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Approximately 1.6 million patients undergo interhospital trans-
fer annually.1 Patients undergoing interhospital transfer experi-
ence up to three times higher mortality,2,3 use double the 
resources and experience twice the length of stay than those not 
transferred from another hospital.1 Interhospital transfers con-
sist of two primary patient types: those experiencing an imme-
diately life-threatening condition (e.g. myocardial infarction, 
trauma) and those who are not experiencing an immediately 
life-threatening condition. Transfer for patients experiencing an 
immediately life-threatening condition has been shown to be a 
life-saving measure, with reductions in mortality for trauma4–8 
and heart attack patients9 but has yielded conflicting results for 
stroke10,11 and minimally injured trauma patients.12–14

The decision to transfer patients from lower to higher levels 
of care for an immediately life-threatening condition are com-
mon and often supported by referral networks established 
within local regions like trauma and stroke networks. For those 

patients not experiencing an immediately life-threatening con-
dition, the decision to transfer is complicated and is based on 
individual provider judgment, family request, or other factors. 
Currently, no national guidelines15 exists to guide interhospital 
transfer; furthermore, there is limited understanding of who 
does and does not benefit from being transferred and exactly 
when those transfers should occur.

The overall poor outcomes that interhospital transfer 
patients experience and mixed outcomes for patients that are 
immediately transferred for time-sensitive conditions suggest 
that we do not have a good understanding of immediately life-
threatening conditions. Outside of patients that are transferred 
for intervention that must be performed immediately upon 
arrival at the receiving hospital (e.g. cardiac catheterization and 
surgical procedure), our recognition of what constitutes a 
patient experiencing an immediately life-threatening condition 
needs to be reconceptualized.
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ABSTRACT 

Objective: To demonstrate the usefulness of applying supervised machine-learning analyses to identify specific groups of patients that 
experience high levels of mortality post-interhospital transfer.

Methods: This was a cross-sectional analysis of data from the Health Care Utilization Project 2013 National Inpatient Sample, that applied 
supervised machine-learning approaches that included (1) classification and regression tree to identify mutually exclusive groups of patients 
and their associated characteristics of those experiencing the highest levels of mortality and (2) random forest to identify the relative impor-
tance of each characteristic’s contribution to post-transfer mortality.

Results: A total of 21 independent groups of patients were identified, with 13 of those groups exhibiting at least double the national aver-
age rate of mortality post-transfer. Patient characteristics identified as influencing post-transfer mortality the most included: diagnosis of a 
circulatory disorder, comorbidity of coagulopathy, diagnosis of cancer, and age.

Conclusions: Employing supervised machine-learning analyses enabled the computational feasibility to assess all potential combina-
tions of available patient characteristics to identify groups of patients experiencing the highest rates of mortality post-interhospital transfer, 
providing potentially useful data to support developing clinical decision support systems in future work.
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Reconceptualizing type of transfer patients require the focus 
to move beyond the currently used broad categories (e.g. trauma 
and stroke) to categories that support patient-specific charac-
teristics that identify those who should be considered for trans-
fer. Therefore, to begin moving toward a more patient-centric 
approach, the purpose of this study was to identify specific 
groups of patients and their associated characteristics that 
experience high levels of mortality post-transfer.

Methods
Data source

We used the 2013 Nationwide Inpatient Sample (NIS). The 
NIS is part of the Healthcare Cost and Utilization Project 
(HCUP) from the Agency for Healthcare Research and 
Quality (AHRQ) and is the largest all-payer inpatient database 
in the United States with a nationally representative sample of 
approximately 8 million inpatient discharges each year.16 We 
identified all adult patients aged 19 years or older that were 
transferred from one acute care hospital to another to compose 
an interhospital transfer cohort.

Measures

Our main outcome measure is in-hospital mortality, as recorded 
on the hospital billing record discharge status. To identify 
patient characteristics and variables that are clinically mean-
ingful and where available in the data set, we only incorporated 
covariates that are useful in guiding clinical decision-making or 
practice. Patient-level covariates included the following: age 
(continuous), gender, payer type, race, comorbidity, and pri-
mary diagnosis.

To include the primary diagnosis and to make the analysis 
computationally feasible, we accounted for the primary diag-
nosis via the Clinical Classification System (CCS) for the 
International Classification of Diseases, Ninth Revision, 
Clinical Modification (ICD-9-CM),17,18 using the multi-level 
diagnosis category labels—a total of 17 categories. The multi-
level CCS category is a standard, established method to col-
lapse over 14 000 diagnosis codes and 3900 procedure codes 
into clinically meaningful categories.18 Refer to Supplementary 
Material Table 1 for variables included in analysis, for a listing 
of the covariates and CCS categories used in the model.

We measured the presence of comorbid conditions using the 
Elixhauser comorbidity index list. The Elixhauser index contains 
30 comorbid conditions defined through secondary ICD-9-CM 
diagnosis codes and Diagnosis Related Group (DRG) codes.19-21 
We excluded both arthritis and fluid and electrolyte disorder 
comorbidities. Many patients have arthritis, and for the purposes 
of this study, it was not considered a factor that differentiates 
patients for transfer. In addition, most patients hospitalized and 
undergoing interhospital transfer experience some form of abnor-
mal laboratory value, making it not clinically useful for identify-
ing discrete subgroups of patients who will provide new insight to 
enable reconceptualizing patient categories for transfer.

To describe the severity of the patient population and to 
enabling comparison between the data subsets used in the 
analysis, we used the All Patient Refined Diagnosis Related 
Groups (APR-DRG) Risk Mortality covariate provided by 
HCUP. The APR-DRGs are assigned using proprietary soft-
ware developed by 3M Health Information Systems that 
include the base APR-DRG, the severity of illness subclass, 
and the risk of mortality subclass within each base APR-
DRG.16 We only used this variable to provide a description of 
the study samples and did not include it in the model develop-
ment and analyses due to it being a combination of other 
covariates already included in the model (e.g. age, gender, and 
diagnosis) while also including proprietary calculations that are 
not available within the electronic medical record (EMR) and 
thus would not be useable in decision-support tools or other 
patient care activities relying on primary data.

System-level covariates in the analysis included the follow-
ing: admission month, admission on a weekend, hospital bed 
size, hospital teaching status, hospital region, hospital control/
ownership, and patient location before hospitalization. We also 
accounted for whether patients received a major operating 
room procedure that was either diagnostic or therapeutic 
occurring post-transfer. The University Hospitals Case 
Medical Center Institutional Review Board determined that 
this study meets the exemption criteria for human subject 
research (IRB #em-14-30).

Statistical analysis

Frequency counts and percentages were tabulated for the cate-
gorical outcome—mortality. For descriptive analysis, we used 
discharge-level survey weights provided in the NIS that 
accounted for complex survey design effects. The final sample 
for this study is a nationally representative sample generated via 
the weighting variable provided with the data set. However, the 
classification and regression tree (CART) analysis does not 
apply the sample weights, which leads to smaller samples in the 
terminal nodes. We excluded cases where the mortality variable 
was missing. We did not exclude any observations with missing 
values for the independent variables specifically because a robust 
feature of the CART algorithm is that it handles missing data 
using the surrogate split method—a method that finds an alter-
native variable that is highly correlated with the missing varia-
ble to determine the split.22 While there are other methods for 
handling missing data in CART analysis,23 the default setting 
in CART packages is to skip missing variables to streamline the 
analysis.24 In this analysis, we employed the surrogate split 
method that identifies and supplements a surrogate variable.

Supervised machine-learning approaches.  We used CART anal-
ysis to identify combinations of predictors associated with 
post-transfer mortality. The CART involves a tree-building 
technique in which the choice of “splitting” variables is based 
on an exhaustive search of all possibilities, using a recursive 
partitioning algorithm, resulting in mutually exclusive groups 
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that are the most different with respect to the dependent vari-
able.25 The tree-building process leads to terminal nodes (or 
leaves), at which point the nodes cannot be divided anymore 
and need to be pruned to avoid over-fitting and increase effi-
ciency.26 First, CART recursively partitions the patients into 
smaller and smaller homogeneously distributed groups—in 
this case, based on the presence of specific combinations of 
clinical conditions. The purpose is to reduce variations within 
the group and to improve the fit as best as possible. Next, 
CART uses these groups to predict post-transfer mortality. We 
used the following stopping criteria (based on model tuning 
described below): a maximum tree depth of 10 splits, a mini-
mum node size of 50 subjects, requiring a split to increase the 
complexity parameter by a minimum of 0.001 and using the 
information impurity index to determine node splits.

To build our model, we partitioned the study data into a 
training data set (70% of the data) and validation data set 
(remaining 30%) using random sampling within each class of 
the outcome variables. We used 10-fold cross-validation 
repeated three times on the training data set to build the CART 
models. Since mortality is highly unbalanced, we weighted the 
“cost” of a false negative to be higher than a false positive to 
improve sensitivity and produce a more meaningful model. We 
then tested the accuracy of our models on the testing data set 
using a confusion matrix and by calculating the area under the 
curve. We also used the Matthews correlation coefficient meas-
ure, a measure of accuracy that accounts for imbalanced out-
comes.27 We chose our final model for the outcome based on 
accuracy and interpretability.

In addition, we compared our final models with those from a 
random forest model to see if they were in agreement on varia-
bles that are the most important predictors. Random forest is a 
bootstrap aggregation method that creates multiple decision 
trees using random variable selection. Breiman et al22 provides a 
detailed description of random forest. We used SAS software 
version 9.428 for data management; for our statistical analyses, 
we used R version 3.3.1 and RStudio 1.0.13629 and the “rpart” 
(CART), partykit (tree graphics), “randomForest” (random for-
est), and “caret” (model tuning and cross-validation) packages.

Results
In 2013, approximately 1 456 422 adult patients underwent 
interhospital transfer, 52% were male, 66% White, 11% Black, 
and 7% Hispanic. The primary payers for the interhospital 
transfer were Medicare 44%, Medicaid 19%, and private insur-
ance 26%. Further demographic characteristics of the nation-
ally weighted sample are provided in Table 1, and the frequency 
of the primary diagnosis categorized by the multi-level diagno-
sis category of the CCS in Table 2. As expected, circulatory 
disease was the most frequent diagnosis in the older age groups 
(45 and older), whereas mental health was the most frequent in 
the youngest age groups (19-44). Frequency of comorbidities 
across age cohorts is presented in Table 3. The distribution of 
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patient characteristics across the total study population and 
between the training and testing data sets are available in 
Supplementary Material Table 2.

The final CART identified 21 discrete subgroups of patients 
(Figure 1). Trees from the training holdout data set and the 
testing holdout data set contained the same splits and terminal 
nodes. Of the 21 subgroups, 12 were for patients with a pri-
mary cardiac diagnosis (n = 16 798 patients), the next eight 
groups primary diagnoses were cancer (n = 35 030 patients), 
and the remaining subgroup had neither cardiac nor cancer as 
a primary diagnosis (n = 151 464).

Subgroups with a primary cardiac diagnosis (Figure 1—
right side) experiencing the highest rates of post-transfer mor-
tality included (1) patients greater than 40 years old with either 
coagulopathy (30% mortality) or with metastasis (~35%), (2) 
patients greater than 52 years old with cardiac arrhythmia and 
either liver failure (~35%) or pulmonary circulatory comorbid-
ity (30%), and (3) patients greater than 72 years without 
Medicare (35%). The payer mix of the patients in the subgroup 
that was greater than 72 years and without Medicare consisted 
of 10% on Medicaid, 56% private insurance, 10% self-pay, and 
24% not specified. Alternatively, patients that were less than 
40 years (5% mortality) or greater than 40 years and underwent 
an operating room procedure (5% mortality) experienced the 
highest rates of survival.

Subgroups of patients that had cancer as the primary diag-
nosis (Figure 1—left side) that experienced the highest rates of 
mortality post-transfer included (1) those greater than 83 years 
old (35% mortality), (2) those >68 years with either hyperten-
sion (15% mortality) or on Medicare (10% mortality), and (3) 
for those <68 years old with coagulopathy and either arrhyth-
mia (25% mortality) or pulmonary circulatory comorbidity 
(35% mortality).

The results from the random forest analysis are presented in 
Figure 2. Variables identified as being important via random 
forest, but not included in any of the CART pathways include 
weight loss, congestive heart failure, and genitourinary.

Model performance

We tested the performance of our model on a holdout data set. 
The area under the curve was 0.69, and the Matthews correla-
tion coefficient was 0.198. The model had a positive predictive 
value (PPV) of 0.291 and a negative predictive value (NPV) of 
0.960. The sensitivity was 0.18 and the specificity was 0.98. As 
we further describe below, the aim of this model was to identify 
clinically meaningful rather than most accurately predict mor-
tality post-transfer.

Discussion
This analysis identified 21 distinct groups of patients, 13 of 
which experienced mortality rates more than double the 
national average ranging from 4.7% to 5.2% post-transfer 
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Figure 1.  Classification and regression tree.
The classification and regression tree with variables identified within the ovals and the value of each variable at the split signified and defined by each connecting line to 
the next variable and split. The bars at the bottom identify a distinct clinical group with the total number of subjects contained in that group (n), the bar represents the % 
mortality for patients in that group.

Figure 2.  Random forest results.
Abbreviations: Dx, diagnosis; CM, comorbidity.
Variables identified as contributing the most to post-transfer mortality are displayed with the most important starting at the top and descending to least important. The 
highlighted box contains the variables with the highest importance. Variables with an * are not included in the classification and regression tree.
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mortality.1 In 2013, the national mortality for all-cause hospi-
tal admissions was 2%. This analysis included all patients, even 
patients who underwent transfer for routine procedures such as 
orthopedic cases or appendectomies, who were accounted for 
in the far left of the tree in the lowest mortality group 
(n = 151 464). Alternatively, the other lowest mortality group 
consisted those with a circulatory diagnosis and who were aged 
younger than 40.5 years.

The left side of the tree, or the non-cardiac side, was domi-
nated by patients with cancer, composing the second largest 
group of patients undergoing transfer (n = 35 020), with the 
highest mortality experienced by those with coagulopathy as a 
comorbid condition. Coagulopathy is also represented on the 
right side as significant contributor to increased mortality 
post-transfer. Of note, comorbid conditions in the AHRQ NIS 
are not directly related to the primary diagnosis or necessarily 
the main reason for admission, likely having originated before 
the current hospitalization, thus representing a pre-existing 
condition.16 The finding that coagulopathy is a significant pre-
dictor of post-transfer mortality was surprising, but its signifi-
cance is reinforced by the random forest analysis (Figure 2) and 
our other work looking at surgical populations.30 Coagulopathy 
typically manifests as a secondary physiologic response to a pri-
mary disturbance such as cancer and trauma induced and has 
been found to be an independent predictor of in-hospital mor-
tality, regardless of transfer status.31,32 This study reinforces 
including coagulopathy, whether it is a comorbidity or a condi-
tion on the active problem list for the current hospitalization, 
as a covariate in future modeling efforts.

This study identified that patients with a cardiac diagnosis 
and aged less than 40 years or were older than 40 years and 
received an operating room procedure experienced the highest 
survival rates post-transfer. While we cannot ascertain the spe-
cific operating room procedures performed, the high survival 
rates for this clinical group receiving a major therapeutic or 
diagnostic operating room procedure supports the role that 
transfer plays in improving mortality. Likely, these patients 
without concomitant comorbidity or other significant clinical 
characteristics, represent those experiencing a myocardial 
infarction or other time-sensitive condition that benefits from 
rapid transport and subsequent intervention.

While the primary focus of this study was not to predict 
patient mortality, the methods employed identified groups of 
patients that experience mortality at rates two to three times 
higher than the expected rate of post-transfer mortality of 5% 
and thus provides specific groups of patients that warrant 
focused inquiry. Current efforts to leverage EMR data to sup-
port developing clinical decision-support systems (e.g. health 
system transfer command centers)33 can benefit by initially 
focusing on high-risk target populations like those identified 
in this analysis.

The random forest model identified several important vari-
ables not included in the individual tree, those being weight 

loss, congestive heart failure, and genitourinary conditions. The 
variable importance results reported in the random forest are 
the average results of many individual trees—many trees 
included the three omitted variables while others did not. 
Given that the CART tree represents an individual tree and 
sample; in this case sample, 789 out of 10 000, it is possible that 
variables identified in the random forest analysis are not repre-
sented in this specific tree. Omission of these variables in the 
individual tree can be due to the greedy splitting procedure that 
identifies the best split at that particular point in the tree with-
out considering the impact on the full model. Therefore, 
depending on the random sample chosen to run the CART, the 
tree for each sample can include different variables and split 
points.

During the analytic process, we randomly select the samples 
and “freeze” them, otherwise we would get a different training 
and testing sample each time the analysis was performed. The 
omission of the variables underlines the importance of running 
complementary or additional analyses when using atheoretical 
approaches.

Our model had an area under the curve of 0.69, which is 
reasonable performance for rare and difficult events to predict 
like mortality. The area under the curve (AUC) is in-line with 
other studies that have used the Elixhauser or Charleston 
comorbidity indices to predict mortality that ranged between 
0.65-0.80.34,35 It is difficult to compare the performance of 
AUC across studies that assess different patient populations, 
and to our knowledge, this is the first model to predict mortal-
ity among all-diagnoses of transferred patients.

Finally, employing the supervised machine-learning tech-
niques provides distinct analytical advantages over traditional 
modeling techniques that we have used in past analyses. The pri-
mary advantage is the ability to assess all available covariates in 
every possible combination. Rather than identifying the influ-
ence of a given covariate while the others are held constant, the 
supervised machine-learning techniques employed allow us to 
test every possible combination of the covariates to identify clin-
ically meaningful combinations and report those combinations 
in mutually exclusive groups capable of being easily incorporated 
into decision-support modeling or other approaches such as 
developing more precise clinical nomograms. In addition, the 
mutually exclusive groups provide easily recognizable patient 
characteristics in specific combinations that are more descriptive 
than the odds of change in one variable while the others are held 
constant. For example, our past work employing regression iden-
tified that the odds of death increased with age, with age being 
included in the regression via seven categories.1 Alternatively, in 
CART, we are able to include age as a continuous variable and let 
the technique determine what the significant splits in age are for 
a given combination of characteristics. For example, in Figure 1, 
age is split five different times in the tree with each split signify-
ing a significant difference in outcome for those patients above 
or below that age threshold. Attempting to identify these age 
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categories via other approaches, would be burdensome, if achiev-
able at all.

Limitations

Secondary analyses of existing databases present several limita-
tions. First, we were only able to include basic demographic char-
acteristics, the Elixhauser comorbidities, primary diagnosis via 
the CCS, and basic hospital descriptors. While nationally repre-
sentative, the lack of rich clinical descriptors limits the depth of 
the analyses and applicability of the findings. Second, primary 
diagnosis determination is complex and is influenced by the clini-
cal course of care as well as coding for payment. This well-known 
limitation has been identified by others. Third, we included all 
patients that were transferred between hospitals, including groups 
of patients that on one end would not impact overall transfer 
mortality rates (e.g. mental health) and, on the other end, patients 
who exceeded the level of care available at their current hospital 
(i.e. community hospital) and had to be transferred to a tertiary 
center. Fourth, inclusion of variables such as operating room pro-
cedure are only broad indicators of care and do not provide speci-
ficity in differentiating between normal and unexpected rates of 
mortality. However, the inclusion of operating procedure across 
the models highlights the need to conduct further in-depth 
investigations into specifically which transfers and corresponding 
procedures impart improved morbidity and mortality, highlight-
ing a strength of this broad approach to focus future inquiry. 
Finally, we do not know why the patient was transferred and the 
elements contributing to the decision. This will be future work.

Conclusions
This study analyzed a nationally representative sample of hospital 
discharges to identify groups of patients who experience increased 
mortality after undergoing interhospital transfer. The supervised 
machine-learning approach implemented identified 13 distinct 
groups of patients who experience post-transfer mortality more 
than double the national average mortality of post-transfer 
patients. Of the 13 groups, 10 experience mortality rates of 20% 
or greater, identifying specific groups of patients that may benefit 
from being transferred sooner based on their individual charac-
teristics. The individual characteristics identified do not necessar-
ily fall into the currently used categories of transfer patients, 
supporting the reconceptualization of which patient groups 
should be considered for immediate transfer to another hospital.
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