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Abstract

Background: Protein kinases are key enzymes that regulate a wide range of cellular processes,
including cell-cycle progression, transcription, DNA replication and metabolic functions. These
enzymes catalyse the transfer of phosphates to serine, threonine and tyrosine residues, thus playing
functional roles in reversible protein phosphorylation. There are two main groups, namely
eukaryotic protein kinases (ePKs) and atypical protein kinases (aPKs); RIO kinases belong to the
latter group. While there is some information about RIO kinases and their roles in animals, nothing
is known about them in parasites. This is the first study to characterise a RIO| kinase from any
parasite.

Results: A full-length cDNA (Tv-rio-1) encoding a RIO| protein kinase (Tv-RIO 1) was isolated from
the economically important parasitic nematode Trichostrongylus vitrinus (Order Strongylida). The
uninterrupted open reading frame (ORF) of 1476 nucleotides encoded a protein of 491 amino
acids, containing the characteristic RIO| motif LVHADLSEYNTL. Tv-rio-1 was transcribed at the
highest level in the third-stage larva (L3), and a higher level in adult females than in males.
Comparison with homologues from other organisms showed that protein Tv-RIO| had significant
homology to related proteins from a range of metazoans and plants. Amino acid sequence identity
was most pronounced in the ATP-binding motif, active site and metal binding loop. Phylogenetic
analyses of selected amino acid sequence data revealed Tv-RIO| to be most closely related to the
proteins in the species of Caenorhabditis. A structural model of Tv-RIO| was constructed and
compared with the published crystal structure of RIO| of Archaeoglobus fulgidus (Af-Riol).

Conclusion: This study provides the first insights into the RIO| protein kinases of nematodes, and
a foundation for further investigations into the biochemical and functional roles of this molecule in
biological processes in parasitic nematodes.

Background ing cell-cycle progression, transcription, DNA replication
Protein kinases are a group of enzymes essential for the  and metabolic functions [1]. These enzymes catalyse the
regulation of a large variety of cellular processes, includ-  transfer of phosphates to serine, threonine and tyrosine
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residues, thus playing functional roles in reversible pro-
tein phosphorylation. In organisms, such as Homo sapiens,
Mus musculus, Drosophila melanogaster (vinegar fly),
Caenorhabditis elegans (worm), Saccharomyces cerevisiae
(yeast), Dictyostelium discoideum (slime mould) and Plas-
modium falciparum (malaria parasite), the complete com-
plement of protein kinases has been identified via the
analysis of genome sequences [2]. Based on their struc-
ture, protein kinases can be classified into two main
groups, namely eukaryotic protein kinases (ePKs) and
atypical protein kinases (aPKs) [3]. The ePKs usually have
11 subdomains, including a nucleotide-binding loop
(subdomain I), typically with the sequence GXGXXG,
which binds and orients the phosphates of ATP; a hinge
region which interacts with the adenine moiety of the
ATP; a catalytic loop (subdomain VIb) which contains
conserved catalytic Asn and Asp residues involved in
phosphoryl transfer; a metal-binding or "DFG" loop (sub-
domain VII) for the positioning of metal ions; and an acti-
vation loop (subdomain VIII) [4]. The aPKs are enzymes
with protein kinase activity and limited sequence similar-
ity to any known ePKs. Of the 518 kinases known to be
encoded in the human genome, 40 have been identified
as aPKs, which have been classified into 13 families or
groups, one of which represents the RIO kinases [3]. These
serine kinases are conserved in sequence among a range of
different organisms, yet are quite divergent from kinases
of other families with known structures [5,6].

Through sequence and structural analyses, RIO proteins
have been found to contain the conserved signature resi-
dues, typifying protein kinases [7,8]. RIO kinases are
present in organisms from archaea to humans, suggesting
key fundamental roles in the Metazoa. The function of
RIO1 was first investigated in yeast [9]. It was found that
RIO1 is a non-ribosomal protein located in the cytoplasm
and specifically required for 20S precursor ribosomal RNA
(pre-rRNA) processing; the depletion of the protein RIO1
caused the inhibition of 18S rRNA production and an
accumulation of the 208 pre-rRNA in the cytoplasm. Fur-
ther sequence characterisation of RIO1 of Saccharomyces
cerevisiae indicated that this protein was a serine kinase
[8]. Although the primary sequences of RIO1 proteins are
quite divergent from those of members of other protein
kinase families, their structural folding is similar to
known canonical protein kinases. Also, they display pro-
tein kinase activity in vitro. Analysis by mutagenesis [8]
showed that some of the conserved residues are crucial for
enzymatic activity, and cytological study of RIO1 has
revealed that it also plays an important role in cell-cycle
progression (in G1 to S transition and in the control of the
onset of anaphase) as well as the maintenance of mitotic
chromosome stability [8]. In contrast to RIO1, RIO2
kinase appears to be localized predominantly to the
nucleus [10]. The biological activities of these two pro-
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teins neither complement each other nor do they co-
purify, although both are associated with the same frac-
tions containing 20S precursor RNA in yeast [11].

Although not yet studied in detail in multicellular organ-
isms, RIO1 kinases are encoded in the genome of the free-
living nematode Caenorhabditis elegans [12]. RNA interfer-
ence (RNAi), which decreases messenger RNA (mRNA)
levels of the targeted C. elegans gene, has been shown to
affect predominantly embryonic and larval growth and/or
development [13-17]. In spite of the functional impor-
tance of this molecule, there is no published information
regarding its structure or function for any parasitic nema-
tode. Clearly, the isolation and characterisation of RIO
protein kinases from nematodes would provide a starting
point for a better understanding of their roles in develop-
mental processes. In a genomic study [18], we character-
ised an expressed sequence tag (EST), designated
TV{09_HO06, from an adult female-enriched cDNA library
for Trichostrongylus vitrinus, an economically important
parasitic nematode. The amino acid sequence inferred
from this EST had the highest homology (e-value: 2e-37) to
the protein encoded by predicted RIO1 kinase
(MO01B12.5; see http://www.wormbase.org/) from C. ele-
gans (unpublished findings). Therefore, the aims of this
study were to isolate and characterise the full-length com-
plementary DNA (cDNA) of RIO1 of T.vitrinus corre-
sponding to TVf09_HO06 and carry out comparative
analyses with related molecules encoded by other organ-
isms, to explore transcription in different developmental
stages and to predict its three-dimensional structure by
comparison with known crystal structures of homologues.

Methods

Parasite propagation

Merino lambs (males; 8-12 weeks of age), maintained
under helminth-free conditions, were inoculated intra-
ruminally with 30,000 infective third-stage larvae (L;) of
T. vitrinus. The patency of the infection (~24 days after
inoculation) was established by the detection of strong-
ylid eggs in the faeces using the McMaster flotation
method [19]. First- and second-stage larvae (L1 and L2)
and L3 were collected after 1, 3 and 7 days of incubation
of faeces at 28°C, respectively, and purified by repeated
sedimentation and a migration through a nylon sieve
(mesh size: 20 um) for 16 h. For the collection of fourth-
stage larvae (L,) and adults of T. vitrinus, infected lambs
were euthanized by intravenous administration of an
overdose of pentobarbitone sodium (Lethobarb, Virbac
Pty. Ltd.) 8 and 30 days after intra-ruminal inoculation,
respectively. Adult worms were collected (using fine for-
ceps) from the chyme from the first 4 m of the small intes-
tine, washed extensively in chilled (4°C) phosphate-
buffered saline (PBS), and males and females (adults) sep-
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arated prior to snap freezing in liquid nitrogen and subse-
quent storage at -70°C.

Isolation, purification, treatment and storage of nucleic
acids

Total genomic DNA was extracted from ~0.5 g of single
sex (male or female) adult worms using a small-scale
sodium dodecyl-sulphate (SDS)/proteinase K extraction
procedure [20], followed by mini-column (Wizard®
Clean-Up, Promega) purification. The specific identity of
the parasite material in each sample was confirmed by
PCR amplification of the second internal transcribed
spacer (ITS-2) of nuclear ribosomal DNA from genomic
DNA and subsequent, automated sequencing [20,21]. The
sequences determined were required to be identical to the
ITS-2 sequence with GenBank accession no. X78064[21].

Total RNA was extracted separately from different devel-
opmental stages (L1, L2, L3, L4 or adults) or sexes of T. vit-
rinus (homogenized under liquid nitrogen using a mortar
and pestle) employing the TriPure isolation reagent®
(Roche Molecular Biochemicals). RNA yields were esti-
mated spectrophotometrically (ND-1000 UV-VIS spectro-
photometer, v.3.2.1, NanoDrop Technologies), and the
integrity of RNA was confirmed via the detection of dis-
crete 18S and 28S ribosomal RNA bands on ethidium bro-
mide-stained gels. Each RNA sample (~10 pg) was treated
with 2 U of DNase I (Promega) and incubated at 37°C for
30 min prior to heat denaturation of the enzyme (75°C
for 5 min). Both DNA and RNA samples were stored at -
70°C.

Isolation of the full-length cDNA encoding RIO| kinase
from T. vitrinus

Using four gene-specific primers PK1F (forward: 5'-
CGACITCTCCAGCGTGGAACGITAACC-3"); PK2R
(reverse: 5'-GGAACCAGGGAGACCCGCITGATGCT-3");
PK3F (forward: 5'-GAACCGGCTACTGCAAACACAAC-
CCCCG-3"); PK4R (reverse: 5'-GCGGTGCAC-
CCCAGCCATCACGACC-3') designed to the sequence of
EST TVf09_HO06 (accession no. NP_491102.2), two par-
tially overlapping cDNA fragments were produced sepa-
rately from total RNA from adult female worms using 5'-
and 3'rapid amplification of ¢DNA ends (RACE)
(SMART™ RACE cDNA Amplification Kit, BD Bio-
sciences). The cDNAs were ligated separately into the
pGEM-T-Easy” vector (Promega); Escherichia coli (strain
JM109) (108 colony forming units/ug) was transformed
with recombinant plasmids via heat shock and then
grown overnight at 37 °C on Luria Bertani (LB) plates con-
taining 10 mg/ml ampicillin, 0.5 mM isopropyl-$-d-thi-
ogalactopyranoside (IPTG) and 80 pg/ml X-gal (5-bromo-
4-chloro-3-indolyl-B-galactosidase). Plasmid DNA was
isolated from recombinant clones and column-purified
(Wizard®, Promega) from overnight cultures, and inserts
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sequenced in both directions using vector oligonucleotide
primers (M13 and SP6), employing Big Dye Terminator
v.3.1 chemistry in an automated ABI-PRISM sequencer
(Applied Biosystems). Based on the resultant sequences,
selected oligonucleotide primers were designed to amplify
the full-length Tv-rio-1 ¢DNA from T. vitrinus adult
females, which was subsequently cloned and sequenced.

Bioinformatic analyses

Nucleotide sequences were assembled using the program
EGassembler [22]. The full-length cDNA sequence of Tv-
rio-1 was conceptually translated (six different frames)
into amino acid sequences using the Baylor College of
Medicine (BCM) Search Launcher [23] and aligned using
the program ClustalW [24]. Sequences were compared
with those available in public, non-redundant databases
using BLASTn and BLASTx algorithms [25] available via
the National Center for Biotechnology Information [26],
the Sanger Centre [27] and the Parasite Genome database
[28], in order to verify the identity of the molecules iso-
lated. Protein motifs were identified by scanning the data-
base PROSITE [29] and Pfam [30].

Phylogenetic analyses of inferred primary amino acid
sequence data were conducted using the program
PAUP*4.0b10 [31], as described previously [32]. In brief,
the neighbour-joining (NJ) method was used to construct
trees from distance data. The maximum parsimony (MP)
method, based on character state analysis, was also used.
Characters were treated as unordered and were weighted
equally; alignment gaps were treated as "missing" in all
analysis. Exhaustive searches with tree-bisection-recon-
nection (TBR) branch swapping were used to infer the
shortest trees. The length, consistency index, excluding
uninformative characters, and the retention indices of
each most parsimonious tree were recorded. Bootstrap
analyses (1000 replicates) were conducted using heuristic
searches and TBR branch swapping, with the MulTrees
option, to determine the relative support for clades in the
consensus trees.

The three-dimensional structure of the RIO1 kinase of
Archaeoglobus fulgidus (Af-RIO1 kinase; PDB code 1ZTF; cf.
[5,6]) was used to create an homology model of the RIO
domain of Tv-RIO1 using the program DeepView Swiss-
PdbViewer and the SWISS-MODEL server [33]. The energy
of the resultant model was minimized in DeepView using
Gromos 96 [33]. The model did not include the C-termi-
nal extension, characteristic of sequences of eukaryotic
RIO1 proteins, including Tv-RIO1.

All comparative analyses with C. elegans were carried out
using WormBase [34]. Genetic interactions with the C. ele-
gans orthologue (gene name M01B12.5) of Tv-RIO1 were
predicted using the probabilistic functional gene network
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for C. elegans (see [35]); this computational network cov-
ers the majority (82%) of C. elegans genes and makes pre-
dictions regarding essentiality, spanning diverse cellular
and developmental processes [35].

Reverse transcription real-time polymerase chain reaction
(PCR)

Double-stranded cDNA was synthesized from total RNA
separately from each stage and sex of T. vitrinus using
reverse transcriptase (Superscript III, Invitrogen). Briefly,
5 ug of total RNA were added to 14 pl of H,O and 1 pl of
oligo d(T)n = 12-18 primer (0.5 pg/ul), heated to 70°C
for 10 min and chilled on ice. First- and second-strand
cDNAs were synthesized via the addition of 4 pl of first-
strand cDNA buffer (250 mM Tris-HCI, pH 8.3, 375 mM
KCl and 15 mM MgCl,), 2 ul of 0.1 M dithiothreitol, and
1 pl of 10 mM of each ANTP, followed by an incubation
at 25°C for 10 min, 42°C for 50 min and 70°C for 15
min. The transcripts (176 bp) representing Tv-rio-1 were
amplified from individual cDNAs by real-time PCR using
the primer pair PK3F-PK4R. The PCR amplification of a
portion (187 bp) of the large subunit (28S) ribosomal
RNA using primers 28S1/F (5-GCATTAGCTCTCGCGT-
TACC-3') and 28S3/R (5'-GAGAGGGACAGCAGGT-
TCAC-3'), previously determined to be present equally in
each developmental stage and sex in a related parasitic
nematode, Oesophagostomum dentatum (see [36]), was
used as a positive control. Samples without template (no-
DNA controls) were included in each PCR run. For each
sample, ~0.5 pg of cDNA was subjected to PCR (20 pl)
using the SYBR® GreenER™ qPCR SuperMix Universal
(Cat. no. 11762-100, Invitrogen) in a Rotor-Gene™ 3000
thermal cycler (Corbett Research) under the following
conditions: one cycle of 50°C for 5 min and of 95°C for
10 min, followed by 40 cycles of 95°C for 15 s, 60°C for
30 s and 72°C for 30 s. Each sample was tested in tripli-
cate, using a calibrator (28S) as well as positive and no-
template controls. The specificity and identity of individ-
ual amplicons were verified by melting curve analysis and
subsequent direct, automated sequencing using the same
primers (individually) as employed for the PCR. Relative
transcriptional differences were calculated from normal-
ised values using method described by Livak and Schmitt-
gen [37].

Results and discussion

Characterisation of Tv-RIO| and relationship with
selected homologues

The full-length cDNA (designated Tv-rio-1) isolated by
RACE was 2128 nucleotides (nt) (GenBank accession no.
FM209038; Fig. 1) in size and contained a 5'-UTR of 122
nt, an open reading frame (ORF) of 1476 nt and 3'-UTR
of 530 nt. A putative polyadenylation signal (AATAA) was
identified and located 111 nt 3' of the stop codon. The
conceptually translated protein was 491 amino acids in
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length and its sequence contained the signature LVHADL-
SEYNTL (PS01245) characteristic of the RIO1 kinase fam-
ily [8]. Comparisons with sequences in non-redundant
databases conducted by BLASTx analysis showed that Tv-
RIO1 has significant similarities to related sequences from
a range of organisms, including other nematodes, insects,
vertebrates and plants, although the vast majority of them
have yet to be characterised. The highest amino acid sim-
ilarities recorded were to the proteins inferred from C.
briggsae gene CBG4203 (e-value: 1e159 60% of identity
and 74% of similarity) and from C. elegans gene
MO01B12.5 (e-value: 1e15%; 60% of identity and 73% of
similarity) (see http://www.wormbase.org), now recog-
nized as the RIO1 protein kinase. Pairwise comparisons of
amino acid sequence differences between Tv-RIO1 and
selected sequences representing other phyla (mouse,
human, vinegar fly, zebra-fish and yeast; Table 1) revealed
sequence identities ranging from 22.3% to 64.5%. An
alignment of the amino acid sequences of selected RIO1
kinases (Fig. 2) showed conserved regions in the ATP-
binding motif (subdomains I and II) and the active site
(subdomain VIb) and other subdomains, including 111, V,
VII, VIII, IX and X, suggesting that Tv-RIO1 is functionally
similar to other RIO1 kinases (cf. [8]). The alignment also
showed that the amino acid sequences in regions external
to these subdomains were more divergent (Fig. 2) than
the sequences in the subdomains.

The full-length amino acid sequences of Tv-RIO1 (inferred
from cDNA Tv-rio-1) and 21 other homologues represent-
ing a range of different species were aligned and subjected
to phylogenetic analyses (Fig. 3). There was concordance
in topology between the MP and NJ trees, and Tv-RIO1
was closely related to Ce-RIO1 and Cb-RIO1. The four
RIO1 kinases from these nematodes clustered together,
with strong bootstrap support (98-100%), to the exclu-
sion of molecules from organisms from other phyla; mol-
ecules from plants and vertebrates each formed separate
clades, also supported by strong bootstrap values (Fig. 3).

Structural model for Tv-RIO|

Recently, crystal structures of the proteins RIO1 and RIO2
have been characterised from Archaeoglobus fulgidus [5,6],
allowing RIO kinases to be defined as a distinct, novel
family of protein kinases. The structure of RIO2 was first
investigated, revealing the presence of two domains [38].
The N-terminal domain, conserved for the RIO2 family
members and not present in the RIO1 protein kinase fam-
ily, is structurally homologous to the winged helix
(wHTH) domain, seen primarily in DNA-binding pro-
teins. The C-terminal domain, the sequence of which is
conserved between both proteins RIO1 and RIO2, is struc-
turally homologous to known protein kinase (ePK)
domains. The ePKs usually contain 11 conserved sub-
domains that form the catalytic core. Compared with
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1 gacggtggtcgcgttttcgcgcatggatccggectgtgectecgtgtcag
48 ctgtcaactagtttgaaacccgatcggacgtatttgacttttgcggctagttattgattcatcgecgactacgaa
123 ATGGAGAAGATCCTTGAATTGAATCGTGACGTCATCGCCGATGTTATCATAGAACCGGATACCGATAGTGATTGC
M E K I L E L N R D V I A D V I I B P D T D S D C 25
198 GATTCTCAGGAAGATATCCTGAACGATGAGTTTCCAAGCATTAACCGTGAAAACGACGAAATCGATGACGACATG
b s 9 £ DI L N D E F P S I N R E N D E I D D D M 50
273 GCCGATTTCGCTGATGAAATTGGAGATTTTACAAAGAAGTACAATGCGTTTCGTATGCATATGCCTGGGCCGAAT
A D F A D E I G D F T K K Y NAF R M H M P G P N 75
348 AGCCAACATAAAGCAGGGGTAGGCACCAATTTTGGTGAAACAACAGCTGATTCAACTGCTGAAAAGAAGAGGAGG
s Q H K A G V G T N F G E T T A D S T A E K K R R 100
423 CGCATCAAGGACAGAGCAGATCGTGCCACAGTAGAACAGGTACTTGATCCTCGAACTAGGCTCGTACTGTTTCGA
R I K D R A D R A T V E Q V L D P R T R L V L F R 125
498 CTTCTCCAGCGTGGAACGTTAACCAATATTCATGGATGTATTTCAACAGGCAAAGAAGCCAATGTTTACCATGCC
L L.Q R G T L TN I H G C I S T G K E A N V Y H A 150
573 ACTGACGAAAACGGCTCCCTAGCAGTGAAAATTTACAAGACCAGCATTCTTACGTTCAAGGATCGTGAACGTTAT
T b E N G S L A VvV K I Y K T S I L T F K D R E R Y 175
648 GTCGCTGGTGAATATAGATATCGAACCGGCTACTGCAAACACAACCCCCGAAAAATGGTAGCCGTTTGGGCGGAG
v A G E Y R Y R T G ¥ C K H N P R K M V A V W A E 200
723 AAAGAAATGCGAAATTTGTTACGAATGCATCAAGCGGGTCTCCCTGTTCCGAAACCCATCCTGCTCAAGGGACAT
K EM R N L L R M H Q A G L P V P K P I L L K G H 225
798 GTGCTGGTGATGGAGTTTATCGGTCGTGATGGCTGGGGTGCACCGCTTTTGAAAAATGCGACTTTGTCCCTCGAG
v L..v ™M E F I G R D G W G A P L L K N A T L S L E 250
873 GTAGCTGAGAAGCTGTACCTTCAACTAGTTCGCGACATGCGAATCCTGTACCGTGCATGTAAACTAGTTCATGCC
v A E K L ¥ L. ¢ L VvV R D M R I L ¥ R A C K L V H A 275
948 GATCTGTCTGAATACAATACTCTCGTTCTGGACGATCGTTTGTTCATAATTGACGTGTCTCAGTCTGTTGAACAT
b L S E Y N T L VvV L D DR L F I I DV S Q S V E H 300
1023 GACCATCCGCATGCCTTGGATTTCCTGAAATCCGATTGCAATAATATTTGCAAATTCTTTAGAGGATTAGGTGTT
D H P H A L D VF L K S D CNN I C K F F R G L G V 325
1098 CCCGTGCTACCGATAGCAAAGCTTTTTGAGTTAATTGTTGACCCACTCATCGGGGATAACGATGTCGCGAGCTGG
P VvV L P I A XK L ¥ E L I Vv D P L I G D N D V A S W 350
1173 CTAGAACAGCGGACCTTGGATCCATCAGAGGATGCCCTATTTATGAATGCCTTCATTCCTCATAAACTCGACCAT
L £E 9 R T L D P S E D A L ¥F M N A F I P H K L D H 375
1248 GTTCTACATTTTGAGAGGGATAGCAAATTGTTAAAAGCTGGGGAAGAAGCGAATAATCCATTCCAGAACATCATT
v L H F E R D s K L L K A G E E A N N P F Q N I I 400
1323 TCAAAGGTTGATGTGCTGGGTCAAGGTTTTATGGAGCGCGCAGTTTCTTCATCTGATGACGAATCCATTTCGCAA
s K vobD VL G Q G F M E R AV s s S D D E S I S Q 425
1398 GGCCATTCTGACGGCAATGAGAAGATCGTAGCGGAGACGAAGGGGAGGGTCACTAGTGGCAAACACTTCAGGGAT
G H s D G N E K I V A E T K G R V T S G K H F R D 450
1473 AAAGATGAGACGCCGGAACAGCGAAAAGCAAGGAAGCAGTTGGTAAAAGAAGAGCGGCGAGGGGCCCGAAAAGCC
K b E T P E Q R K A R K O L VvV K E E R R G A R K A 475
1548 AAGATCCCCAAGCATGTGAAGAAACGCGCCCATCGGCAGCATATGAAATAGatcaccacgaaataggacaacgac
K I P K H V K K R A H R Q H M K * 491

1623 gacgacacgttacgctatcggctggctcagcactattcccatgggacataattctcgecccecgatatcagetgtyg
1698 cttgtgattggtggttcacgatgggcgcatactgggaataactccacaacgtaactatttgtcatttccgegtat
1773 gaatcgatttccacctattttccccecgttcectttgecgttttgettttgectgtgtgtctgacgecattatcattgtag
1848 ggaggactttgttcttattcttttcctaggaatcagtgtcaattttgttaccctcecctgettttgttattcgetcece
1923 cttcgtgggaagtgctcaggtcttttactactgttactaggaacagcatgctggttccatcagataactctcact
1998 gtcgtttccatagccctgtgaagttgatgattgttgatgttgttacgtttcecctgttgttgttgaaatggttatyg
2073 ttgttgcatatgtgaattgaactacatgcttcattttccgtgagataaatccttgt 2128

Figure |

Full-length cDNA sequence of the cDNA (Tv-rio-1) encoding the protein Tv-RIO| from Trichostrongylus vitrinus,
and its predicted amino acid sequence. The nucleotide sequence determined from the original EST TVf09_HO06 (acces-
sion no. NP_491102.2; [18]) is in bold text. The untranslated regions are in lower case, and protein-coding nucleotide
sequence is in upper case. ATG and TAG (asterisk) are the inferred translation initiation and termination signals, respectively;
the putative polyadenylation signal sequence is underlined. The amino acid residues representing the RIO| protein kinase sig-
nature LVHADLSEYNTL (PS01245) are shaded.
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An alignment of the inferred amino acid sequences of RIO| proteins from Trichostrongylus vitrinus and other
nine selected species. These nine species include Caenorhabditis elegans (accession no. AAC17564), C. briggsae (CAE60574),
Brugia malayi (EDP30009), Homo sapiens (NP_113668), Mus musculus (NP_077204), Danio rerio (NP_998160), Drosophila mela-
nogaster (NP_648489), Arabidopsis thaliana (NP_180071) and Schizosaccharomyces pombe (CAA15723). Amino acids predicted
to be involved in the ATP binding motif and active sites are boxed. Identical amino acids are marked with asterisks. Predicted
subdomains |-XI (see Fig. 1B; [7]) are marked above the alignment. Alpha-helices A-l (shaded) or beta-sheet structures (under-
lined) [1] are indicated. Flexible loop, hinge and metal-binding loop were identified (see Fig. ID in [40]). Dashes indicate gaps in
the sequence, included for alignment purposes.
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Table I: Pairwise comparison of amino acid identity (%) among
RIOI protein kinase of Trichostrongylus vitrinus and other

selected species for which full-length cDNA sequences encoding
RIO| protein kinases are predicted from publicly available data

Tv. C¢ Cb Bm At Dm Dr Hs Mm Sp
v -
Ce 652 -
Cb 645 937 -
Bm 434 453 444 -
At 326 293 259 229 -

Dm 32.1 32.1 31.0 276 363 -

Dr 310 326 326 253 453 482 -

Hs 276 31.0 304 276 444 496 794 -

Mm 259 293 276 253 404 472 739 876 -

Sp 223 235 21.7 135 199 337 287 304 282 -

Abbreviations: Tv, Trichostrongylus vitrinus; Ce, Caenorhabditis elegans; Cb,
C. briggsae; Bm, Brugia malayi; At, Arabidopsis thaliana; Dm, Drosophila
melanogaster; Dr, Danio rerio; Hs, Homo sapiens; Mm, Mus musculus; Sp,
Schizosaccharomyces pombe; refer to Fig. 2 for accession numbers

ePKs, RIO kinase domains resemble a trimmed version of
an ePK kinase domain, containing only eight of these sub-
domains, lacking the activation loop (subdomain VIII)

http://www.parasitesandvectors.com/content/1/1/34

and subdomains X and XI which are important for sub-
strate binding [38]. Detailed study of RIO1 and compari-
sons with RIO2 [39,40] have defined the minimal
consensus RIO-domain that, like ePKs, also contains an
N-lobe, a hinge region, and a C-lobe. However, the RIO
kinase domain contains only three a-helices (aE, aF and
al) in the C-lobe. All RIO domains contain an additional
o-helix (aR) N-terminal to the canonical N-lobe and a
loop inserted between a.C and B3 called "flexible loop".
Study of nucleotide binding by the RIO kinases and com-
parison with canonical protein kinases [5,6] has identified
specific phosphate-binding loops for subfamily RIO1
domains (with the sequence STGKEA) and RIO2 domains
(with the sequence GxGKES), which are significantly dif-
ferent from their counterpart in ePKs. This finding indi-
cates that the interaction of RIO kinases with the
phosphate moiety and protein substrate is different from
ePKs.

Comparison between protein sequences Tv-RIO1 and Af-
RIO1 (from A. fulgidus) revealed 38% identity in the ~240
residues containing the RIO domain of Tv-RIO1 (92-
325). Based on the crystal structure of Af-RIO1 [38], the

00 [ AAC17564 Caenorhabditis elegans

100 |—CAE60574 Caenorhabditis briggsae

Tv-RIO1

100

EDP30009 Brugia malayi

99 NP851100
100 [?8~AAMé65700
NP180071

Arabidopsis thaliana

100

100

BADI12556 Nicotiana tabacum

100

BAC79649 Oryza sativa
XP527225 Pan troglodytes

100 BAEO00925 Macaca fascicularis
92 | JCAH72013
Homo sapiens
NP113668

91

100
100

100 100

100 100

CAH93232 Pongo pygmaceus
XP535878 Canis familiaris

100 [ XP214454
Rattus norvegicus

100 LAAH79173

NP077204 Mus musculus

NP998160 Danio rerio

NP648489 Drosophila melanogaster

Figure 3

EALG67194 Dictyostelium discoideum

0.2 changes

Genetic relationship of Tv-RIO | with homologues from a range of organisms. Neighbour-joining tree displays the
relationship of Tv-RIO| from Trichostrongylus vitrinus with RIO| protein kinases from |6 species representing different phyla.
These species are Caenorhabditis elegans, C. briggsae, Brugia malayi (nematodes); Arabidopsis thaliana, Nicotiana tabacum, Oryza
sativa (plants); Homo sapiens, Macaca fascicularis, Pan troglodytes, Pongo pygmaeus (primates); Canis familiaris, Rattus norvegicus,
Mus musculus (other mammals); Danio rerio (zebrafish); Drosophila melanogaster (vinegar fly) and Dictyostelium discoideum (slime
mould). Accession numbers identify individual sequences representing individual species. Schizosaccharomyces pombe (fission
yeast) (accession no. CAA15723) represents the outgroup. Numbers above and below the branches are the bootstrap values
(%) obtained using the neighbour-joining and maximum parsimony methods, respectively.
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homology model constructed for Tv-RIO1 (Fig. 4) con-
firmed that differences between the eukaryotic homo-
logue and the archaeal RIO1 lie mainly in loop regions
which do not contribute to the packing of the three
dimensional structure of the molecule. Most notable is
the loop between the third beta-strand and the alpha-
helix C of the kinase domain (Fig. 4). This loop, being
highly conserved among eukaryotes, is longer in Tv-RIO1
compared with that in Af-RIO1, and is highly likely to
adopt a different conformation. The residue identified as
the auto-phosphorylation site in this loop in Af-RIO1 is
absent from Tv-RIO1 and RIO1 proteins from other
eukaryotes; therefore, autophosphorylation is likely to
occur at an alternate site. Within this loop in Tv-RIO1,
there is only one available serine, Ser 165, which in the
homology model is positioned at the end of beta-strand 3.
The auto-phosphorylation site identified for RIO2 from A.
fulgidus also lies at the end of this strand, suggesting that
such an autophosphorylation site is indeed possible for
eukaryotic RIO1 proteins. Tv-RIO1 also contains an
extended conserved lysine-rich, C-terminal domain
present in all RIO1 proteins of eukaryotes but not that of
the archaeal A. fulgidus (see [40]). It is presumed that this

@A 5 7
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Y \ "_, a4
\ C-Lobe . 5 ";T
\ st
<X Vo e
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Figure 4

Homology model of the Tv-RIO| protein from Tri-
chostrongylus vitrinus. The loop in red indicates the region
of dissimilarity between Tv-RIO| and Af-RIO| from Archae-
oglobus fulgidus. The P-loop required for the binding to phos-
phate is shown in blue. Catalytic residues (Asn 281, Asp 276
and Asp 293) and the highly conserved Tyr 280 are indicated
by yellow sticks.
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region is required for the regulation of RIO1 proteins in
eukaryotes. A recent report [41] has indicated that the C-
terminal region of RIO1 is required for the interaction
with and phosphorylation by CK2 in yeast (S. cerevisiae),
and that this phosphorylation regulates the degradation
of RIO1 at the G1/S transition in the cell-cycle.

Transcription in different developmental stages and
prediction of function based on comparisons with C.
elegans

Real-time PCR analysis (Fig. 5) showed that the transcrip-
tion of Tv-rio-1 was greatest in third-stage larvae (L;) of T.
vitrinus. The level of transcription of Tv-rio-1 decreased
from the L, to the adult worm (Fig. 5), and transcription
was significantly greater (~33 times) in the adult female
compared with the male of T. vitrinus. In spite of the lim-
ited information on the transcription and function of
RIO1 protein kinases for most multicellular organisms,
there are important unpublished data for the free-living
nematode C. elegans. In this nematode, genome-wide
RNAI experiments have revealed 'loss-of-function' pheno-
types for the gene M01B12.5; these included embryonic
lethality (Emb), slow growth (Gro), larval arrestment
(Lva), larval lethal (Lvl), sick larvae (Sck), fat content
reduced, and reduced brood size (cf. [13-17]). Gene

700

600

500

400 +—

300 +——

Relative ratio

200 +—

HH

100 +——
0
L3 L4 F M

Developmental stage

Figure 5

Transcription of Tv-rio-1 in Trichostrongylus vitrinus.
Transcriptional profile of Tv-rio-1 in different developmental
stages [third — (L3) and fourth — (L4) stage larvae] and gen-
ders [females (F) and males (M)] of Trichostrongylus vitrinus,
determined by real-time PCR analysis. Data shown are mean
values (% standard error of the mean) derived from three
replicates in repeat experiments. Relative transcription was
calculated by normalization of the raw data, followed by the
determination of abundance relative to a calibrator. Quantifi-
cation of the cDNA representing Tv-riol in each sample was
normalised, using part of the large subunit (28S) of the
nuclear ribosomal RNA gene as an endogenous control.
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Figure 6

Probabilistic functional gene network analysis for
Caenorhabditis elegans gene MOIB12.5. (using the rec-
ommended cut-off value; [35]).

ontology (GO) analysis also indicates that RIO1 kinase
plays roles in embryonic development, larval develop-
ment, positive regulation of growth rate and multicellular
organism growth in C. elegans (see WormBase), suggesting
its overall functional importance in growth and develop-
ment of nematodes. Probabilistic functional gene net-
work analyses [33] predicted that the C. elegans gene
MO01B12.5 interacts with seven other molecules, including
Y53C12B.2, C05C8.2, Y105E8B.3, HO6GH21.3, unc-16,
par-5 and ftt-2 (Fig. 6). Among them, homologues/ortho-
logues of Y53C12B.2, C05C8.2 and HO6H21.3 from other
species are involved in RNA binding or nuclear ribosomal
RNA processing, suggesting that M01B12.5 may also be
involved in ribosomal RNA biosynthesis. Although
detailed studies have not yet been conducted, the availa-
bility of gene silencing and transgenesis in C. elegans pro-
vides excellent scope for detailed investigations into the
functional roles of gene M01B12.5 and the RIO1 protein
kinase it encodes.

Conclusion

This study characterised an atypical protein kinase - RIO1
protein kinase - from an economically important para-
sitic nematode, Trichostrongylus vitrinus. The findings from
the study provide the first insights into the RIO1 protein
kinases of nematodes, and a foundation for further inves-
tigations into the biochemical and functional roles of this
molecule in biological processes in parasitic nematodes.
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