribute
a lot to improving the wound healing outcome [180]. Besides therapeutic agents, stem
cells, such as pluripotent stem cells, have shown inspiring results for skin regeneration,
especially the newborn of pigmented hair follicles and sebaceous glands [181]. Conse-
quently, the development of stem cells/ECM-mimicking scaffold constructs would provide
a viable option for patients who failed in wound healing. Furthermore, considering the
fact that many additives and solvents, which are a must for use in the scaffold modification
process, are usually toxic or with unclear metabolic mechanisms [182], it is necessary to
devote extensive efforts to solving the problem of toxic reagent residues and to search for
non-poisonous substitutes [182–184].

7. Conclusions

After substantial efforts were devoted to scaffold modification, significant advances
in the improvement and functionalization of ECM-based membranes have been made in
recent years, mainly through the methods of scaffold crosslinking, blending with other bio-
materials, and adding bioactive substances. Some advanced scaffold fabrication technolo-
gies have been introduced to fabricate multifunctional ECM-based scaffolds. Particularly,
electrospinning and 3D printing are applicable to generating ECM-based scaffolds with
predefined compositions and topography. Although the research progress is marvelous,
engineering fully functional skin constructs remains a significant challenge. Future stud-
ies are necessary to detail the toxicity of advanced ECM-based scaffolds, their metabolic
mechanisms, and their potential clinical applications.
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