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Abstract

We study a self-organising neural network model of how visual representations in the pri-

mate dorsal visual pathway are transformed from an eye-centred to head-centred frame of

reference. The model has previously been shown to robustly develop head-centred output

neurons with a standard trace learning rule, but only under limited conditions. Specifically it

fails when incorporating visual input neurons with monotonic gain modulation by eye-posi-

tion. Since eye-centred neurons with monotonic gain modulation are so common in the dor-

sal visual pathway, it is an important challenge to show how efferent synaptic connections

from these neurons may self-organise to produce head-centred responses in a subpopula-

tion of postsynaptic neurons. We show for the first time how a variety of modified, yet still

biologically plausible, versions of the standard trace learning rule enable the model to per-

form a coordinate transformation from eye-centred to head-centred reference frames when

the visual input neurons have monotonic gain modulation by eye-position.

Introduction

Within the primate dorsal visual pathway, neurons encode the locations of visual objects in

different body-centred frames of reference. For example, neurons at an early stage of process-

ing encode the locations of objects within an eye-centred reference frame, while neurons in

later stages may encode the positions of objects with respect to the head or hand which is more

relevant for guiding motor actions. A key question is how the visual system learns to perform

such coordinate transformations between different body-centered reference frames. The neu-

ral mechanisms supporting this form of transformation, critical for visually guided motor

function, have long been studied in primates. A neural phenomenon which is thought to play

a key role in coordinate transformations in the dorsal visual pathway is gain modulation. This

refers to the modulatory effect that a particular bodily state or posture, like eye or head posi-

tion, has on the firing rate of some visual neurons responding in a given reference frame. Gain
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modulation of neuronal firing responses has been discovered in multiple stages of the primate

dorsal visual pathway.

Parietal area 7a [1, 2], LIP [3] and PO [4] have visual neurons modulated by the position of

the eye in the orbit. This form of gain modulation is thought to be involved in supporting the

development of head-centred visual representations, which were later identified in the same

areas [5–7]. The parietal reach region (PRR) has hand-centred visual neurons with eye-posi-

tion gain modulation [8], which are thought to be involved in guiding reaching to target loca-

tions. In certain regions such as parietal area 7a and LIP, the gain modulation is usually a

monotonic function of the relevant bodily posture, such as eye or head position. For example,

eye-position modulation often takes the form of a linear or saturating function of eye-position,

which multiplicatively modulates the underlying Gaussian retinotopic receptive field of a visu-

ally responsive neuron [1]. While in other areas, such as V6A, there can be a higher proportion

of retinotopic visual neurons with peaked eye-position gain fields [9].

Contemporary understanding of the potential role of such gain modulation in coordinate

transformation has been informed by the highly influential coordinate transformation model

of [10], reviewed below (section Previous Neural Network Models). The majority of models

studying coordinate transformation since that time [8, 11–14] have been heavily inspired by

this early work. These models set up the synaptic weight matrix by some form of supervised,

error correction, learning algorithm which cannot be implemented in the cortex [15]. Such

algorithms provide no biologically plausible learning hypothesis, and also produce circuits

which violate Dale’s law, the widely accepted neuroanatomical fact that a given presynaptic

neuron cannot be both excitatory and inhibitory across its efferent synapses [16].

Our laboratory has developed a biologically plausible neural network model that self-orga-

nises its synaptic connectivity during visual experience such that the model learns to transform

eye-centred visual representations to head-centred representations [17, 18]. The model can

achieve this using purely associative local synaptic learning rules with no supervisory training

signal—i.e. unsupervised learning. The model is able to self-organise its synaptic connectivity

by exploiting the natural eye and head movements of primates. However, a limitation of previ-

ous studies with this model has been their reliance on incorporating retinotopic visual input

neurons with responses that are modulated by only peaked eye-position gain fields. This is not

biologically realistic because many retinotopic visual neurons in the monkey brain are found

to have monotonic eye-position gain fields. In the new simulations presented below, we first

show that the incorporation of retinotopic visual input neurons with monotonic gain fields

leads to a failure of the model to develop head-centred output neurons. We then show how

model performance can be substantially improved by employing a range of more sophisti-

cated, yet still biologically plausible, learning rules.

Next we present a review of relevant physiological and behavioural data along with a discus-

sion of some previous computational models in order to provide the context for the new simu-

lation results discussed in this paper.

Physiology

Eye-position gain modulation of retinotopic visual neurons in parietal cortex. Com-

puter simulations carried out within our laboratory have demonstrated that an important pre-

cursor to the emergence of head-centred visual neurons in the parietal cortex is likely to be the

presence of retinotopic visual neurons with responses that are gain modulated by the position

of the eye in the orbit [17, 18]. A number of experimental studies have previously confirmed

the existence of such retinotopic visual neurons with eye-position gain fields in the monkey

brain.

Self-organising coordinate transformation with monotonic modulation in the visual pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0207961 November 29, 2018 2 / 50

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0207961


The work by [1] was the earliest demonstration of the influence of the position of the eye in

the orbit on the responses of retinotopic light sensitive neurons in area 7a of the monkey parie-

tal cortex. The authors studied the responses of light sensitive neurons using both an attentive

task and an inattentive task. In both tasks, the position of the head was kept fixed while the ani-

mal was able to move its eyes. During the attentive task the monkey had a peripheral stimulus

flashed in a particular eye-centred location whilst maintaining fixation at some gaze angle.

Conversely, during the inattentive task targets were flashed on random locations of the screen

whilst the monkey freely oriented its gaze. The authors reported that the position of the eyes in

the socket affected the responses of neurons in area 7a of the inferior parietal lobule during

both attentive fixation and under the inattentive condition. Although it was also found that the

responses of a much larger proportion of neurons were modulated by eye position during the

attentive task than the inattentive task. The first task, the attentive task, revealed that 61% of

neurons had their responses to visual stimuli significantly changed by the eye position. The

neuronal responses could be more than three times stronger when the eye position shifted by

20˚ towards the preferred direction (optimal eye position). The second task, the inattentive

task, revealed that a significantly smaller proportion of examined neurons (10%) had their

responses to visual stimuli significantly changed by the eye position. The precise interaction

between the visual signal encoding the retinotopic location of the target and the eye position

signal was later characterized by [2]. These effects were also observed in the lateral intraparietal

area (LIP) by [3]. This later work described such gain modulated responses as a multiplicative

interaction between a Gaussian retinotopic receptive field and a monotonic (planar) eye posi-

tion modulation component.

The presence of more peaked eye position gain modulation has been observed in the parie-

tal occipital area (PO) by [4] and [9]. In the more recent of these two studies, [9] designed an

experimental task to investigate the proportion of retinotopic visual neurons in area V6A of

the primate brain that are modulated by eye position with either peaked (non-monotonic)

or planar (monotonic) gain fields. During the experimental task the monkey had 9 equally

spaced fixation locations organised as a 3 × 3 grid, with the visual stimulus always presented

at the fixation point. These authors found that approximately 56% of recorded neurons had

their responses modulated by the position of the eye. Furthermore, 27% of the neurons with

responses that were modulated by eye position had planar gain fields, whilst the remaining

73% had peaked gain fields. The authors also explored the influence of each type of gain modu-

lation on a traditional neural network model of sensorimotor transformation proposed by

[19]. Their main motivation was to understand the implications of the functional form of gain

fields, i.e. peaked (non-monotonic) vs planar (monotonic), for sensorimotor transformations

in reaching tasks. In particular, they investigated how the functional form of the gain fields

affected the performance of the model proposed by [19] to transform eye-centred visual repre-

sentations into head-centred representations. The authors found that the incorporation of pla-

nar rather than peaked eye-position gain fields led to reduced model performance, with the

population of output neurons providing a less accurate representation of the location of the

visual stimulus with respect to the head.

Head-centred neural responses. A number of experimental studies have found visual

neurons in the monkey brain that encode the locations of visual stimuli with respect to the

head, i.e. within a head-centred frame of reference. The model simulations that we present

below in section Results seek to explain how such head-centred neurons may develop in the

brain.

[6] was the first experimental study to provide evidence of head-centred visual representa-

tions in the preoptic area (PO) of the macaque brain. A head-centred representation of visual

space is assumed to be important for visually guided reaching and perceptual stability. In fact,
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[20] had previously predicted the existence of head-centred visual neurons in PO due to the

presence of retinotpic visual neurons with eye-position gain modulation in areas 7a [2], LIP

[3] and V3A [20], which are a key precursor to the development of head-centred visual repre-

sentations [17, 18]. In the experimental study of [6], a head-restrained monkey performed a

series of fixations to different locations on a screen whilst a visual target was presented in vari-

ous other screen locations for each fixation. This allowed the authors to assess how individual

neuron’s activity depended on either the eye-centred or head-centred location of the visual tar-

get. It was reported that the receptive fields of 11% of recorded neurons were not completely

eye-centred, with six of these neurons presenting clear head-centred receptive fields. The

authors concluded that previous claim by [3] that there was no explicit head-centred neuronal

representation of visual space was incorrect. Furthermore, head-centred neurons were sug-

gested to originate from pooling the output of preceding eye-position gain-modulated retino-

topic visual neurons.

The work of [5] was motivated by the behavioural requirement for the brain to be able to

integrate visual and auditory signals, such as the sight of moving lips and the corresponding

speech sound, within a common body-centred frame of reference. The authors’ investigation

of the reference frames used to encode visual and auditory responses in area LIP revealed the

first head-centred visual representations in this area. This contradicted the suggestion made by

[3] that head-centred responses would not exist in area LIP. The proportion of neurons sensi-

tive to visual target locations was 72%, whilst 51.4% of neurons were sensitive to auditory tar-

get locations. Moreover, 5% to 43% of neurons were simultaneously responsive to both visual

and auditory target locations, depending on how responsiveness was defined. For visual neu-

rons, 33% had eye-centred responses and 18% had head-centred responses. Regarding audi-

tory neurons, 10% had eye-centred responses while 23% had head-centred responses. Neither

the remaining 49% of visual neurons nor the remaining 67% of auditory neurons could have

their responses classified as eye-centred or head-centred. In summary, it was found that both

auditory and visual neurons had responses compatible with either eye-centred or head-centred

frames of reference, although most neurons had complex responses that could not be classified

into either of these categories. This was the first time that head-centred neuronal responses

were indentified in area LIP.

Previous neural network models

[10] developed an early influential model that learned to transform an input representation

consisting of the position of the eye in the socket and the retinotopic position of the visual tar-

get to an output representation consisting of the position of the visual target with respect to

the head. Specifically, two-dimensional representations of the eye-position e and of the retinal

location of the visual target r were used as input for the neural network model. The target out-

put used to guide the error-based update of the synaptic weights during training was the head-

centred location h of the visual target represented by r + e. The model thus utilised a super-

vised, multi-layer backpropagation of error network architecture, in which the output layer of

the network was provided with an explicit training signal representing the current head-cen-

tred location of the visual target. Such a network architecture is not biologically plausible for a

couple of reasons. Firstly, it is not clear where such a training signal representing the current

head-centred location of the visual target might originate from in the brain. Secondly, a multi-

layer backropagation network architecture requires that the afferent weights to the hidden

layer be updated using an error signal based on the efferent synaptic weights from these hidden

neurons to the output layer scaled by the corresponding errors in the output layer. Such a net-

work architecture in itself is not biologically plausible. Nevertheless, [10] found that training

Self-organising coordinate transformation with monotonic modulation in the visual pathway
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such a network to transform independent eye position and retinal target position signals to

head-centred coordinates led to hidden units in the intermediate layer developing retino-

centric receptive fields with planar eye-position gain fields, very similar to those found in the

posterior parietal cortex by [1].

A number of later models that simulate the development of head-centred visual neurons

have also relied on some form of error correction learning. For example, the model described

by [12] relied on a form of supervised global error correction learning that utilised an error

term which is unlikely to be present in the cortex. The model of sensorimotor transformation

by [13] also used a supervised error correction learning rule to modify the synaptic connectiv-

ity within the network. So, although supervised error correction learning does not appear to

offer a biologically plausible way of modelling the development of head-centred visual neurons

in the brain, it has nevertheless remained a popular approach.

In contrast to the above error correction network models, [19] developed a model that uti-

lised associative learning. These authors investigated how retinotopic visual representations

could be transformed into head-centred representations that are relevant to reaching tasks. It

was hypothesised that the observation of our own motor movements during a reaching task

would be used to develop a map between the eye-centred visual representation of the target

and the head-centred motor representation of the movement required to reach the target. In

other words, the input layer of the neural network model represented the visual signals gener-

ated by observing the reaching movements, whilst the output layer represented the corre-

sponding motor movements that were performed. As with [10], the input representation

consisted of the position of the eye in the socket and the retinotopic position of the visual tar-

get, while the output representation consisted of the head-centred target position. Hebbian

learning, in which the strength of each synaptic connection is increased in proportion to the

product of the firing rates of the pre- and post-synaptic neurons, was then used during training

to successfully associate each eye-centred visual input representation of the target to the corre-

sponding head-centred output motor representation. In contrast to [10], the model developed

by [19] did not use a backpropagation of error network architecture or any other form of error

correction. Instead, they used a more biologically plausible associative learning rule to modify

the synaptic connectivity within their model. However, the model was still trained in a super-

vised manner. That is, the network still made use of an explicit training signal in the output

layer representing the head-centred location of the visual target in order to guide learning

without an adequate explanation of where such a signal might originate from in the brain.

[21] proposed a hierarchical neural network model of coordinate transformation that

used associative learning to set up the synaptic connectivity but did not require a biologically

implausible supervisory training signal as used by [19]. The model developed by [21] had the

following two main processing stages. The first processing stage used signals representing

the retinotopic location of the visual target and signals representing the position of the eye to

learn head-centred visual representations. The second processing stage used head position

signals coupled with the head-centred visual representations developed by the first process-

ing stage to learn body-centred visual representations. Training consisted of continously

shifting a visual target presented to the network whilst randomly varying the position of

the eyes and the head. Both processing stages used competitive learning with an associative

learning rule to self-organise conjunctive representations of its respective inputs, and then

used competitive learning with a form of temporally associative learning rule to bind repre-

sentations that occurred close together in time. Learning in the second processing stage only

started after the first processing stage had finished learning head-centred representations.

This allowed each processing stage of the model to self-organise either head-centred or

body-centred representations. Most importantly, in contrast to the models developed by [10]

Self-organising coordinate transformation with monotonic modulation in the visual pathway
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and [19], learning in [21] did not require the use of a biologically implausible supervisory

training signal to guide learning of the coordinate transformations. However, the model of

[21] did not investigate how the functional form of eye position gain modulation, i.e. mono-

tonic vs peaked, may affect the development of head-centred visual representations. This is

the focus of the current work presented below.

Our approach: A biologically plausible unsupervised self-organising neural

network model of coordinate transformation

Our laboratory has previously published a biologically plausible neural network model of the

visually-guided development of head-centred visual neurons, which relies on associative

learning rules and does not require a supervisory training signal to guide learning [17, 18].

Instead, our model utlises an unsupervised form of competitive learning that exploits the

natural statistics of how primates move their eyes and head as they shift their gaze around

their visual environment. Specifically, the model employs a form of trace learning, which

encourgages neurons in higher network layers to bind together input patterns that tend to

occur close together in time. If a primate tends to move its eyes more frequently than adjust-

ing the position of its head, then retinal images that occur close together in time will tend to

correspond to different positions of the eyes but the same position of the head. In this case,

trace learning will encourage neurons in higher layers to learn to respond to the position of a

visual target in the same head-centred location across different retinal positions. Such neu-

rons will have thus learned to represent the position of visual targets within a head-centred

reference frame. The inputs to the model are eye-centred visual neurons that represent the

locations of visual targets on the retina, but which have responses that are also gain modu-

lated by the position of the eyes in the socket. In this paper, we investigate how the learning

process depends on the functional form of this gain modulation by eye-position. Two forms

of eye-position gain modulation are explored: monotonic gain modulation, which is domi-

nant in most primate parietal areas (LIP, 7a, PRR), and peaked gain modulation which is pri-

marily found in area PO.

In the simulations described below in section Results, the model is found to robustly

develop head-centred output neurons with a standard trace learning rule when incorporating

visual input neurons with peaked eye-position gain modulation [17], but not with monotonic
eye-position gain modulation. Moreover, even if the model has its synaptic connectivity per-

fectly prewired to perform a coordinate transformation from eye-centred input neurons with

monotonic gain modulation to head-centred output neurons, subsequently introducing plas-

ticity into the synaptic connections with the standard trace learning rule quickly degrades

the synaptic connectivity and eventually leads to elimination of the head-centred output

responses. Since eye-centred visual neurons with monotonic eye-position gain modulation are

so common in the dorsal visual pathway [2, 22, 23], it is an important challenge to show how

efferent synaptic connections from these neurons may self-organise to produce head-centred

visual responses in a subpopulation of postsynaptic receiving neurons. A subsequent analysis

of the nature of the failure of the self-organisation of the synaptic connectivities led us to

explore the performance of the model with a variety of modified, yet still biologically plausible,

more powerful versions of the standard trace learning rule. The choice of the modified ver-

sions of the trace learning rule used in this paper was motivated by the superior performance

of these learning rules reported by [24]. Here we show for the first time how these modified

learning rules enable the model to learn to perform a coordinate transformation from eye-cen-

tred to head-centred reference frames even when the visual input neurons have monotonic

gain modulation by eye-position.

Self-organising coordinate transformation with monotonic modulation in the visual pathway
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Materials and methods

The self-organisation of the synaptic connectivity within the neural

network model

The model uses four core components to self-organise head-centred visual representations

through a biologically plausible process of visually guided learning. The first component is

a population of input neurons that encode both the position of the eyes in the orbit and the

retinotopic location of visual targets. Such retinotopic visual neurons with eye-position gain

modulation have been identified in multiple primate cortical areas [2–4, 22, 23]. The second

component is a population of output neurons that compete with each other through mutual

inhibitory interactions, which is a standard feature of cortical architecture [15]. The third com-

ponent is a local synaptic trace learning rule to update the feedforward synaptic connections

between the input and output neurons. The trace learning rule is a local associative learning

rule that incorporates an exponentially decaying temporal trace of past neuronal activity, and

it has been widely used in the context of developing invariant visual object recognition [25,

26]. The trace learning rule has the effect of encouraging individual postsynaptic neurons to

learn to respond to subsets of input patterns that tend to occur close together in time. Finally,

the fourth component comes under the assumption that visual stimuli are relatively static in a

world reference frame during natural self-motion. This assumption is justified by experimental

findings in which primates adjust their gaze more often by moving their eyes rather than the

head itself [27]. This behavioural strategy to adjust gaze is preferable because it reduces the fre-

quency of making more energetically costly and slow head movements. In fact, it has been

found that during exploration of natural environments with free head, eye and body move-

ments, at any time when there is movement, isolated head and isolated eye movements

occurred 13.3% and 33.1% of the time respectively, whilst a mixture of movements was

observed in the remaining time. That is, during natural movement there are periods when the

eyes are moving whilst the head remains stationary with respect to the visual environment and

visual objects also remain stationary within the environment.

These four model components allow the model to self-organise its synaptic connectivity

during visually guided training in the following way. If the eyes move around a scene contain-

ing a stationary visual target while the head also remains stationary, then the visual system will

receive a sequence of input patterns with the visual target in different retinal locations but the

same head-centred location. That is, the visual target remains stationary in the head-centred

space, but changes its position in the eye-centred space. The sequence of eye-positions and

resulting retinal locations of the visual target are represented by retinotopic visual input neu-

rons with responses that are gain modulated by eye-position. The synaptic trace learning rule

is able to bind subsets of input patterns corresponding to a visual target in the same head-cen-

tred location, albeit with the visual target situated in different eye-centred locations, onto the

same output neurons. This is because input patterns corresponding to a visual target situated

in the same head-centred location tend to occur close together in time due to the statistics of

natural eye and head movements, in which the eyes tend to saccade about a static visual scene

while the head remains stationary. Moreover, the naturally rapid movements of the eyes may

expose the visual system to many such input pattern sequences, where each such sequence has

the visual target situated in the same head-centered location but different randomised subsets

of retinal locations. This process will ensure that all possible input patterns corresponding to

the same head-centred location but different retinal locations are eventually brought into tem-

poral proximity with each other as training progresses. Hence, all input patterns correspond-

ing to the same head-centred location but different retinal locations would tend to occur

clustered together in time. This process continues with the visual target seen in a different
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position within the head-centred space every time the position of the head is shifted. That is,

the natural head movements that occur between sequences of rapid eye movements would

shift the location of the visual target to new head-centred locations. In this manner, the learn-

ing process is repeated with the visual target presented in many different head-centred loca-

tions. New subsets of output cells would learn to respond to the visual target in each different

head-centred location due to the competitive interactions between the output cells. Conse-

quently, the output layer would eventually develop neurons that cover the entire space of

head-centred target locations.

The architecture of the self-organising neural network model

The neural network architecture of the model is shown in Fig 1. The network consists of the

following two layers of neurons. The first layer is a population of input neurons that simulta-

neously encode the eye-position of the agent and the retinal location of the visual target. These

visual input neurons are modelled as retinotopic neurons with eye-position gain modulation.

The eye and retinal position spaces, representing the range of eye-positions in orbit and retinal

target locations, covered [−30˚, 30˚] and [−90˚, 90˚], respectively. Feedforward synaptic con-

nections project from neurons in the input layer to neurons in the second layer.

The second layer is a population of N output neurons that compete to represent patterns in

the input layer [15]. Neurons in the second layer, the output layer, all receive the same number

of afferent connections from neurons in the input layer, that is ϕ percent of the input popula-

tion, but each output neuron receives connections from its own randomly assigned subset of

the input neurons. Neither the output layer nor the input layer is topographically organised.

The strengths of the feedforward synaptic connections from the input layer to the output

layer are initialised to random weights in the interval [0, 1] at the start of each simulation. The

synaptic weight vector of each output neuron is then renormalised as is typical in competitive

networks [15].

Fig 1. Architecture of the neural network model. The competitive output layer on the right receives afferent synaptic

connections from neurons in the input layer on the left. A trace learning rule is used to modify the strengths of the

feedforward synaptic connections from the input layer to the output layer during learning.

https://doi.org/10.1371/journal.pone.0207961.g001
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The visually-guided training of the network

The neural network is trained on input patterns that simultaneously encode both the position

of the eyes in orbit and the retinotopic position of the visual target. The position of the eyes is

kept within [−24˚, 24˚], whilst the retinal locations of visual targets are kept within the interval

[−63˚, 63˚]. Keeping the position of the eyes and the retinal locations of visual targets within

these respective intervals reduces edge effects due to clipping of the input representations.

Similarly, all M evenly spaced head-centred locations chosen for each experiment are con-

fined within [−63˚, 63˚] to ensure that visual targets always remain in view as the eyes move.

Each training epoch consists of M periods, where each period individually corresponds to one

of the M chosen head-centred locations. During training, for each period a visual target is

fixed in a given head-centred location whilst the eyes perform a series of saccades to P different

and uniformly sampled eye-positions within [−24˚, 24˚]. The saccades between successive eye-

positions are performed at a constant velocity of 400˚/s. The duration of each fixation is set to

300ms.
Thus, the training process consisted of presenting to the network sequences of combined

visual and eye-position input signals, which represent the visual target in fixed head-centred

locations, whilst the eyes randomly shifted to different positions in the orbit.

Testing the network

The responses of the output units for all combinations of T head-centred visual target locations

and E eye fixation positions are recorded after training to test the model. In order to test the

ability of the trained model to generalise to new input patterns, the model is tested with a set of

novel combinations of eye-position and visual target location not encountered during training.

Specifically, the following E = 4 eye-positions are used during testing: −18˚, −6˚, 6˚ and 18˚.

For each of these eye-positions, the visual target is shifted in increments of 2˚ every 330ms to

the next one of the T = 80 head-centred target locations within [−79˚, 79˚]. The firing rates of

all output neurons are saved at the end of each fixation period to analyse the receptive field

properties of the neurons, including the receptive field size, receptive field location and refer-

ence frame of response.

The neuronal and synaptic dynamics of the model

Input layer. The firing rates of neurons in the input layer were modelled by a response

function that encodes the retinotopic location of a visual target, where the responses were

modulated by the position of the eyes in the orbit. The response function of each input neuron

j maps the current retinal location r of the visual target and the eye-position e onto the neu-

ron’s instantaneous firing rate vI
j . The instantaneous firing rate values are defined within the

range [0, 1]. We investigated the performance of the model when the response functions of the

input neurons were modulated by two different functional forms of eye positon gain field as

described next.

The first response function has a peaked eye-position gain field as shown in Fig 2A. This

form of eye-position modulation has been reported in cortical area PO by [4]. The full

response function is described by

vI
j ¼ exp �

ke � bjk
2

2r2

 !

� exp �
kr � ajk

2

2s2

 !

ð1Þ
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Fig 2. Examples of the two alternative response functions used to compute the firing rates of input neurons. For

each type of response function, we plot the responses of an individual input neuron as a function of eye-position and

retinal location of a visual target. A: Example of a peaked response function, in which the firing rate is modulated by a

peaked eye-position gain field as described by Eq 1. B: Example of a monotonic response function that is modulated by

a sigmoidal eye-position gain field described by Eq 2.

https://doi.org/10.1371/journal.pone.0207961.g002
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This response function is formed from a product of two components: the first component

represents the eye-position signal, whilst the second component encodes the retinotopic

position r of the visual target. In Eq 1, the neuronal response is modulated by a peaked

Gaussian function of eye-position. The parameter βj denotes the preferred eye-position for

each input neuron j. The width of the corresponding Gaussian eye-position tuning curve is

determined by the standard deviation ρ. The preferred retinal location of a target stimulus

for each input neuron j is denoted by the parameter αj. The width of the corresponding

Gaussian retinal tuning curve is determined by the standard deviation σ. Each input neuron j
is set to respond maximally to a unique combination of retinal target location (αj) and eye-

position (βj). The entire two dimensional space consisting of possible combinations of eye-

position and retinal target location is covered by the population of input neurons in integer

steps of 1 degree in each dimension. This results in a total of 201 × 61 = 12, 261 neurons in

the input layer.

The second form of firing rate response function used to model the input neurons incorpo-

rates a sigmoid eye-position gain field as shown in Fig 2B. This form of eye-position modula-

tion is monotonic in the eye-position dimension, as has been observed in multiple visual areas

[2, 3]. Although the form of the modulation is sigmoidal whilst most empirical work has

described it as planar, [13] showed the data is also compatible with a saturating sigmoidal gain

formulation. The full response function is described by

vI
j ¼

1

1þ exp ðkjðe � bjÞÞ
� exp �

kr � ajk
2

2s2

 !

ð2Þ

In Eq 2, the visual receptive field is modulated by a sigmoidal function of eye-position. For

each input neuron j, the parameter κj determines the gain direction and saturation rate of the

modulation, where κj is −2× the slope of the sigmoid. The inflection point βj determines the

eye-position where a firing rate response greater than 0.5 begins. The input neurons all have

the same absolute saturation rate, that is |κj| = |κm| for all j and m, but one half has a positive

gain direction (κj> 0) whilst the other half has a negative gain direction (κj< 0). Each input

neuron j is set to respond maximally to a unique combination of retinal target location αj, eye-

position βj, and gain direction and saturation rate κj. The population of input neurons evenly

covers the entire three dimensional space resulting from such combinations. This results in an

input population of 201 × 61 × 2 = 24, 522 neurons.

Output layer. Three dynamical quantities were defined for each neuron i in the competi-

tive output layer: an internal activation hi(t), a memory trace value qi(t), and an instantaneous

firing rate vi(t) [28].

The internal activation is governed by the equation

th
dhi

dt
¼ � hi þ

X

j

wijv
I
j ð3Þ

where wij denotes the strength of the synapse from the jth input neuron to the ith output neuron

and τh is a time constant common for all output neurons.

The instantaneous firing rate is given by

vI
i ¼

1

1þ exp ð� 2φðhi � pp � yÞÞ
ð4Þ

where θ and φ denote the sigmoid threshold and slope, respectively. The level of competition

between neurons in the output layer, and thereby the proportion of neurons that remained
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active, is controlled by the parameter pπ. Specifically, the parameter pπ is set to the πth percen-

tile point of the distribution of neuronal activations within the output population. For exam-

ple, pπ is set to the top tenth percentile activation value when π is set to 90. This way of

implementing competition within the competitive output layer has been previously used in

competitive neural network models of the primate visual system with trace learning [29]. In

the cortex, lateral inhibition is implemented via inhibitory interneurons [28]. The trace value

qi(t) is defined in the following section.

Modification of synaptic weights by trace learning. Trace learning rules for synaptic

modification encourage postsynaptic (output) neurons to bind together subsets of input pat-

terns that tend to occur close together in time by incorporating a temporal trace of recent neu-

ronal activity. The trace value qi(t) for the ith neuron in the output layer is given by

tq
dqi

dt
¼ � qi þ vi ð5Þ

where vi is the instantaneous firing rate of the neuron, and τq is a time constant common for

all output neurons.

In the first part of the paper, during training the strength of the synapse from the jth input

neuron to the ith output neuron is governed by the standard trace learning rule previously

implemented by [17]

dwij

dt
¼ %qiv

I
j

ð6Þ

where % is the learning rate, vI
j is the instantaneous firing rate of the jth input neuron and qi is

the trace value of the ith output neuron. However, later in this paper we will introduce a num-

ber of new, more powerful forms of trace learning, which are in fact needed to produce head-

centred output neurons when the input neurons are modulated by a sigmoidal (monotonic)

function of eye-position.

Finally, after each weight update during training, the length of the weight vector for each

output neuron i, that is wi ¼ ðwi1; . . . ;wiNI
Þ where there are NI input neurons, is renormalised

by setting

wi≔
wi

kwik
ð7Þ

This prevents unbounded growth of the synaptic weights during training [28]. Experimental

evidence for renormalisation of synaptic weights in the brain has been reported by [30].

Simulation of the differential model

The Forward-Euler scheme is used to numerically integrate the coupled differential equations

given by Eqs 3, 5 and 6. The numerical time step Δt is set to one tenth of the neuronal time

constant τh. We checked that the simulation results remained similar if the time step was

reduced or the number of training epochs increased.

During training and testing, the input patterns encoding the changing eye-position and

retinotopic target location are simulated dynamically and sampled at 1kHz. Linear interpola-

tion is used to compute the numerical inputs to the discretised Forward Euler model equa-

tions, which require input values at every numerical time step Δt = τh/10.
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Analysis of network performance

In order to analyse whether individual output neurons are predominantly responding in an

eye-centred or head-centred frame of reference, we used a method of analysis originally devel-

oped by [17]. This analysis is described next with the mathematical details taken from that ear-

lier paper.

Let R be a matrix containing the responses of a given neuron during testing, where R[i, j]
denotes the firing rate when the model is fixating in the ith eye-position ei and the visual target

is in the jth head-centred location tj, as recorded during the testing protocol described above.

The vector (R[i, 1], . . ., R[i, T]) is referred to as the response vector at the ith eye-position. The

number of eye-positions during testing is denoted by E, while the number of head-centred

locations for visual targets during testing is denoted by T. The indexing of eye-positions

and head-centred target locations are ordered from left (negative) to right (positive), that is

e1� . . .� eE and t1� . . .� tT.

To determine which reference frame an output neuron is responding in during testing, two

separate metrics are applied that reflected to what degree the neuronal response is compatible

with either an eye-centred or head-centred reference frame, and then the values of these two

metrics are compared.

The head-centredness metric computed the degree to which the head-centred response vec-

tors of a neuron remained stable across different eye-positions. The head-centredness metric

measured the degree of such stability for a given output neuron by averaging correlations

between response vectors for different eye-positions, that is

P ¼
1

E
2

� �
X

1�i1<i2�E

XT

j¼1

ðR½i1; j� � R½i1�ÞðR½i2; j� � R½i2�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XT

j¼1

ðR½i1; j� � R½i1�Þ
2
XT

j¼1

ðR½i2; j� � R½i2�Þ
2

v
u
u
t

ð8Þ

where

R½i� ¼
1

T

XT

j¼1

R½i; j� ð9Þ

This yielded a metric which is referred to as the head-centredness of the output neuron, and it

is bounded between −1 and 1, where a perfect correlation of 1 indicated a perfectly head-cen-

tred response.

A very similar analysis is done to quantify the compatibility of the responses of the output

neuron with an eye-centred frame of reference. That is, a visual neuron is judged to respond in

an eye-centred frame of reference to the extent that its eye-centred response vectors remain

stable across different eye-positions. The eye-centred analysis proceeded as follows. To reiter-

ate, each response vector (R[i, 1], . . ., R[i, T]) is the result of testing over the same set of head-

centred locations, but with the model fixated in a distinct eye-position. Therefore, each

response vector also corresponded to a unique range of retinal locations. The intersection of

these retinal ranges corresponded to different portions of each response vector, and it is these

portions that are subject to correlation analysis. Specifically, fi denotes the first vector position

in the ith response vector to be included, and the V − 1 next positions are included as well such

that the subvector (R[i, fi], . . ., R[i, fi + (V − 1)]) is the vector being used for the correlation
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analysis. The derivation of fi and V are found in the Appendix. This gave the metric

O ¼
1

E
2

� �
X

1�i1<i2�E

XV� 1

j¼0

ðR½i1; fi1 þ j� � R½i1�ÞðR½i2; fi2 þ j� � R½i2�Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XV� 1

j¼0

ðR½i1; fi1 þ j� � R½i1�Þ
2
XV� 1

j¼0

ðR½i2; fi2 þ j� � R½i2�Þ
2

v
u
u
t

ð10Þ

where

R½i� ¼
1

V

XV� 1

j¼0

R½i; fi þ j� ð11Þ

This is referred to as the eye-centredness of the output neuron, and it is bounded between −1

and 1, where a perfect correlation of 1 indicated a perfectly eye-centred response. Response

vectors which had no response for the extracted ranges are excluded from the correlation,

and a neuron without a response within this range of retinal locations at any eye-position is

excluded from further analysis.

A neuron is finally classified as head-centred if P> 0 and P> O, and classified as eye-

centred ifO> 0 and O>P. If neither of these conditions is met then the neuron remains

unclassified.

Results

Self-organisation with peaked and monotonic gain fields

This experiment explores the feasibility of the self-organisation of head-centred receptive fields

under the two different forms of eye-position gain modulation. Two models are trained and

tested on the same stimuli, where one model has peaked eye-position modulation in the input

population as shown in Fig 2A, and the other model has sigmoidal modulation as shown in Fig

2B. The training lasts for 20 epochs. During each training epoch, a visual target is presented

for approximately 5s in each of the eight head-centred training locations: −63˚, −45˚, −27˚,

−9˚, 9˚, 27˚, 45˚ and 63˚. For each period where the visual target is in a fixed head-centred tar-

get location, the eye-position is varied continuously through time as the model makes a series

of saccades and fixations. During each such period, the model performs 14 saccades inter-

leaved with 15 fixations, where each fixation lasts 300ms. Each saccade is at a constant velocity

of 400˚/s, and it is directed to a random eye-position within the range [−24˚, 24˚]. Each train-

ing epoch thus lasts for approximately 40s, and the entire training of the network is completed

after about 800s of simulated time. The model is tested as previously described. The parameters

for the two model simulations are given in Table 1.

Fig 3 compares the firing rate responses of the output neurons before and after training in

the two models with either peaked or sigmoidal gain modulation of the visual input neurons.

The responses of an output neuron from the model with peaked eye-position gain modulation

before training (Fig 3A) exhibits no consistent structure in head-centred space across the dif-

ferent eye-positions. However, after training (Fig 3B) there is a clear maximal response to the

same head-centred location across all eye-positions. Therefore, the self-organisation process

has made the response reference frame of this output neuron strongly head-centred. The

responses of an output neuron from the model with sigmoidal eye-position gain modulation

before training (Fig 3C) also has an erratic and more eye-centred response prior to training

due to the randomly assigned synaptic weights. However, unlike the peaked gain modulation

model, training has the effect of making the neuron almost perfectly eye-centred. This is
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clearly seen by the receptive fields shifting in head-centred space in register with the eye-posi-

tion shifts. Therefore, the self-organisation process has made this output neuron even more

compatible with an eye-centred reference frame. The miniature scatter plots show the refer-

ence frame values of all neurons in the output layer, where each neuron is plotted as a point

corresponding to that neuron’s particular combination of head-centredness and eye-centred-

ness. The miniature scatter plots confirm the same general effects across the entire populations

of output neurons. That is, subplot (B) shows that a large proportion of the output neurons in

the model with peaked gain modulation have a high head-centredness and low eye-centred-

ness, and thus respond in a head-centred reference frame. While subplot (D) shows that a

large proportion of the output neurons in the model with sigmoidal gain modulation have a

low head-centredness and high eye-centredness, and thus respond in an eye-centred reference

frame.

Fig 4 shows the synaptic weight vectors of the same output neurons as those shown in Fig 3.

Before training, there is no structure to the potentiated synapses of the output neurons in

terms of the preferences of the presynaptic input neurons (Fig 4A and 4C), reflecting the ran-

dom weighting assigned to an untrained network. After training, the synaptic weight vector of

the output neuron from the model with peaked eye-position gain modulation shows a clear

diagonal structure (Fig 4B). This synaptic weight profile is consistent with a learned response

to a particular location within the head-centred frame of reference, and is thus consistent with

the observed head-centred responses of this neuron during testing (Fig 3B). The synaptic

weight vector of the neuron from the model with sigmoidal (monotonic) gain modulation

exhibites an entirely different pattern of potentiation after training. In this case, the strengh-

tened synapses have an approximately horizontal structure that is concentrated on input neu-

rons corresponding to a small portion of retinal preference space (Fig 4D). As a result, this

output neuron has learned an eye-centred response (Fig 3D).

Fig 5 shows the reference frame values for all output neurons from both models with either

peaked or sigmoidal gain modulation tested before and after training. It is clear that, for the

model with peaked eye-position modulation, training has the effect of making the majority of

output neurons head-centred, and also with a much larger head-centredness value.

Table 1. Simulation parameter of self-organising models with either peaked or sigmoidal eye-position gain

modulation.

Parameter Symbol Value (peaked) Value (sigmoid)

Number of target locations M 8 8

Fixation sequence length P 15 15

Number of training epochs - 20 20

Width of peaked eye-position tuning curve ρ 6˚ -

Width of retinal tuning curve σ 6˚ 6˚

Gain magnitude |κ| - 0.0625

Output neuron population size N 900 900

Input neuron population size NI 12261 24522

Trace time constant τq 400ms 400ms

Activation time constant τh 100ms 100ms

Activation function slope φ 4.5 4.5

Activation function threshold θ 0.4 0

Sparseness percentile π 80% 90%

Learning rate % 0.05 0.05

Synaptic connectivity ϕ 5% 5%

https://doi.org/10.1371/journal.pone.0207961.t001
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Fig 3. Comparison of model performance with peaked and sigmoidal (monotonic) gain modulation of visual input neurons.

The figure shows the firing rate responses of output neurons before and after training with the standard trace rule (6). Specifically,

each subplot shows the firing rate responses of a typical output neuron during testing for four different eye-positions: −18˚, −6˚, 6˚

and 18˚. The top row shows output neuron #95 from the model with peaked eye-position gain modulation before training (A) and

after training (B). The bottom row shows output neuron #838 from the model with sigmoidal eye-position modulation before

training (C) and after training (D). In each subplot, each curve corresponds to a fixed eye-position while a visual target is presented

across the same range of head-centred locations. It is evident in subplot (B) that after training the model with peaked gain

modulation of the input neurons, the output neuron responds reasonably consistently when the visual target is presented within the

localised interval of head-centred space [0˚, 16˚] regardless of the eye-position. The neuron is thus responding in a head-centred

reference frame. However, in contrast, subplot (D) shows that after training the model with sigmoidal (monotonic) gain modulation,

the responses of the output neuron in the head-centred visual space are much more dependent on the eye-position. Thus, this

neuron is not representing the target position in a head-centred reference frame. The miniature scatter plots show the reference

frame values of all neurons in the output layer, where each neuron is plotted as a point corresponding to that neuron’s particular

combination of head-centredness (ordinate) and eye-centredness (abscissa). The neuron whose firing rate responses have been

plotted is shown in the scatter plot by a red mark. The miniature scatter plots confirm the same general effects across the entire

populations of output neurons. That is, subplot (B) shows that a large proportion of the output neurons are clustered in the top left

quadrant of the scatter plot, indicating a high head-centredness (ordinate) and low eye-centredness (abscissa). These output neurons

are thus responding in a head-centred frame of reference. While subplot (D) shows that a large proportion of the output neurons are

clustered in the bottom right quadrant of the scatter plot, indicating a low head-centredness (ordinate) and high eye-centredness

(abscissa). Thus, with monotonic gain fields acting on the input neurons, the population of output neurons have overwhelmingly

learned to respond in an eye-centred reference frame.

https://doi.org/10.1371/journal.pone.0207961.g003
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Fig 4. Strengths of the afferent synapses from the input population to a typical output neuron during testing. Results are shown for the model with peaked

eye-position gain modulation before training (A) and after training (B), and for the model with sigmoidal eye-position modulation before training (C) and after

training (D). The output neurons correspond to those plotted in Fig 3. In each plot, the afferent synapses have been arranged topographically by the preference of

the input neuron for retinal location αi and eye-position βj. For the model with sigmoidal gain modulation, there are two input neurons for every combination of

retinal preference and eye-position preference, but with opposite eye-position gain. Consequently, the input population has been separated by gain direction. The

portion of each plot to the left of the white dashed line corresponds to input neurons with positive gain κj> 0, while the portion of each plot to the right of the
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Specifically, before training 26% of output neurons are head-centred, and after training 69%

are head-centred. Moreover, among the head-centred neurons, the average head-centredness

rose from 0.17 before training to 0.63 after training. For the model with sigmoidal eye-position

modulation, training has the effect of keeping the majority of output neurons eye-centred, and

indeed increasing their average eye-centredness from 0.88 to 0.96.

In summary, when the visual input neurons have peaked eye positon gain modulation,

training the network has the effect of developing head-centred output neurons. However,

when the input neurons have sigmoidal (monotonic) gain modulation, the training process

makes most output neurons almost perfectly eye-centred.

Since a large proportion of visual neurons in the dorsal visual pathway have responses that

are modulated by a monotonic function of eye-position, it is important to understand why

monotonic gain fields make it more difficult for trace learning to produce head-centred output

neurons. In the next section, we investigate this problem by carrying out a covariance analysis

on the input patterns themselves.

Covariance analysis of the effects of gain modulation

The preceeding model simulations failed to develop head-centred output representations dur-

ing self-organisation when the input population had sigmoidal eye-position modulation,

white dashed line corresponds to those input neurons with negative gain κj< 0. It can be seen from subplot (B) that the output neuron in the trained network with

peaked gain modulation has developed a diagonal weight structure, which is consistent with a learned response to a particular location within the head-centred

frame of reference. In contrast, subplot (D) shows that the output neuron in the trained network with sigmoidal (monotonic) gain modulation has developed a

more horizontal weight structure, which is consistent with a learned response to a specific location within the eye-centred reference frame.

https://doi.org/10.1371/journal.pone.0207961.g004

Fig 5. Scatter plot of eye-centredness and head-centredness values of output neurons from simulations with

peaked and monotonic gain modulation. The scatter plot shows the eye-centredness and head-centredness values of

all output neurons from four separate simulations corresponding to the models with peaked and sigmoidal

(monotonic) gain modulation tested before and after training with the standard trace rule (Eq 6). Each point in the

scatter plot corresponds to an output neuron from the given simulation, plotted in terms of its eye-centredness

(abscissa) and head-centredness (ordinate). The dashed diagonal line with positive unity slope separates those neurons

which are classified as head-centred (above line) from those that are classified as eye-centred (below the line). It is

evident that after training most of the output neurons from the network with peaked gain modulation have become

head-centred, while nearly all of the output neurons from the network with monotonic gain modulation have

remained eye-centred.

https://doi.org/10.1371/journal.pone.0207961.g005
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despite succeeding with peaked eye-position modulation. This raises the question of what the

difference is between the two different forms of input encoding from the perspective of com-

petitive learning [15]. It is well known that standard competitive networks develop weight vec-

tors that reflect the covariance between the activities of input neurons. In particular, there is a

tendency for output neurons to learn to respond to subsets of input neurons whose activities

are highly correlated. Hence inspecting the covariance between input neurons across all input

patterns may reveal what structure the weight vectors should converge towards under standard

competitive learning conditions with a Hebbian learning rule.

The covariance between input neurons may be computed in the same way for both input

neurons with peaked gain described by Eq 1 and input neurons with sigmoidal gain described

by Eq 2. In the case of an input neuron with retinal preference α and eye-position preference

β, the covariance between it and a second input neuron with corresponding preferences α�, β�

is given by

cova;bða�; b
�
Þ ¼

Z Z

R�E

ðRa;bðr; eÞ � Ra;bÞðRa� ;b� ðr; eÞ � Ra� ;b� Þdrde ð12Þ

Rα,β(r, e) is the response of a neuron with preferences α, β to a visual target at retinal location r
and eye-position e, as given by either Eqs 1 or 2. The term Ra;b is the average response of the

same neuron across all possible inputs in the R × E space, that is

Ra;b ¼
1

jR� Ej

Z Z

R�E

Ra;bðr; eÞdrde ð13Þ

Fig 6A shows this covariance map for an input neuron with a peaked gain and preferences

α = β = 0˚, and Fig 6B shows the covariance map for an input neuron with sigmoidal gain and

preferences α = β = 0˚ and κ> 0.

The structure of covariance in the peaked modulation case is functionally identical to the

response function of the input neuron, namely a two dimensional Gaussian tuning curve. The

form of this covariance function is obvious by considering the correlations between the activi-

ties of input neurons with peaked gain.

In the sigmoidal (monotonic) modulation case, the situation is more complicated. The

strong covariance is localised within the retinal preference dimension, but elongated within

the eye-position dimension. This can again be understood by considering the response func-

tions of the input neurons. Firstly, because all input neurons have a sharp, peaked tuning pro-

file in the retinal preference dimension, any two input neurons need to have similar retinal

preferences in order to have the possibility of being coactive. This explains the localisation of

strong covariance in the retinal preference dimension. Secondly, the elongated form of the

covariance function in the eye-position dimension results directly from the sigmoidal gain

as follows. In the subpopulation of input neurons with a positive gain direction, similar to

the reference input neuron (0˚, 0˚) itself, it is clear that other neurons with a similar retinal

preference and with an eye-position preference to the right (i.e. larger than 0˚) cofire more fre-

quently with the reference neuron. This is because a positive gain implies that an input neuron

responds to all eye-positions to the left of (i.e. smaller than) the eye-position preference of the

neuron. Conversley, a negative gain implies that an input neuron responds to eye-positions to

the right of (i.e. greater than) the eye-position preference of the neuron. Hence, in the subpop-

ulation of input neurons with a negative gain direction, it can be seen that neurons with a simi-

lar retinal preference and with an eye-position preference to the left of (i.e. smaller than) 0˚

cofire more frequently with the reference neuron.
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PLOS ONE | https://doi.org/10.1371/journal.pone.0207961 November 29, 2018 19 / 50

https://doi.org/10.1371/journal.pone.0207961


The covariance maps shown in Fig 6A and 6B predict the structure of the weight vectors

that we would expect to see develop in a competitive network with a standard Hebbian learn-

ing rule trained over all input patterns with either peaked or sigmoidal gain, respectively.

These predictions are tested by running simulations with a Hebbian learning rule with both

peaked and sigmoidal gain modulated input neurons. The Hebbian learning rule is imple-

mented in the model by replacing the trace value qi in the standard trace learning rule (Eq 6)

by the current firing rate vi of the postsynaptic neuron. For each simulation, there are 200

training patterns corresponding to random locations in the E × R space. The activation time

constant is reduced to τh = 30ms to avoid any trace effect during learning. Fig 7A and 7C show

the synaptic weight vectors of two typical output neurons that developed after training with

the Hebbian learning rule when the input neurons are modulated by either peaked or mono-

tonic gain, respectively. It is clear that these synaptic weight vectors have a very similar struc-

ture to the corresponding covariance maps shown in Fig 6. Thus, with the Hebbian learning

rule, the underlying correlations between the activities of the input neurons with either peaked

or sigmoidal gain shape the synaptic weight structure that develops during training. Most

importantly, with monotonic gain, the synaptic weights are localised within the retinal prefer-

ence dimension, but elongated within the eye-position preference dimension. This kind of

synaptic weight structure leads to eye-centred output responses.

Next, comparison simulations are run with the trace learning rule. Fig 7B and 7D show the

synaptic weight vectors of two typical output neurons that developed after training with the

trace learning rule when the input neurons are modulated by either peaked or sigmoidal gain,

respectively. Fig 7B shows a diagonal band of potentiated synaptic weights, which correspond

to input neurons representing the same head-centred location but with different combinations
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Fig 6. Covariance between a given input neuron and the rest of the input neuron population. Each plot shows the

covariance between a given input neuron and the rest of the input neuron population in the form of a topographic

map analogous to the weight vector maps shown above. Subplots (A) and (B) show results for input neurons with

peaked and monotonic gain, respectively. In both cases the input neuron has preferences α = β = 0˚, and in the

monotonic case the input has positive gain (κ> 0).

https://doi.org/10.1371/journal.pone.0207961.g006
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of retinal location and eye-position. Thus, with peaked gain, the trace learning rule is able

to simply bind together clusters of input neurons along a diagonal line in the (retinotopic

preference × eye-position preference) input space corresponding to a particular head-centred

location. Output neurons will then respond to particular head-centred locations regardless of

Fig 7. Weight vectors of two typical output neurons. The top row shows the weight vectors of two typical output neurons that develop when the input

neurons have peaked eye-position gain modulation and the network is trained with either the Hebbian learning rule (A) or the trace learning rule (B).

The bottom row shows the weight vectors of two typical output neurons when the input neurons have monotonic eye-position gain and the network is

trained with either the Hebbian learning rule (C) or the standard trace learning rule (D).

https://doi.org/10.1371/journal.pone.0207961.g007
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eye-position or the retinal location of a visual target. However, the situation is quite different

with sigmoidal gain modulated input neurons. Fig 7D shows a similar horizontal weight struc-

ture to that obtained with the Hebbian learning rule (Fig 7C). In particular, in both of these

last two cases, the weight vector is very similar to the covariance structure found among the

input neurons with sigmoidal eye-position modulation (Fig 6B). Thus, with sigmoidal gain,

even if a trace learning rule is implemented, the output neurons still learn to represent eye-

centred rather than head-centred locations. This is because developing head-centred output

responses would require the trace learning rule to do more than simply bind input patterns

together. With sigmoidal gain, trace learning must also disrupt and break apart output repre-

sentations corresponding to clusters of highly correlated input neurons, which are localised in

the retinotopic preference dimension but elongated in the eye-position preference dimension.

However, in practice the standard trace learning rule given by Eq (6) is not strong enough to

achieve this. Consequently, with the standard trace learning rule, these elongated clusters of

input neurons with correlated activities continue to drive the development of eye-centred out-

put neurons, as observed in the simulations previously reported in this article (section Self-

organisation with peaked and monotonic gain fields).

Introducing plasticity into a prewired model

The failure of self-organisation to produce head-centred output neurons in a model with sig-

moidal (monotonic) eye-position gain modulation suggests the following two important ques-

tions. First, does there actually exist a synaptic weight connectivity matrix that would support

a mapping to head-centred output representations, even if in practice the self-organisation

process using the standard trace learning rule (6) originally implemented by [17] fails to con-

verge on this solution? Secondly, if it is possible to prewire a network with such a synaptic

weight structure, then would the head-centred output representations be abolished by subse-

quently introducing synaptic plasticity either in the form of the standard trace learning rule

(6) or normal Hebbian learning (where the trace value qi is replaced by the current firing rate

vi)? If so, then this would demonstrate an even deeper problem: the presence of such forms

of synaptic plasticity in a network with sigmoidal gain modulation not only fails to drive the

development of head-centred output representations, but would also abolish any existing

head-centred representations.

To address the above two questions, we construct a manually prewired model that is

designed to produce head-centred output neurons with input neurons that are modulated by

sigmoidal functions of eye-position. The prewired model is constructed as follows. There are

24522 neurons in the input population, each corresponding to a unique combination of reti-

nal-position preference (αi), eye-position preference (βj) and slope (κj). There are 900 neurons

in the output population, each given a head-centred receptive field at one among nine head-

centred locations, which are −68˚, −51˚, −34˚, −17˚, 0˚, 17˚, 34˚, 51˚ and 68˚. Each neuron in

the output population is postsynaptically connected to a randomly assigned subpopulation of

the input population. There are only two synaptic weight values across all synapses, simply

referred to as elevated and depressed. The strength of a synapse is elevated if the presynaptic

input neuron responded maximally to a combination of eye-position and retinal location cor-

responding to a head-centred location that is closest to the head-centred location assigned to

the output neuron. Otherwise the synapse is depressed. Therefore, the output neuron receives

strong driving input to the extent that a visual target is near its assigned head-centred location.

Specifically, the weight of a synapse with a postsynaptic neuron assigned to head-centred

receptive field location h and a presynaptic neuron having retinal-preference α, eye-position
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preference β and κ> 0 is given by

wh;a;b ¼

(
10 h � b � a � hþW=2 ðElevatedÞ
1 else ðDepressedÞ

ð14Þ

where W = 60˚ is the size of the eye-position dimension. Likewise when κ< 0 the weight is

given by

wh;a;b ¼

(
10 h � W=2 � a � h � b ðElevatedÞ
1 else ðDepressedÞ

ð15Þ

Fig 8 shows the structure of the canonical weight vector produced by Eqs 14 and 15. Before

testing the network, the synaptic weight vectors of all output neurons underwent the normali-

zation step described by Eq 7. To provide a baseline for comparison, a network with randomly

Fig 8. Synaptic weight structure of a network model that has been manually prewired in order to produce head-

centred output neurons with input neurons that are modulated by a sigmoidal function of eye-position. The figure

shows the structure of the canonical weight vector resulting from the prewiring Eqs 14 and 15. Each of the two

rectangles represents the topographic organisation of one half of the input population in terms of retinal-preference

(αi) and eye-position preference (βj), with the input neurons in the left rectangle having κ> 0 (positive gain) and the

right rectangle having κ< 0 (negative gain). A neuron in the competitive output population which has been assigned a

head-centred receptive field at location h will have elevated connections from input neurons with preferences located

in the right-angled triangles of the input space, labeled A and B.

https://doi.org/10.1371/journal.pone.0207961.g008
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wired synaptic connections is also tested in the same way. The parameters for both models are

given in Table 2.

Fig 9 shows the eye-centredness and head-centredness values of output neurons in the

manually prewired model as well as a randomly wired model for comparison. It is clear that in

the manually prewired model, the majority of output neurons are head-centred. In contrast,

there are no head-centred neurons in the randomly wired model. In summary, the results

from the manually prewired model demonstrate the existence of a synaptic weight matrix

which allows the output neurons to perform the desired coordinate transformation to a head-

centred reference frame even when the input neurons are modulated by a sigmoidal function

of eye-position.

The next question to be explored is, what would be the effect of introducing synaptic plas-

ticity, either in the form of the standard trace learning rule (6) or normal Hebbian learning,

Table 2. Simulation parameters of the network model that has been manually prewired in order to produce head-

centred output neurons with monotonic modulated input neurons.

Parameter Symbol Value

Width of retinal tuning curve σ 6˚

Gain magnitude |κ| 0.0625

Output neuron population size N 900

Input neuron population size NI 24522

Activation time constant τh 100ms

Activation function slope φ 4

Activation function threshold θ 0

Sparseness percentile π 90%

Synaptic connectivity ϕ 8.16%

https://doi.org/10.1371/journal.pone.0207961.t002

Fig 9. Performance of the prewired network model with monotonic modulated input neurons. The Figure shows

the performance of the network model that has been manually prewired to produce head-centred output neurons with

input neurons that are modulated by a sigmoidal function of eye-position. The scatter plot shows the eye-centredness

and head-centredness values of all output neurons from the manually prewired model and a randomly wired model.

Same conventions as in Fig 5. It can be seen that the majority of the output neurons in the manually prewired model

display head-centred responses.

https://doi.org/10.1371/journal.pone.0207961.g009
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into the manually prewired model while it is exposed to the kinds of visual input described

above? This experiment would inform whether these forms of plasticity not only failed to drive

the development of head-centred output representations during self-organisation, but would

even abolish existing head-centred representations. The manually prewired model is therefore

subjected to the same visual training stimuli as described above over 10 training epochs. The

results presented here are from a simulation using the standard trace learning rule (6). How-

ever, although not shown, further simulations with a Hebbian learning rule without an explicit

memory trace gave qualitatively similar results.

The impact of introducing synaptic plasticity into the manually prewired modelsas is

inspected by plotting key summary statistics as a function of the number of training epochs in

Fig 10. There is a catastrophic drop in model performance after only the first epoch of training,

where the fraction of head-centred neurons decreased from�77% to�0.3%, and the average

head-centredness among head-centred neurons decreased from�0.7 to�0.26. Subsequent

training epochs remained around these levels. After epoch 5 there is not a single head-centred

neuron.

In summary, it is found that just a single training epoch switched most of the output neu-

rons from being head-centred to eye-centred. We hypothesised that this is due to the same

visually-guided learning dynamics described above in section Self-organisation with peaked

and monotonic gain fields and in section Covariance Analysis of the Effects of Gain Modula-

tion, which come into operation when the retinotopic input neurons have monotonic eye-

position gain modulation. Thus, even if the synaptic weights are initially manually prewired

to effect head-centred output responses, which might be suggested to happen in the brain

through genetic specification, the introduction of just a limited amount of synaptic plasticity,

either in the form of the standard trace learning rule (6) or normal Hebbian learning, and visu-

ally-guided learning led to the output neurons rapidly switching to eye-centred responses. The

presence of even modest levels of such synaptic plasticity will quickly overwrite head-centred

representations that have been set up through structured (e.g. genetic) prewiring. Thus, since

plasticity is ubiquitous in primate cortex, this suggests that any explanation for the develop-

ment of head-centred visual responses must utilise a more sophisticated visually-guided learn-

ing process than demonstrated by [17], who considered only models with input neurons that

were modulated by peaked functions of eye-position. Moreover, the loss of head-centred rep-

resentations in the manually prewired model by introducing synaptic plasticity also represents

a major challenge to the plausibility of previously published models, such as that of [19], which

rely on an initial period of supervised learning to establish the required synaptic connectivity.

The problem here is that when the supervisory training signal is eventually removed, the con-

tinued presence of associative plasticity may degrade and eventually abolish the head-centred

output representations.

In the remainder of the paper we explore a variety of biologically plausible model variations

that are aimed at discovering potential mechanisms by which head-centred output neurons

may still develop through visually guided learning even when the network contains input neu-

rons with monotonic modulation by eye-position. We begin by exploring the performance of

the model when it incorporates a mixture of input neurons that are modulated by peaked and

sigmoidal (monotonic) eye-position gain fields. After this, we explore the operation of the

model with a number of more sophisticated, modified synaptic learning rules originally devel-

oped by [24] in the context of transform invariant visual object recognition, which maintain

biological plausibility by continuing to rely on the locally available activities of the pre- and

post-synaptic neurons. Moreover, trace learning rules operate in an unsupervised manner

with no requirement for an explicit training signal as needed for error correction rules such as

backpropagation of error, which further adds to their biological plausibility. The choice of the
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modified versions of the trace learning rule used in the following sections of this paper is moti-

vated by the superior performance of these learning rules reported by [24].

Physiological studies providing evidence for a form of memory trace in different brain

areas, including the cortex, were reviewed by [31]. These authors discussed how changes in the

neuronal excitability after a neuron has fired may be triggered by the transcription factor cyclic

AMP-responsive element-binding protein (CREB). It was observed that higher levels of CREB

modulate the probability that a given neuron will be involved in processing current sensory

input by making the neuron more excitable. Such a mechanism may introduce a trace learning

effect as follows. A first sensory input activates CREB in a subpopulation of neurons, which

Fig 10. The effects of introducing synaptic plasticity into the network that has been manually prewired to produce

head-centred output neurons when the input neurons that are modulated by a sigmoidal (monotonic) function of

eye-position. The figure shows population analyses of the response properties of output neurons in the manually

prewired model as the synaptic weights are further modified during ten training epochs with the standard trace

learning rule (6). Three key summary statistics are given. The head-centredness rate (red) is the fraction of head-

centred neurons in the output population. The average head-centredness (green) is the average head-centredness

among head-centred neurons, and becomes undefined if no head-centred neurons are found to exist. The average eye-

centredness (blue) is the average eye-centredness among all output neurons. The dashed lines show these values for the

manually prewired network before training, while the unbroken lines show the values through successive training

epochs after synaptic plasticity has been introduced. The error bars are the standard deviations. It can be seen that by

the end of the first training epoch the majority of the output neurons switched from being head-centred to eye-

centred.

https://doi.org/10.1371/journal.pone.0207961.g010
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leads to an increase in the excitability of these neurons. This increase in excitability then biases

the neuronal activation of many of the same neurons for the subsequent sensory inputs. The

overall effect in the visual system, for example, could be to help to maintain the activity of neu-

rons in higher neuronal layers while the retinal image transforms. This in turn could underpin

a form of trace learning, which encourages individual neurons to learn to respond to sensory

inputs that tend to occur close together in time. Additional experimental evidence of trace

learning in the cortex was reported by [32]. These authors investigated increases in transfor-

mation invariance and reductions in stimulus specificity among neurons in the primate visual

system. Specifically, the study provided evidence that the responses of inferior temporal cortex

neurons learned to respond to retinal images that occured close together time. Computational

evidence of how trace learning may naturally occur in a biologically realistic ‘spiking’ neural

network model of the primate visual system was reported by [33]. These authors investigated

the self-organisation of transform invariant visual representations using Spike Time Depen-

dent Plasticity (STDP). In particular, they demonstrated that trace learning arose naturally in

the network model during training if the synaptic time constants were sufficiently large. Lastly,

[34] investigated the contribution of trace learning in the learning of view invariant visual rep-

resentations of objects in both computer simulations and psychophysical experiments using

the same set of training stimuli. Both computational and psychophysical results provided evi-

dence of trace learning mechanisms.

We finally conclude with the investigation of the performance of the model incorporating a

mixed population of peaked and monotonic modulated visual input neurons with the synaptic

weights also adjusted using a new modified version of the trace learning rule that we proposed.

Standard trace learning rule with mixed peaked and sigmoidal eye-position

modulation of input neurons

In this experiment it is investigated how mixing peaked and sigmoidal gain modulation in the

input population in varying proportions would influence the development of head-centred

output neurons in the self-organising model with the standard trace learning rule (6). This is

an important issue since all cortical areas with eye-position gain modulation exhibit a mixture

of different forms of modulation [2–4]. A series of simulations are conducted where each neu-

ron in the input population is independently and randomly set to have either a peaked or sig-

moidal gain modulation. Specifically, each input neuron is changed from having peaked to

sigmoidal modulation with a probability p, called the sigmoid modulation rate, and values of

p = 0, 0.1, . . ., 1.0 are explored.

The impact of varying the sigmoid modulation rate on the characteristics of the model is

inspected by plotting key summary statistics as a function of p in Fig 11. As expected, the

head-centredness rate decreased as the sigmoid modulation rate increased, both in the trained

and untrained models. However, as long as the sigmoid modulation rate is less than 30%, the

trained model had a higher proportion of head-centred output neurons than the untrained

model. In particular, for sigmoid modulation rates less than 20%, the fraction of head-centred

neurons in the trained model did not drop below�15%, and the average head-centredness

among head-centred neurons remained no less than�0.58.

In summary, these results showed that when there is a large proportion of input neurons

with peaked eye-position gain modulation, say with 0� p� 0.2, then the self-organising

model is still capable of developing a significant proportion, i.e. no less than�15%, of head-

centred ouput neurons during training. However, as the sigmoid modulation rate increased,

the performance of the model deteriorated with far fewer head-centred output neurons present

in the trained model.
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Given that the model incorporating a mixed population of input neurons failed to develop

a significant proportion of head-centred output cells whenever p> 0.2, we next investigated

whether the introduction of more powerful, modified synaptic learning rules could produce

head-centred output neurons when the entire population of input neurons were again modu-

lated by a sigmoidal function of eye-position. Our choice of the modified versions of the trace

learning rule adopted in this paper was motivated by their superior performance reported in

previous work [24]. These modified versions of the standard trace learning rule are still biolog-

ically plausible in terms of only using locally available signals to update the synaptic weights of

connections. Moreover, we expected that the introduction of a delayed trace of synaptic activ-

ity and as well as an anti-Hebbian component incorporated in these modified versions of the

trace learning rule would provide the model with a way of weakening the observed Hebbian-

like training behaviour evidenced, for example, by the comparison of Fig 7D and 7C, and

therefore to facilitate the self-organisation of head-centred responses with visual input neurons

with monotonic eye-position gain modulation. The absence of these components makes other

classic Hebbian-based learning rules (e.g. Oja’s rule [35]) ineffective in this case.

Modified learning rule: Delayed postsynaptic trace with anti-Hebbian

learning

[24] investigated how a set of modified more powerful versions of the trace learning rule can

produce improved temporal binding and invariance learning. In particular, the authors

showed that the performance of the trace learning rule is substantially improved by incorpo-

rating a trace of previous neuronal activity with an explicit time delay. This had the effect of

removing the purely Hebbian term of the learning rule [24]. In the next simulations, the

Fig 11. The effects of incorporating a mixed population of input neurons with both peaked and monotonic eye-position gain modulation. The plots show how

the performance metrics vary with the monotonic modulation rate, p, which is the probability of each input neuron having a monotonic eye-position gain

modulation. Results are presented showing the response characteristics of the output neurons before training (A) and after training (B). Conventions are similar to Fig

10. It is evident that the head-centredness rate decreased as the sigmoid modulation rate increased, both in the trained and untrained models. However, as long as the

sigmoid modulation rate is less than 30%, the trained model had a higher proportion of head-centred output neurons than the untrained model.

https://doi.org/10.1371/journal.pone.0207961.g011
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learning rules proposed by [24] were adapted to differential formulations for the time-continu-

ous scenario in which the simulations are performed. A Forward Euler scheme was used to

numerically integrate the differential equations. In all simulations the numerical time step was

kept as one tenth of the neuronal time constant τh. Unless explicitly mentioned, the learning

rule was the only change from previous simulations.

This section presents simulation results showing the performance of a modified learning

rule incorporating a delayed postsynaptic trace with an anti-Hebbian learning component in

which the strength of each synaptic connection is decreased rather than increased in propor-

tion to the product of the firing rates of the pre- and post-synaptic neurons [36]. We investi-

gate the impact of this learning rule on the self-organisation of the synaptic weights and firing

rate responses of the output neurons when all input neurons were modulated by sigmoidal

eye-position gain fields. The learning rule was defined by

dwijðtÞ
dt

¼ a bqiðt � DTÞ � yiðtÞð ÞvjðtÞ ð16Þ

where αβqi(t − ΔT)vj(t) is the delayed-trace term of the learning rule. This is the term which

contains the tuning parameter β. Such a temporal delay ΔT in the plasticity at a synapse could

arise due to a number of physiological factors. For example, a long axonal transmission delay

ΔT between a pair of pre- and post-synaptic neurons would mean that plasticity at the synapse

depends on the activity of the pre-synaptic cell when it reaches the synapse ΔT after the firing

of the neuron. Axonal delays in the rabbit brain have been reported in the range [0.1, 44]ms

[37–39] and in the range [0.7, 5.2]ms and [0.7, 8.0] for neurons from the Frontal Eye Field

(FEF) and from area LIP, respectively, of the primate brain [40]. Such a delay mechanism has

recently been implemented in neural network simulations to solve accurate path integration in

the head direction system [41, 42] and provide an approach to solving feature binding in the

visual brain [43, 44]. The remaining term −αyi(t)vj(t) is minus the learning rate α times the

product of the post and presynaptic firing rates yi and vj, respectively. This term is referred to

as the anti-Hebbian term of the learning rule. Various forms of anti-Hebbian learning have

been reported in experimental neurophysiology studies in brain areas such as the hippocam-

pus [45], primary motor cortex [46] and prefrontal cortex [47].

Expanding Eq 16 will result in

dwijðtÞ
dt

¼ a bqiðt � DTÞ � yiðtÞð ÞvjðtÞ ð17Þ

where αβqi(t − ΔT)vj(t) is the delayed-trace term of the learning rule. This is the term which

contains the tuning parameter β. The remaining term −αyi(t)vj(t) is minus the learning rate α
times the product of the post and presynaptic firing rates yi and vj, respectively. This term is

referred to as the anti-Hebbian term of the learning rule. Various forms of anti-Hebbian learn-

ing have been reported in experimental neurophysiology studies in brain areas such as the hip-

pocampus [45], prefrontal cortex [46] and primary motor cortex [47].

The behaviour of the learning rule shown in Eq 16 is governed by scaling the parameter β.

Scaling β up could result in the delayed-trace component dominating the learning rule and,

therefore, resulting in the same trace-like training behaviour described in previous sections.

Similarly, scaling β down could make the anti-Hebbian term dominate the behaviour of

the learning rule and consequently lead to a qualitative change in the final outcome of the

training.

The parameters for the model are given in Table 1. The model was trained according to the

description given in section The Visually-Guided Training of the Network. Likewise, in all
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cases the model was tested on the same visual stimuli. The time delay ΔT used to compute the

trace value of each output neuron and the parameter β were both tuned to optimise the perfor-

mance of the model at developing head-centred output neurons. The time delay ΔT used to

compute the trace value of each output neuron i was 50ms. The parameter β was set to 2.2.

Fig 12 shows the firing rate responses of output neuron #168 before and after training, with

results shown for four different eye-positions. The miniature scatter plots presented within

each of the two subplots A and B show the reference frame values of all neurons in the output

layer. Neuron #168 is indicated in the scatter plots by a red mark. Fig 12A shows that prior to

training the response of output neuron #168 had no consistent structure in head-centred space

across different eye-positions. However, Fig 12B shows that after training the output neuron

responded maximally to the same head-centred location across all four eye-positions. This

neuron has thus learned to respond in a head-centred reference frame.

The change in the synaptic weight structure of the same output neuron #168 due to training

is shown in Fig 13. Before training started the afferent synaptic weights were randomly

assigned (Fig 13A). Fig 13B shows that after training, in contrast to the horizontal structure

previously obtained with the standard trace learning rule shown in Fig 7D, the structure

obtained with the modified learning rule 16 is similar to the predicted structure shown in Fig 8

for a head-centred neuron.

Fig 14 presents a population analysis of the reference frame response characteristics of the

output neurons before and after training. In particular, the scatter plot in Fig 14 shows that

before training nearly all of the output neurons had head-centredness values close to 0 and

were classified as eye-centred. However, after training the head-centredness values of many

output neurons had dramatically increased, with quite a number of these neurons now classed

as head-centred. Comparing the output population analysis of the model trained with the

modified learning rule 16 shown in Fig 14 with the performance of the model trained with the

Fig 12. Simulation results showing the firing rate responses of a model incorporating a population of monotonic

modulated input neurons trained with the modified learning rule 16: Delayed postsynaptic trace with anti-

Hebbian learning. The figure shows the firing rate responses of output neuron #168 before training (A) and after

training (B) during testing for four different eye-positions: −18˚, −6˚, 6˚ and 18˚. In each subplot, each curve

corresponds to a fixed eye-position while a visual target is presented across the same range of head-centred locations.

The miniature scatter plot shows the reference frame values of all neurons in the output layer, where each neuron is

plotted as a point corresponding to that neuron’s particular combination of head-centredness (ordinate) and eye-

centredness (abscissa). The neuron whose firing rate responses have been plotted is shown in the scatter plot by a red

mark. After training it is evident that this neuron responds reasonably invariantly to a visual target presented at the

same head-centred location regardless of the eye-position.

https://doi.org/10.1371/journal.pone.0207961.g012
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standard trace learning rule (6) shown in Fig 5 confirms that the new modified learning rule

16 is far more efficacious at driving the development of head-centred output neurons when

the input neurons are modulated by a sigmoidal (monotonic) function of eye-position than

the standard trace learning rule (6) originally investigated by [17].

In summary, these results showed that training the model with the modified learning rule

16 refined the response characteristics of many output neurons to be more compatible with a

head-centred frame of reference, even when all of the input neurons had monotonic eye-posi-

tion gain modulation.

Modified learning rule: Delayed postsynaptic firing rate with anti-Hebbian

learning

This section presents simulation results showing the performance of a learning rule which

incorporates a delayed postsynaptic firing rate with anti-Hebbian learning [24]. The same

training procedure of previous simulations was used in the simulations presented in this sec-

tion. The learning rule is defined by

dwijðtÞ
dt

¼ a byiðt � DTÞ � yiðtÞð ÞvjðtÞ ð18Þ

where yi was the firing rate of output neuron i. In this case no postsynaptic trace value qi is used

to update the synaptic weights. The tuning parameter β works as described in section Modified

Learning Rule: Delayed Postsynaptic Trace with Anti-Hebbian Learning for the anti-Hebbian

learning rule with delayed trace (Eq 16). The time delay ΔT in the firing rate of each output

neuron and the parameter β were both tuned to optimise the performance of the model in driv-

ing the development of head-centred output neurons. The value of the time delay ΔT was set to

500ms and β was set to 2.4. Simulation parameters for the model are shown in Table 1.

Fig 13. Simulation results showing the strengths of the afferent synapses of a model incorporating a population of

sigmoidal modulated input neurons trained with the modified learning rule 16: Delayed postsynaptic trace with

anti-Hebbian learning. The figure shows the strengths of the afferent synapses from the input population to output

neuron #168 for the untrained (A) and trained (B) model. The output neuron corresponds to the one plotted in Fig 12.

In each plot, the afferent synapses have been arranged topographically by the preference of the input neuron for retinal

location αi and eye-position βj. The portion of each plot to the left of the white dashed line corresponds to input

neurons with positive gain κj> 0, whilst the portion of each plot to the right of the white dashed line corresponds to

those input neurons with negative gain κj< 0. The synaptic weights for this output neuron after training (B) have

approximately the correct structure for a head-centred neuron as shown in Fig 8.

https://doi.org/10.1371/journal.pone.0207961.g013
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Fig 15 shows the firing rate responses of output neuron #876 before training (Fig 15A) and

after training (Fig 15B). Fig 15B shows that after training output neuron #876 responded to the

same head-centred location across different eye-positions. This was not the case for the same

output neuron before training (Fig 15A). Thus, it is evident that during training the neuron

has learned to respond in a head-centred reference frame.

Fig 16 shows how the synaptic weight structure of the same output neuron #876 changed

due to training the model with learning rule 18. The final weight structure after training

shown in Fig 16B resembles the predicted weight structure shown in Fig 8 for head-centred

neurons.

Fig 17 shows the eye-centredness and head-centredness values of output neurons in the

untrained and in the trained model. It is clear that almost none of the output neurons in the

untrained model had values of head-centredness higher than eye-centredness. However, after

training the head-centredness values of many output neurons increased substantially, with a

number of such neurons now having greater head-centredness than eye-centredness values.

Fig 14. Simulation results showing the output reference frame response characteristics of a model incorporating a

population of sigmoidal modulated input neurons trained with the modified learning rule 16: Delayed

postsynaptic trace with anti-Hebbian learning. The scatter plot shows the reference frame response characteristics of

all output neurons before and after training. Each neuron is represented as a point corresponding to its combination of

eye-centredness (abscissa) and head-centredness (ordinate) values. Data points for the untrained model are plotted in

blue and data points for the trained model are shown in red. The dashed diagonal line with positive unity slope

separates those neurons which are classified as head-centred (above the line) from those that are classified as eye-

centred (below the line). It can be seen that many of the output neurons have developed head-centred output responses

after training.

https://doi.org/10.1371/journal.pone.0207961.g014
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Such neurons are, therefore, classified as head-centred neurons (section Analysis of Network

Performance). Comparing the output population analysis of the model trained with the modi-

fied learning rule 18 shown in Fig 17 with the analysis of the model trained with the standard

trace learning rule (6) shown in Fig 5 demonstrates that the new modified learning rule 18 is

also more efficacious at producing head-centred output neurons when the input neurons are

modulated by a sigmoidal function of eye-position than the standard trace learning rule (6)

previously implemented by [17].

Fig 15. Simulation results showing the firing rate responses of a model incorporating a population of monotonic

modulated input neurons trained with the modified learning rule 18: Delayed postsynaptic firing rate with anti-

Hebbian learning. The figure shows the firing rate responses of output neuron #876 before training (A) and after

training (B) during testing for four different eye-positions: −18˚, −6˚, 6˚ and 18˚. Conventions as for Fig 12. The

comparison of subplot (A) and subplot (B) shows that the output neuron learned to respond to a specific head-centred

location regardless of the eye-position after training.

https://doi.org/10.1371/journal.pone.0207961.g015

Fig 16. Simulation results showing the strengths of the afferent synapses of a model incorporating a population of

sigmoidal modulated input neurons trained with the modified learning rule 18: Delayed postsynaptic firing rate

with anti-Hebbian learning. The figure shows the strengths of the afferent synapses from the input population to

output neuron #876 for the untrained (A) and trained (B) model. The output neuron corresponds to the one plotted in

Fig 15. Conventions as for Fig 13. The synaptic weight structure for this output neuron after training shown in plot (B)

has approximately the correct profile for a head-centred neuron (Fig 8).

https://doi.org/10.1371/journal.pone.0207961.g016
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In summary, these results showed that training the model with the modified learning rule

18 resulted in the development of head-centred output neurons, even when the whole input

population had sigmoidal eye-position gain modulation. However, the comparison of Figs 17

and 14 shows that learning rule 16, which incorporated a delayed postsynaptic trace qi(t − ΔT),

is in fact more efficacious at driving the development of head-centred output neurons than

learning rule 18, which incorporated the delayed firing rate yi(t − ΔT). Thus, the incorporation

of the trace value qi(t − ΔT) enhances the ability of the learning rule to perform temporal bind-

ing of input patterns corresponding to the same head-centred location.

Modified learning rule: Current postsynaptic trace with anti-Hebbian

learning

This section presents simulation results showing the performance of a modified learning rule

which incorporated the current postsynaptic trace with anti-Hebbian learning. Thus, this

learning rule does not use an explicit time delay ΔT. The learning rule was given by

dwijðtÞ
dt

¼ a bqiðtÞ � yiðtÞð ÞvjðtÞ ð19Þ

Fig 17. Simulation results showing the output reference frame response characteristics of a model incorporating a

population of sigmoidal modulated input neurons trained with the modified learning rule 18: Delayed

postsynaptic firing rate with anti-Hebbian learning. The scatter plot shows the reference frame response

characteristics of all output neurons before and after training. Conventions as for Fig 14. It is evident that training had

the effect of increasing the head-centredness values of most output neurons. Indeed many more head-centred output

neurons are present in the trained model than in the untrained model.

https://doi.org/10.1371/journal.pone.0207961.g017
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where α was the learning rate, β was the tuning parameter, qi was the trace value of the output

neuron i, and yi and vj were the post- and pre-synaptic firing rate values, respectively. What

distinguishes the learning rule in Eq 19 from the learning rule in Eq 16 is the use of the trace

value calculated at the same time t when the synaptic weight is updated.

Table 1 gives the parameters for the model. The value of the tuning parameter β was set to

2.2 for optimal performance.

Fig 18 shows the firing rate responses of output neuron #328 for the untrained and trained

models. Specifically, Fig 18A shows that prior to training the response of output neuron #328

had no consistent structure in head-centred space across different eye-positions. However, Fig

18B shows that after training the same output neuron reponded maximally to the same head-

centred location across all four eye-positions. Thus, after training, neuron #328 responded in a

head-centred frame of reference.

The change in the synaptic weight structure of the same output neuron #328 due to training

is shown in Fig 19. Before training the afferent synaptic weights were randomly assigned (Fig

19A). After training, however, the synaptic weight structure of the same output neuron (Fig

19B) is similar to the predicted weight structure for head-centred neurons shown in Fig 8.

Fig 20 shows the eye-centredness and head-centredness values of output neurons in the

untrained and in the trained model. In particular, Fig 20 shows that training had the effect of

increasing the head-centredness value for a large proportion of output neurons. Furrthermore,

while almost no output neurons were classified as head-centred before training, a significant

number of output neurons were classified as head-centred after training. A comparison of the

output population analysis of the model trained with the modified learning rule 19 shown in

Fig 20 with the performance of the model trained with the standard trace learning rule (6) pre-

sented in Fig 5 shows that the modified learning rule 19 is also significantly more capable of

Fig 18. Simulation results showing the firing rate responses of a model incorporating a population of monotonic modulated input

neurons trained with the modified learning rule 19: Current postsynaptic trace with anti-Hebbian learning. The figure shows the firing

rate responses of output neuron #328 before training (A) and after training (B) during testing for four different eye-positions: −18˚, −6˚, 6˚

and 18˚. Conventions as for Fig 12. The comparison of subplot (A) and subplot (B) shows that the output neuron learned to respond to a

specific head-centred location regardless of the eye-position after training.

https://doi.org/10.1371/journal.pone.0207961.g018
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producing head-centred output neurons than the standard trace learning rule (6) when all of

the input neurons have sigmoidal gain modulation by eye-position.

In summary, these results showed that training the model with learning rule 19 drives the

development of head-centred output neurons even when the whole input population had sig-

moidal eye-position gain modulation. The comparison of Figs 20 with 14 shows that learning

rule 16, which incorporated a delayed postsynaptic trace qi(t − ΔT), is more effective at produc-

ing head-centred output neurons than learning rule 19, which incorporated the current trace

qi(t) calculated at the same time t when the weights are updated.

Modified learning rule: Delayed postsynaptic trace learning rule

The simulation results presented in section Modified Learning Rule: Delayed Postsynaptic

Trace with Anti-Hebbian Learning, section Modified Learning Rule: Delayed Postsynaptic Fir-

ing Rate with Anti-Hebbian Learning and section Modified Learning Rule: Current Postsyn-

aptic Trace with Anti-Hebbian Learning showed, respectively, that training the model with

learning rule 16, learning rule 18 and learning rule 19 successfully self-organised head-centred

output responses and increased the head-centredness value of a large proportion of output

neurons when all input neurons had sigmoidal eye-position gain modulation. Importantly,

section Self-organisation with peaked and monotonic gain fields showed this was not the case

for the standard trace learning rule (6). Training the model with the standard trace learning

rule successfully self-organised head-centred output neurons when all of the input neurons

had peaked eye-position gain modulation, but failed when the modulation of the input popula-

tion was altered from peaked to sigmoidal. Indeed, the simple introduction of a small propor-

tion (e.g. with p> 0.2) of input neurons with sigmoidal eye-position gain modulation was

enough to undermine the self-organisation of head-centred output responses (section Stan-

dard Trace Learning Rule with Mixed Peaked and Sigmoidal eye-position Modulation of

Input Neurons).

The modified learning rules introduced in section Modified Learning Rule: Delayed Post-

synaptic Trace with Anti-Hebbian Learning, section Modified Learning Rule: Delayed

Fig 19. Simulation results showing the strengths of the afferent synapses of a model incorporating a population of

sigmoidal modulated input neurons trained with the modified learning rule 19: Current postsynaptic trace with

anti-Hebbian learning. The figure shows the strengths of the afferent synapses from the input population to output

neuron #328 for the untrained (A) and trained (B) model. The output neuron corresponds to the one plotted in Fig 18.

Conventions as for Fig 13. The synaptic weight structure for this output neuron after training shown in plot (B) has the

correct kind of profile for a head-centred neuron (Fig 8).

https://doi.org/10.1371/journal.pone.0207961.g019
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Postsynaptic Firing Rate with Anti-Hebbian Learning and in section Modified Learning Rule:

Current Postsynaptic Trace with Anti-Hebbian Learning all had an anti-Hebbian term as their

common component. Out of these learning rules, the best performance was observed with

learning rule 16, which incorporated a postsynaptic delayed-trace term. In this case, an inter-

esting question is whether the superior efficacy of this learning rule in driving the development

of head-centred output responses was primarily due to the anti-Hebbian term or the postsyn-

aptic delayed-trace term. In particular, is an anti-Hebbian term actually needed in this learning

rule for the self-organisation of head-centred responses in the presence of input neurons with

sigmoidal eye-position gain modulation, or could head-centred output responses develop

using a learning rule that only incorporated a postsynaptic delayed-trace term?

This section addresses the above questions by investigating the performance of the model

with the following learning rule

dwijðtÞ
dt

¼ aqiðt � DTÞvjðtÞ ð20Þ

Fig 20. Simulation results showing the output reference frame response characteristics of a model incorporating a

population of sigmoidal modulated input neurons trained with the modified learning rule 19: Current

postsynaptic trace with anti-Hebbian learning. The scatter plot shows the reference frame response characteristics of

all output neurons before and after training. Conventions as for Fig 14. It can be seen that training increased the head-

centredness values of most output neurons, with quite a number of head-centred output neurons present in the trained

model.

https://doi.org/10.1371/journal.pone.0207961.g020
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where α was the learning rate, qi was the trace value of the output neuron i and vj was the firing

rate of the input neuron j. In Eq 20 the trace value qi is calculated at time (t − ΔT)ms. This

learning rule has no anti-Hebbian term, and relies purely on the postsynaptic delayed-trace

term qi(t − ΔT) to drive the development of head-centred output neurons.

The simulation parameters for the model are given in Table 1. The time delay ΔT used

to compute the trace value of each output neuron i was set to 30ms for optimal learning

performance.

Fig 21 shows how training changed the firing rate responses of output neuron #223. Prior

to training the response of output neuron #223 had no consistent structure in head-centred

space across different eye-positions (Fig 21A), whilst after training the same output neuron

responded maximally to the same head-centred location across all four eye-positions (Fig

21B). Thus, neuron #223 learned to respond in a head-centred reference frame after training.

Fig 22 shows how the synaptic weight structure of the same output neuron #223 plotted in

Fig 21 changed due to training the model with learning rule 20. It is clear that the final synaptic

weight structure after training (Fig 22B) resembles the predicted weight structure for head-

centred neurons (Fig 8), even though this was not the case before training (Fig 22A).

Fig 23 shows the eye-centredness and head-centredness values of all of the output neurons

in the untrained model and in the trained model. After training, the head-centredness values

of many output neurons had increased substantially. However, there was only a single output

neuron, which was neuron #223, with a greater head-centredness value than eye-centrered-

ness, and which was consequently classed as responding in a head-centred reference frame.

Therefore, in the simulations presented in this paper, the anti-Hebbian term in learning rules

(16), (18) and (19) appears to play an important and essential role in producing relatively large

Fig 21. Simulation results showing the firing rate responses of a model incorporating a population of monotonic modulated

input neurons trained with the modified learning rule 20: Delayed postsynaptic trace learning rule. The figure shows the firing

rate responses of output neuron #223 before training (A) and after training (B) during testing for four different eye-positions: −18˚,

−6˚, 6˚ and 18˚. Conventions as for Fig 12. The comparison of subplot (A) and subplot (B) shows that the output neuron learned to

respond to a specific head-centred location regardless of the eye-position after training. Output neuron #223 is not shown in the

scatter plot of subplot (A) because this neuron did not respond for every eye-position before training and was therefore excluded

from further analysis (section Analysis of Network Performance). However, subplot (B) shows that the same output neuron learned

to respond to a specific head-centred location regardless of the eye-position after training.

https://doi.org/10.1371/journal.pone.0207961.g021
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numbers of head-centred output neurons when all of the input neurons have sigmoidal eye-

position gain fields.

Delayed postsynaptic trace learning rule with mixed peaked and sigmoidal

eye-position modulation of input neurons

In the previous section, it was found that an anti-Hebbian term was needed in the learning

rule in order to produce relatively large numbers of head-centred output neurons if the entire

population of input neurons had sigmoidal gain fields. However, experimental studies have

demonstrated that the primate cortex contains a mixed population of visual neurons with

either peaked or monotonic eye-position gain fields [2–4]. This raises the question of whether

learning rule (20), which relies solely on a postsynaptic delayed-trace term without any anti-

Hebbian term, could produce a much larger number of head-centred output neurons if the

input population had a 50:50 mix of peaked and sigmoidal eye-position gain fields.

This section presents simulation results with the modified learning rule (20) when there is

a 50:50 mixture of peaked and monotonic gain fields in the visual input population. Can the

model produce a large number of head-centred output neurons under such conditions without

an anti-Hebbian term in the learning rule? This is still a potentially challenging task for the

model because in section Standard Trace Learning Rule with Mixed Peaked and Sigmoidal

eye-position Modulation of Input Neurons it was shown that the standard trace learning rule

(6), which lacks an anti-Hebbian term, failed to produce significant numbers of head-centred

output neurons when the proportion of sigmoidal gain modulated input neurons rose above

just 20% of the overall input population. The model parameters for the simulations presented

in this section are given in Table 1.

Fig 24 shows how training changed the firing rate responses of output neuron #281. In par-

ticular, Fig 24B shows that after training output neuron #281 responded maximally to the

same head-centred location across all four eye-positions, although this was not the case prior

to training (Fig 24A). Hence neuron #281 responded in a head-centred frame of reference

after training.

Fig 22. Simulation results showing the strengths of the afferent synapses of a model incorporating a population of

sigmoidal modulated input neurons trained with the modified learning rule 20: Delayed postsynaptic trace

learning rule. The figure shows the strengths of the afferent synapses from the input population to output neuron #223

for the untrained (A) and trained (B) model. The output neuron corresponds to the one plotted in Fig 21. Conventions

as for Fig 13. The synaptic weight structure for this output neuron after training shown in plot (B) has approximately

the correct profile for a head-centred neuron (Fig 8).

https://doi.org/10.1371/journal.pone.0207961.g022
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Fig 25 shows how the synaptic weight structure of the same output neuron #281 plotted in

Fig 24 changed due to training. Fig 25B shows that after training, the synaptic weight structure

of the output neuron was clearly similar to the predicted weight structure for head-centred

neurons shown in Fig 8. The synaptic weight structure before training reflected the randomly

assigned connection weights (Fig 25A).

Fig 26 shows the eye-centredness and head-centredness values of output neurons in the

untrained and in the trained model. Fig 26 shows that training the model with learning rule

20, where the input population contained a 50:50 mix of neurons with peaked or sigmoidal

gain modulation, had the effect of increasing the head-centredness value of most output neu-

rons. Moreover, a large proportion of output neurons in the trained model are head-centred

(i.e. with a head-centredness value greater than eye-centredness). Indeed, more head-centred

output neurons were observed in the trained model in this section than in any of the trained

models presented in previous section Modified Learning Rule: Delayed Postsynaptic Trace

with Anti-Hebbian Learning, section Modified Learning Rule: Delayed Postsynaptic Firing

Fig 23. Simulation results showing the output reference frame response characteristics of a model incorporating a

population of sigmoidal modulated input neurons trained with the modified learning rule 20: Delayed

postsynaptic trace learning rule. The scatter plot shows the reference frame response characteristics of all output

neurons before and after training. Conventions as for Fig 14. It is evident that training had the effect of increasing the

head-centredness values of most output neurons. Although, there is only a single head-centred output neuron present

in the trained model.

https://doi.org/10.1371/journal.pone.0207961.g023
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Rate with Anti-Hebbian Learning and section Modified Learning Rule: Current Postsynaptic

Trace with Anti-Hebbian Learning.

In summary, these results demonstrated that it was possible for the model to produce large

numbers of head-centred output neurons with a learning rule that relied purely on a postsyn-

aptic delayed-trace term without any anti-Hebbian term if the input population contained a

50:50 mix of neurons that were modulated by either peaked or sigmoidal gain fields. Such a

mixture of different forms of eye-position gain modulation is biologically compatible with

experimental findings [2, 3].

Fig 24. Simulation results of a model incorporating a mixed population of peaked and sigmoidal modulated input

neurons, with sigmoidal modulation rate p set to 0.5, trained with the modified learning rule 20: Delayed

postsynaptic trace learning rule. The figure shows the firing rate responses of output neuron #281 before training (A)

and after training (B) during testing for four different eye-positions: −18˚, −6˚, 6˚ and 18˚. Conventions as for Fig 12.

Plot (B) shows that the same output neuron learned to respond to a specific head-centred location regardless of the

eye-position after training.

https://doi.org/10.1371/journal.pone.0207961.g024

Fig 25. Simulation results of a model incorporating a mixed population of peaked and sigmoidal modulated input

neurons, with sigmoidal modulation rate p set to 0.5, trained with the modified learning rule 20: Delayed

postsynaptic trace learning rule. The figure shows the strengths of the afferent synapses from the input population to

output neuron #281 for the untrained (A) and trained (B) model. The output neuron corresponds to the one plotted in

Fig 24. Conventions as for Fig 13. The synaptic weight structure for this output neuron after training shown in plot (B)

has the correct kind of profile for a head-centred neuron (Fig 8).

https://doi.org/10.1371/journal.pone.0207961.g025

Self-organising coordinate transformation with monotonic modulation in the visual pathway

PLOS ONE | https://doi.org/10.1371/journal.pone.0207961 November 29, 2018 41 / 50

https://doi.org/10.1371/journal.pone.0207961.g024
https://doi.org/10.1371/journal.pone.0207961.g025
https://doi.org/10.1371/journal.pone.0207961


Discussion

The majority of previously published models of coordinate transformation from eye-centred

to head-centred visual representations have relied on some form of supervised error-correc-

tion learning, in which an explicit supervisory signal is used to specify the desired head-cen-

tred output responses during training [10, 12, 13]. The availability of such a supervisory

training signal makes the self-organisation of these models robust even with monotonic (e.g.

planar or sigmoidal) eye-position gain modulated input neurons. However, an immediate

problem with these kinds of models is explaining exactly where such a supervisory training sig-

nal might originate from in the brain. Another major problem for models that employ a back-

propagation of error supervised learning, such as the classic model of [10], is that this model

architecture is entirely biologically implausible [15]. In particular, there is no plausible expla-

nation for how the error terms needed to adjust the afferent synaptic weights in the intermedi-

ate layer of the model could be generated and implemented in the brain. One consequence of

this is that the backpropagation of error learning procedure can result in individual neurons

making both excitatory and inhibitory synaptic connections on different postsynaptic neurons.

Fig 26. Simulation results of a model incorporating a mixed population of peaked and sigmoidal modulated input

neurons, with sigmoidal modulation rate p set to 0.5, trained with the modified learning rule 20: Delayed

postsynaptic trace learning rule. The scatter plot shows the reference frame response characteristics of all output

neurons before and after training. Conventions as for Fig 14. It is evident that training had the effect of increasing the

head-centredness values of most output neurons, with many more head-centred output neurons present in the trained

model.

https://doi.org/10.1371/journal.pone.0207961.g026
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Although not shown here, we have verified this through replicating the model simulations of

[10] and [13]. This feature of backpropagation of error models violates an accepted principle

of cortical architecture, sometimes referred to as Dale’s Law, that an individual neuron must

have the same kind of excitatory or inhibitory effect at all of its synaptic connections with

other neurons [16]. This failure of backpropagation of error models even undermines the

potential relevance of their trained synaptic architecture to understanding how coordinate

transformations to head-centred visual representations might be implemented in the brain.

[12] also used error-correction learning to develop head-centred output representations.

Their learning scheme employed a simpler global error signal for the entire output population,

which might conceivably be implemented by some form of neuromodulator release. However,

the implementation of error correction learning in their model still required complex architec-

tural features that have not been identified in cortex.

To remedy the lack of biological plausibility in previously published models that use super-

vised learning to drive the development of visual neurons that respond in a head-centred refer-

ence frame, [17] demonstrated a model that self-organised using unsupervised competitive

learning driven by the standard trace learning rule (6). In their model the trace learning rule

was able to exploit the natural statistics of how primates tend to move their eyes and head as

they explore their visual environment, with more frequent shifts in eye-position than head

position. These natural eye and head movements enable trace learning to bind together differ-

ent visual input patterns corresponding to visual targets located in the same head-centred loca-

tion but different retinal locations, thereby driving the development of postsynaptic neurons

that respond to visual targets in specific head-centred locations.

It was originally demonstrated by [17], and shown again above, that the self-organising

model described in section Materials and methods using the standard trace learning rule (6)

with peaked eye-position gain modulated input neurons is able to develop head-centred out-

put representations during training. However, a key new result in this paper is that the self-

organising model with purely sigmoidal eye-position gain modulated input neurons develops

eye-centred output neurons when using the standard trace learning rule. The cause of this con-

trasting behaviour between peaked and sigmoidal gain fields is the correlations between the

activity of the input neurons across all of the input patterns during training. It is well under-

stood that in a standard competitive neural network, individual output neurons learn to

respond to subsets of input neurons that tend to be most frequently co-active [15]. In the self-

organising model with peaked gain modulation, the subsets of input neurons that are fre-

quently co-active correspond to circular clusters that are highly localised in both the retinoto-

pic preference and eye-position preference dimensions. With a standard hebbian learning rule

with no significant memory trace of recent neuronal activity, individual output neurons will

learn to respond to these localised circular clusters of input neurons. If a trace learning rule is

implemented, it is a relatively easy task for individual output neurons to simply bind together

these clusters of input neurons along a diagonal line in the input space corresponding to a par-

ticular head-centred location. Output neurons will then respond to particular head-centred

locations regardless of eye-position or the retinal location of a visual target. However, the situa-

tion is quite different with sigmoidal gain modulated input neurons. Due to monotonic satura-

tion of the input neuron response function in the eye-position dimension of the input space,

the subsets of input neurons that are most frequently co-active are localised in the retinotopic

preference dimension but elongated in the eye-position preference dimension. With a stan-

dard hebbian learning rule, individual output neurons will learn to respond to these elongated

clusters of input neurons, which will give rise to eye-centred output responses. However, if a

trace learning rule is implemented, the output neurons still learn to represent eye-centred

rather than head-centred locations. This is because developing head-centred output responses
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would require the trace learning rule to disrupt and break apart output representations corre-

sponding to the elongated clusters of input neurons with correlated activities. However, in

practice the trace learning effect is not strong enough to achieve this. Consequently, even with

trace learning, the elongated clusters of input neurons with correlated activities continue to

drive the development of eye-centred output neurons. This finding holds for any input neuron

response function with a monotonic gain in the eye-position dimension, be it purely linear

[10] or linear rectified [19].

We next showed that a manually prewired neural network model with sigmoidal eye-posi-

tion gain modulated input neurons could perform the coordinate transformation. This is

achieved by elevating the weight of synaptic connections from all input neurons which

responded strongly, for some eye-position, to a visual target in the head-centred location to

which the postsynaptic output neuron is assigned. This result established the feasability of the

coordinate transformation within the given model architecture with sigmoidal gain fields act-

ing on the input population. However, when synaptic plasticity based on the standard trace

learning rule (6) is suddenly introduced into the manually prewired model, it is found that just

a single epoch of visually-guided training is sufficient to dramatically reduce the prevalence of

head-centred neurons in the output population, and by the 5th epoch all neurons are eye-cen-

tred for all subsequent epochs of training. This showed that sigmoidal gain modulation would,

in so far as the synapses are plastic, even undermine the functioning of a cortical circuit which

is somehow prewired, perhaps by genetic hardwiring or by an initial period of supervised

learning as suggested by [19], to produce the head-centred visual representations. Given the

ubiquitous presence of associative synaptic plasticity in cortex, it is therefore a substantial chal-

lenge to explain how head-centred visual neurons might develop and persist in the brain given

the relatively large proportion of precursor eye-centred visual neurons that have monotonic

eye-position gain fields.

It has been shown that neurons in many parietal areas have a mixture of different forms of

gain modulation, not all of which are planar. In fact, 41% and 56% are not planar in areas LIP

and 7a, respectively [3]. Consequently, we explored how various degrees of prevalence of sig-

moidal gain modulation would influence the self-organisation of the model with the standard

trace learning rule (6). It is found that so long as there is no more than approximately 20% sig-

moidal gain modulation in the input population then the fraction of head-centred neurons in

the trained model did not drop below�15%. However, the decrease in performance, and

eventual collapse of the model, is very severe when the presence of sigmoidal gain modulation

in the input population is increased. In particular, with a more biologically realistic 50:50 mix

in peaked and sigmoidal gain modulated input neurons, the model failed to develop a signifi-

cant population of head-centred output neurons with the standard trace learning rule (6).

In order to find a biologically plausible way in which the self-organising model could

develop relatively large numbers of head-centred visual output neurons when at least half or

even all of the input neurons had sigmoidal gain fields, we next explored the performance of

the model architecture using a variety of more sophisticated learning rules that may incorpo-

rate temporally delayed memory traces, as well as a mixture of both trace learning and anti-

Hebbian learning terms. These new, modified learning rules were previously developed by

[24] in the context of modelling transform invariant visual object recognition. The new learn-

ing rules continue to be biologically plausible because they rely on locally available biological

quantities, namely the activities of the pre- and post-synaptic neurons, to guide the modifica-

tion of synaptic weights. The different modified learning rules were found to successfully

drive the self-organisation of head-centred output responses when all of the input neurons

had sigmoidal eye-position modulation. The modified learning rules were able to substantially

improve the temporal binding of the standard trace learning rule by incorporating a trace of
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previous neuronal activity with an explicit time delay ΔT. This was evidenced by better perfor-

mance being achieved when the learning rule incorporated a trace value of the postsynaptic

neuron from an earlier time ΔT in the past instead of the trace value at the current time. Fur-

thermore, the new learning rules were able to overcome the high correlations between overlap-

ping input patterns with sigmoidal gain fields through the additional incorporation of anti-

Hebbian learning, which had been previously found to offer a significant performance

enhancement by [24]. However, learning rule (20) incorporated a delayed postsynaptic trace

without an anti-Hebbian term (section Modified Learning Rule: Delayed Postsynaptic Trace

Learning Rule). Simulation results with this learning rule showed that head-centred output

responses developed in the trained model. Thus, anti-Hebbian learning is not necessarily a

requirement for the development of head-centred output responses. The performance of

learning rule (20) was then investigated under a more biologically realistic scenario in which

the input population consisted of a 50:50 mixture of neurons with either peaked or sigmoidal

eye-position gain modulation. These results demonstrated that the model could produce large

numbers of head-centred output neurons with a learning rule that relied purely on a postsyn-

aptic delayed-trace term without any anti-Hebbian term if the input population contained a

50:50 mix of neurons modulated by either peaked or sigmoidal gain fields. These last findings

should be contrasted with the performance of the model with the standard trace learning rule

(6), which failed to develop a significant number of head-centred output neurons with such a

mixed input population.

Conclusion

In conclusion, the work presented here has shown that the existence of a synaptic weight

structure that can perform a coordinate transformation does not guarantee that it will emerge

through a process of self-organisation using any one particular form of trace learning rule. In

particular, the standard trace learning rule originally proposed by [17] failed to produce head-

centred output neurons when the input neurons were modulated by a sigmoidal function of

eye-position, and even failed with a biologically realistic 50:50 mix of input neurons with

peaked and sigmoidal gain fields. In order to remedy this problem, we had to investigate the

use of more sophisticated, yet still biologically plausible, learning rules that incorporated tem-

porally delayed memory traces, as well as a mixture of both trace learning and anti-Hebbian

learning terms. These new, modified learning rules were found to produce head-centred out-

put neurons when the input population had sigmoidal gain fields. Moreover, it was also found

that the delayed postsynaptic trace in learning rule (20) was sufficient to drive the development

of head-centred output neurons in the absence of anti-Hebbian learning, especially if the input

population had a 50:50 mix of peaked and monotonic gain fields. This work thus makes an

important contribution to understanding how head-centred visual neurons may develop in

the brain through an unsupervised process of visually-guided learning given visual precursor

neurons with sigmoidal (monotonic) eye-position modulation. Furthermore, although we

have studied one particular kind of coordinate transformation, i.e. from eye-centred to head-

centred visual representations, these findings may also apply to a range of other coordinate

transformations with sensorimotor integration of monotonically encoded motor variables

[8, 11].

Having developed the neural network computer model with simulated data, we are now in

a position to test specific experimental predictions. In particular, we predict that the statistics

of eye and head movements recorded from human test subjects during a natural visual search

task would be appropriate to drive the development of head-centred visual neurons in the out-

put layer of the model. We are currently working on such a study.
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Appendix

Eye-centredness reference frame analysis

During testing, the visual target was located in head-centred locations

tj ¼ t1 þ Dhðj � 1Þ ð21Þ

for j = 1, . . ., T, and while in each location it was observed from eye-positions

ei ¼ e1 þ Deði � 1Þ ð22Þ

for i = 1, . . ., E. The eye-position shift Δe was set to a multiple of the head-centred target loca-

tion shift Δh to cause resampling of the neuron’s response at the same retinal location for dif-

ferent eye-positions, thereby providing a resampling of the response in both head-centred and

eye-centred space across multiple eye-positions.

The set of head-centred locations {t1, . . ., tT} corresponded to retinal locations Ri = {t1 − ei, . . .,

tT − ei} when the model was fixating eye-position ei, and from this it is clear that among retinal

locations common to all eye-positions, t1 − e1 was the first and tT − eE was the last, that is

min
\

i

Ri ¼ t1 � e1

max
\

i

Ri ¼ tT � eE
ð23Þ

Therefore fi and li, denoting the first and last position included from the ith response vector

respectively, had to correspond to these two retinal locations respectively

tfi � ei ¼ t1 � e1 ð24Þ

tli � ei ¼ tT � eE ð25Þ

We can resolve each equation to find an explicit formula for fi and li in terms of i as follows.

By substituting Eqs 21 and 22 into 24 we obtain

ðt1 þ Dhðfi � 1ÞÞ � ðe1 þ Deði � 1ÞÞ ¼ t1 � e1

Rearranging this gives

Dhðfi � 1Þ � Deði � 1Þ ¼ 0

fi ¼
De
Dh
ði � 1Þ þ 1

ð26Þ

By substituting Eqs 21 and 22 into 25 we obtain

ðt1 þ Dhðli � 1ÞÞ � ðe1 þ Deði � 1ÞÞ ¼ ðt1 þ DhðT � 1ÞÞ � ðe1 þ DeðE � 1ÞÞ
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Rearranging this gives

Dhðli � 1Þ � ðe1 þ Deði � 1ÞÞ ¼ DhðT � 1Þ � ðe1 þ DeðE � 1ÞÞ

Dhðli � 1Þ � Deði � 1Þ ¼ DhðT � 1Þ � DeðE � 1Þ

Dhðli � 1 � ðT � 1ÞÞ ¼ � DeðE � 1þ ði � 1ÞÞ

Dhðli � TÞ ¼ � DeðEþ iÞ

li ¼ T �
De
Dh
ðEþ iÞ

ð27Þ

We can also deduce the length V of the portion of each response vector that is used in the

eye-centred correlation analysis as follows. By definition, for each response vector

V ¼ li � fi þ 1

Substituting in Eqs 26 and 27 gives

V ¼ T �
De
Dh
ðEþ iÞ �

De
Dh
ði � 1Þ þ 1

� �

þ 1

Rearranging gives

V ¼ T �
De
Dh
ðEþ iÞ �

De
Dh
ði � 1Þ

¼ T �
De
Dh
ðEþ i � ði � 1ÞÞ

¼ T �
De
Dh
ðEþ 1Þ

ð28Þ
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