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Introduction
MicroRNAs (abbreviated miRNAs) are a group of noncoding 
RNA molecules of approximately 22 nucleotides. Research on 
miRNAs, especially from plasma, has become a hot research 
topic, as miRNAs are known to have links with diseases, such 
as cancer. However, there is no standard procedure as to how to 
extract and analyze them. Methods vary depending on labora-
tories and scientists, which diminishes assay reproducibility.1 
Other external issues, such as varying thresholds, may also lead 
to different statistical conclusions. Batch effect and operator 
effect are additional issues that investigators should pay atten-
tion to. Those issues will be further discussed in the next sec-
tion using the first data set as an example.

Similar issues are observed in statistical analysis. For 
example, the use of different methods for calculating  
fold-change might result in different results upon which 
investigators would base their conclusions. The choice of 

housekeeping genes is also another problem. It is very impor-
tant to choose the right housekeeping gene to generate a 
reliable and reproducible marker. Moreover, the normaliza-
tion of data is a crucial part of the analysis. Types of normali-
zation include mean normalization, quantile normalization, 
and delta-Ct normalization. The details and data demon-
stration will be discussed in the section “Methods and Issues 
for Data Set 2”, using the second data set. Finally, with the 
development of artificial intelligence, machine learning is 
becoming more prevalent in almost every subject. In medical 
research, predicting patients’ potential risk for disease has 
been very important but challenging, as early detection could 
potentially save lives, or risk analysis could help create new 
therapies. To achieve these goals, the classification of existing 
samples by different diseases based on given predictor varia-
bles can be extremely helpful. Algorithms will work well on 
future predictions if the accuracy of the model in the sample 
is high. However, current classification is limited to 2 groups 
so as to differentiate controls from cases. Some studies, such 
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as the data we are using in this article, require the classifica-
tion of 3 or more groups. Especially in miRNA studies where 
each miRNA carries certain information that might relate to 
the disease, multigroup classification becomes necessary. A 
flowchart of the methods detailed in this article is given in 
Figure 1. A list of issues that are discussed in this article is 
given in Table 1.

A summary of the experimentation is reproduced from 
Carter et al.2 Total RNA quantity and the purity of each sam-
ple were determined using a Nanodrop 2000 spectrophotom-
eter (ThermoFisher Scientific, Middlesex, MA). For each 
sample, 384 miRNAs were screened to identify dysregulated 
miRNA expression within each group as compared with con-
trols (TaqMan Low Density Array human miRNA card A; 
Life Technologies, Carlsbad, CA). Quantitative real-time pol-
ymerase chain reaction (qRT-PCR) was performed using a 
ViiA 7 Real-Time PCR System (ThermoFisher Scientific) 
with fixed and varying thresholds on selected miRNA from 
screening phase. Data sets 1 and 2 are based on results from 
qRT-PCR studies.

Methods and Issues for Data Set 1: Comparing 
Colorectal Advanced Adenoma Versus Control
Data information and hypothesis

The study was approved by the Institutional Review Board at 
the University of Louisville. Informed consent was obtained 
from all participating patients. The first data set consisted of 
patients from a control group (n = 16) and a colorectal advanced 
adenoma (CAA) group (n = 16). CAA was determined with 
adenomatous polyps greater than 0.6 cm in maximal diameter. 
Samples from each subject were run by 2 operators, and each 
operator had 2 batches. The goal of this demonstration is to 
show the impact of a varying threshold, batch effect, and oper-
ator effect. P values were calculated for group comparisons for 
11 different miRNAs within samples.

Method

Varying threshold. The use of a fixed threshold and a variable 
threshold were compared in this data demonstration. A fixed 
threshold might not intersect the linear phase, as different 
miRNAs on the same plate may carry different linear phases. 
Therefore, the variable threshold was the default setting. How-
ever, Rice et al1 suggested that the use of a fixed threshold at 
0.03 was preferable to the variable threshold when the missing 
values were less than 10%. Details of statistical methods in 
terms of calculating fixed and variable thresholds can be found 
in that article. In our demonstration, we chose a fixed threshold 
at 0.03 to compare with a variable threshold. The results can be 
found in Table 2.

Operator effect and batch effect. Rice et  al1 also mentioned 
issues such as intra- and inter-operator variabilities. The 
problem could occur when a different operator handles the 
experiment. They may or may not closely follow the exact 

Figure 1. Flowchart of the data processing. BC indicates breast cancer; CAA, colorectal advanced adenoma; CRC, colorectal cancer; FC, fold-change; 

LC, lung cancer; PC, pancreatic cancer.

Table 1. List of statistical issues in plasma miRNA analysis.

Varying threshold

Batch effect

Operator effect

Normalization methods

Choice of housekeeping genes

Methods of fold-change

Sample size issue

Group classification

Abbreviation: miRNA, microRNA.
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procedure, and therefore, could create different data that could  
lead to distinct conclusions.

Batch effect is a technical issue that also could impact statis-
tical analysis. Sources of this issue include, but not limited to, 
the person who handles the experiment, the machine used to 
extract the sample, and location or the environment of the 
experiment. There were different ways to adjust batch effects in 
the analysis as proposed by Johnson et al3 and Guo et al.4 It is 
one of the issues that investigators should pay attention to. In 

this article, analysis of variance (ANOVA) was used, and the 
goal was to test whether a batch effect exists in our data set.

Results and issues

There is some variation in terms of the threshold. For example, 
miR523 was not significantly different between CAA and con-
trol group when using a variable threshold (P = .0718), but 
became significantly different when using a fixed threshold at 
0.03 (P = .0443) (Table 2).

When the threshold was fixed at 0.03 along with group 
adjustment, there was no batch effect in the data set (Table 3). 
However, it did not mean that the batch effect was negligible. 
Every data set is different, and it is always important to pay 
additional attention. On the other hand, there was an operator 
effect in miR21 (P < .0001) after adjusting for the group. 
Other miRNAs such as miR523 (P = .0549) and miR520-5p 
(P = .0707) were close to being significantly different. It is 
certainly an issue to focus on.

When the batch effect and operator effect were considered, 
group significance (for comparing CAA versus control) also 
changed. By comparing Table 2 with Table 3, percent change 
indicated that for most miRNAs, the P value for group signifi-
cance had increased (Table 3).

Methods and Issues for Data Set 2: Comparing 
CRC + CAA Versus BC + LC + PC
Data information and hypothesis

This study was approved by the Institutional Review Board at 
the University of Louisville. Informed consent was obtained 
from every participating patient. The study population con-
sisted of patients from the University of Louisville colon and 

Table 2. Comparison between fixed threshold and variable threshold.

MicroRNAs FIxED THRESHOLD 
(0.03)

VARIABLE 
THRESHOLD

P VALUE P VALUE

miR374 .0001 <.0001

miR142-3p <.0001 <.0001

miR523 .0443 .0718

miR374-5p <.0001 <.0001

miR376c .3540 .2097

miR27a .0016 .0005

miR520d-5p .7852 .4820

miR122 .5186 .6140

miR485-3p .2369 .5905

miR21 .0052 .0067

miR218 .0044 .0012

Significance level = 0.05.

Table 3. Comparison between batch effect and operator effect.

MicroRNAs FIxED THRESHOLD = 0.03

P VALUE (BATCH) P VALUE (OPERATOR) P VALUE (GROUP) % CHANGE IN P VALUE (GROUP)

miR374 .9930 .5532 .0002 10.8

miR142-3p .6838 .9329 <.0001 22.4

miR523 .5541 .0549 .0426 –3.79

miR374-5p .7785 .1278 <.0001 –23.4

miR376c .4627 .2647 .4848 36.9

miR27a .1894 .5129 .0016 2.3

miR520d-5p .2651 .0707 .9788 24.7

miR122 .6168 .7082 .4998 –3.6

miR485-3p .7991 .7192 .2403 1.4

miR21 .9481 <.0001 .0026 –50.8

miR218 .7525 .4029 .0054 24.6

Significance level = 0.05.
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rectal surgery practice and samples from patients housed in the 
University of Louisville Surgical Biorepository. In this data set, 
there are 6 groups in total: control group, breast cancer (BC), 
lung cancer (LC), pancreatic cancer (PC), colorectal cancer 
(CRC), and CAA. Each group had 20 samples for a total of 
120 samples. In the analysis, we combined BC, LC, and PC as 
one group, and combined CRC and CAA as another group.

The goal is to find whether there is any difference between 
colorectal neoplasia (CRC and CAA) and other cancers (BC, 
LC, and PC) in terms of selected miRNAs with different 
approaches.

Ten miRNAs were selected in the screening phase and eval-
uated as they were among the most significantly dysregulated 
miRNAs as noted in Carter et al.2

Method

Normalization. Three normalization methods were used and 
compared, including delta-Ct normalization, mean normali-
zation, and quantile normalization. Normalization is required 
in miRNA studies, as unwanted technical variation exists and 
must be removed. Detailed formulas are not shown in this 
article, as we are only focusing on issues. However, readers can 
refer to Rai et al5 for a detailed explanation of those 3 meth-
ods. As we want to incorporate housekeeping gene informa-
tion in the comparison, we have discussed the effect of the 
quantile and delta-Ct normalizations in the next section as a 
housekeeping gene does not play a role in the mean normali-
zation. The mean normalization will be discussed in the dis-
cussion section.

Specifically, for quantile normalization, there are 2 
approaches. In miRNA studies, there is always more than one 
group. One approach is to do the scaling separately for each 
group, and then combine them. The other way is to combine all 
groups and do the scaling. The earlier method is usually pre-
ferred as it maintains more information from the original data, 
but it depends on the specific data set. The comparison will 
also be made between 2 quantile normalization approaches in 
the discussion section.

Housekeeping genes. Housekeeping genes play an extremely 
important role when generating reliable and reproducible 
markers. Two housekeeping genes (520d-5p and RNU6) were 
compared, as both were recommended by Rice et al.6 We will 
conduct a comparison under the delta-Ct normalization and 
quantile normalization (Table 4).

Fold-change. The reporting value of fold-change has frequently 
been used by investigators. However, different methods of cal-
culating fold-change values might lead to different results. To 
calculate fold-change, we first introduced the cycle threshold 
(Ct) value. This has been discussed in Rice et  al.1 The cycle 
threshold we are using in the formula is the value after nor-
malization. Two ways of calculating fold-change will be 

demonstrated in this article. The modification was made based 
on Pfaffl.7 The formulas are listed below
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for variable threshold

Fold-changes are calculated under different housekeeping 
genes and every normalization method (Table 4).

Results and issues

The selection of housekeeping genes does make an impact on 
the conclusion. In this data set, under delta-Ct normalization, 
miR122 (P = .0525) was not quite significant under housekeep-
ing gene miR520-5p, but was significant under housekeeping 
gene RNU6 (P = .0115). On the other hand, miR372 showed 
the opposite results. Two fold-change methods also produced 
slightly different results. Similarly, under the quantile normali-
zation, there was one that produced the opposite result when 
using different housekeeping genes (Table 4). Under both nor-
malization methods, significant miRNAs were quite matched, 
given certain housekeeping genes. Differences were only found 
in miR372 and miR122.

Statistical Methods in miRNA Studies: ANOVA and 
Analysis of Covariance
In plasma miRNA analysis, the analysis of variance (ANOVA) 
is one of the most common statistical methods for finding sig-
nificant differences, especially when there are more than 2 
groups. Detailed derivation methodology will be omitted here 
as it is a common procedure. To begin, the sample variance can 
be calculated using the following formula
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where the latter term is called the total sum of squares. The 
total sum of squares (SStotal ) divided by the degree of freedom 
results in the total mean square ( MStotal ). In addition, the total 
sum of squares can be separated into 2 parts, the sum of squares 
for treatment and the sum of squares for errors, and similarly 
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for the degrees of freedom. The F-test for 1-way ANOVA can 
be obtained by the formula

F
MS

MS
SS M
SS N M

treatment

error

treatment

error
= =

−
−

/ ( )
/ ( )

,
1

where M is the number of treatments and N is the overall 
sample size.

On the other hand, the analysis of covariance (ANCOVA) 
is not used as often as ANOVA. It is used when there are addi-
tional variables available that could be incorporated into the 
model. In our data set, there is no other covariate that we need 
to include in the model, but in other data sets, covariates such 
as age, can be added to the model by using ANCOVA. The 
model would then produce a better estimate because the error 
variance is reduced.

Sample Size Justification
Jung8 introduced a sample size calculation method for a speci-
fied number of true rejections while controlling the false dis-
covery rate (FDR) at the desired level with a closed-form 
formula if the projected effect sizes are equal among differen-
tially expressed genes, otherwise, requiring a numerical method 
to solve an equation. In addition, rank-based procedures can 
also be used, in which case α can be adjusted using α divided 
by the number of groups. We consider a hypothetical example. 
Suppose there are 2 types of samples (cases and controls) and 
the potential number of types of miRNAs is 384, of which 
about 30% are potential candidates to differ between cases and 
controls. Of that 30%, our focus is to identify at least 10 (2.5% 
of all 384). The adjusted α values for each level of FDR are 
listed in Table 5. The outcome measure is based on DCtmiR

j
i

( )  
for ith miRNA from the jth group and compare the mean dif-
ference of DCtmiRi

 in 2 groups for each miRNA. To detect at 
least 1.5 SD (standard deviation units) at a power of 90% for a 
1-sided hypothesis, we need 23, 18, and 16 samples of each 
type. If a 2-sided hypothesis is used, the corresponding sample 
sizes will be 25, 20, and 18 (Table 5). If we consider hypothesis-
generating pre-clinical studies that do not adjust alpha, we will 
be able to detect reasonably small effect sizes (1.0 SD) with 12 
samples in each group.

The classification requires a different approach for sample 
size justification. If 10 miRNAs are used to build a classifier 

and classify samples into 2 groups, we need approximately 120 
samples in each group (considering 10 covariates in a predic-
tive model). With this sample size, we can detect sensitivity/
specificity from 75% to 90% at alpha = 0.05 and power ⩾ 90%. 
With the reduced number of significant miRNAs (5-8) used 
for classification, we need approximately 96 samples in each 
group to maintain a power of 80% at alpha = 0.05. Using the 
same design parameters with only 72 samples in the group will 
have only 68% power (Table 6). If attrition is expected, these 
sample sizes will need to be increased to address the attrition. 
If the studies are designed to establish a hypothesis or con-
firmatory point of view (to maintain high rigor and reproduc-
ibility), then a lower FDR/alpha (⩽5%) and a higher power 
(⩾90%) are recommended.

Three-Group Classification on Cancer Patients: 
Control vs CRC + CAA vs BC + LC + PC
We will demonstrate a 3-group classification using the second 
data set. Quantile normalization with the preferred approach 
will be used, as it was determined to be the best one in Rai 
et al.5 There are 3 groups for classification: control group (CT), 
CRC and CAA (CN), and BC, LC, PC (BLP). Two methods 
will be used and compared: multinomial logistic regression for 
a parametric model and random forest for a nonparametric 
model. R is used for computation.

Issues exist in classification as well. In the multinomial 
logistic regression model, we picked miRNAs that were signifi-
cant in a previous analysis, which yields an accuracy rate of 
0.7837. However, if we include all miRNAs, the accuracy rate 
would barely pass 0.5. In our random forest model, accuracy 
reached nearly 1. In both models, certain miRNAs had rela-
tively high importance and dominated the outcome (miR372 
and miR19a). While no relation between input and output 
variables is expected, using a nonparametric model is always 
preferred. Picking the right model is certainly important. In 
addition, the same data set is used for model building and clas-
sification. The sample size is relatively small. It is better to use 
different relatively large data sets for training and testing.

Discussion
Issues involved in plasma miRNA analysis are discussed in the 
article. However, many other problems exist and that should 

Table 5. Sample size required at power of 90% at different FDR level.

FDR ADJUSTED α SAMPLE SIzE REQUIRED

ONE-SIDED TWO-SIDED

1% 0.00033 23 25

5% 0.0018 18 20

10% 0.0036 16 18

Abbreviation: FDR, false discovery rate.

Table 6. Sample size required for classification at α = 0.05.

NUMBER OF 
miRNAs

POWER SAMPLE SIzE REQUIRED 
PER GROUP

10 90 120

5-8 80 96

5-8 68 72

Abbreviation: miRNA, microRNAs.
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also be adjusted. Future research could focus on comparing dif-
ferent machine learning models when doing classification. 
Also, more than 3 groups of classification should be tested 
when sufficient data are available. In our data set, there are 
many diseases with limited sample size and miRNAs are also 
limited. There are possibly additional miRNAs that could con-
nect to the diseases. External issues that lead to inconsistent 
data should be addressed by introducing a standardized proce-
dure. Further research is needed to determine the best method 
for the experiment.

Different quantile normalization procedures produced con-
tradictory results (Table 7). Here, we used the first approach as 
discussed in the “Normalization” section. Please note in this 
comparison we did not incorporate housekeeping gene informa-
tion, as our focus is solely on the issues that might occur between 
2 quantile normalization approaches. By comparing 2 different 
approaches, miRNAs such as miR192 (P = .001), miR150 
(P = .0006), miR193a-5p (P = .0411), and miR346 (P = .0208) 
were significantly different between groups when using the sec-
ond approach, but were not in the first approach. On the other 
hand, miR372 (P = .5117) was not significantly different in the 
second approach but was in the first approach. Also, the values of 
fold-changes vary in the 2 approaches as well. While the first 
approach is always recommended, researchers should try both 
approaches to see if there is any difference in output. It depends 
on the specific data, and as for our data, the second approach 
yields a better result. This issue is certainly important and could 
lead to different conclusions. It is recommended that researchers 
include both outputs in the supplement file.

One may notice that in Table 4, some significant miRNAs 
do not match under different normalization methods. This 
leads to the questions of why they were different, and which 
one a researcher should pick. To solve the mystery, we believe 
that a normality test is necessary. We ran normality tests on 
each subgroup under different housekeeping genes for both 
normalization methods. The results can be found in Table 8. 
Under delta-Ct normalization, a few of those genes appear to 
be nonnormally distributed but overall satisfy normality condi-
tions. Under quantile normalization, the majority of our genes 
are not normally distributed. Thus, it is always important to 
check normality first. If data are not distributed very well nor-
mally, then researchers should pay close attention as to which 
normalization method they choose. When reporting results, 
researchers should also place other methods in the supplement 
file for discussion.

In addition, if data are not normally distributed, then a 
2-sample t test might not be the most appropriate method to 
test significance. Instead, one should consider using Wilcoxon 
rank-sum test as it is more suitable as discussed by Pounds and 
Rai.9 Results can be found in Table 9. In our data, variation 
occurs in miR372 when using quantile normalization. The 
2-sample t test and the Wilcoxon rank-sum test produced dif-
ferent conclusions using both housekeeping genes.

Previously, we mentioned that the choice of housekeeping 
gene does not have any impact when using mean normaliza-
tion. The reason is that when calculating mean normalization 
with a housekeeping gene, we first take the difference between 
each miRNA and the housekeeping gene, then we take the 

Table 7. Comparison between 2 quantile normalization methods.

MicroRNAs QUANTILE NORMALIzATION QUANTILE NORMALIzATION

APPROACH 1 APPROACH 2

P VALUE FC1 FC2 P VALUE FC1 FC2

miR192 .4079 0.8880 0.9904 .0010 1.6047 1.6992

miR29c <.0001 0.3805 0.3813 .0086 0.7718 0.7869

miR21 <.0001 0.3687 0.3425 .0044 0.8310 0.7633

miR19a <.0001 0.3864 0.2960 .0098 0.7875 0.5904

miR150 .4707 0.8844 0.7971 .0006 1.8415 1.6381

miR374 <.0001 0.2592 0.1898 .0052 0.5377 0.3501

miR193a-5p .8408 1.0438 1.4808 .0411 1.5312 1.5241

miR346 .8474 0.9666 0.8776 .0208 1.4904 1.1032

miR372 <.0001 1.6193 1.6126 .5117 1.0806 1.0344

miR122 <.0001 0.2278 0.0646 .0027 0.4137 0.0805

Abbreviation: FC, fold-change.
Significance level = 0.05.
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Table 9. Comparison of P value between 2-sample t test and Wilcoxon rank-sum test.

MicroRNAs DELTA-CT NORMALIzATION QUANTILE NORMALIzATION

HKG = miR520-5P HKG = RNU6 HKG = miR520-5P HKG = RNU6

P VALUE WILCOxON  
P VALUE

P VALUE WILCOxON  
P VALUE

P VALUE WILCOxON  
P VALUE

P VALUE WILCOxON  
P VALUE

miR192 .9377 .7935 .2516 .2506 .3342 .7789 .7616 .3693

miR29c .0301 .0289 <.0001 .0005 <.0001 <.0001 .0003 .0007

miR21 .0125 .0082 <.0001 .0002 <.0001 <.0001 .0004 .0003

miR19a .0488 .0490 .0002 .0015 <.0001 <.0001 .0006 .0009

miR150 .3785 .2656 .9134 .5197 .4749 .7894 .7932 .6294

miR374 .0012 .0014 <.0001 <.0001 <.0001 <.0001 .0001 .0003

miR193a-5p .4168 .8023 .9311 .7545 .6508 .9152 .6539 .2019

miR346 .8836 .7202 .2965 .2124 .9617 .4269 .7547 .1838

miR372 .0003 .0002 .1037 .1998 .2731 <.0001 .0301 .3617

miR122 .0525 .1916 .0115 .0338 <.0001 .0002 .0009 .0074

Abbreviation: HKG, housekeeping genes.
Significance level = 0.05.

Table 8. P value from normality test.

MicroRNAs DELTA-CT NORMALIzATION QUANTILE NORMALIzATION

HKG = miR520-5P HKG = RNU6 HKG = miR520-5P HKG = RNU6

CRC + CAA BC + LC + PC CRC + CAA BC + LC + PC CRC + CAA BC + LC + PC CRC + CAA BC + LC + PC

miR192 .2357 .9302 .9789 .2407 <.0001 <.0001 .5066 .0221

miR29c .7084 .4263 .0052 .0003 <.0001 <.0001 .0895 .0005

miR21 .6869 .0623 .0785 .0001 <.0001 <.0001 .0767 <.0001

miR19a .4524 .6339 .5364 .0085 <.0001 <.0001 .2869 .0014

miR150 .9878 .5045 .0839 .4572 .1634 .0045 .0231 .0748

miR374 .9261 .0506 .0546 .0001 .0005 <.0001 .0162 <.0001

miR193a-5p .6837 .1162 .4115 .9972 <.0001 <.0001 .0010 <.0001

miR346 .4568 .8454 .3524 .2321 .0056 <.0001 .0001 .0004

miR372 .1057 .0047 .2187 .6227 <.0001 <.0001 .0001 <.0001

miR122 .0897 .1458 .1309 .6836 .0448 <.0001 .0101 .0020

Abbreviations: BC, breast cancer; CAA, colorectal advanced adenoma; CRC, colorectal cancer; HKG, housekeeping genes; LC, lung cancer; PC, pancreatic cancer.
Significance level = 0.05.

difference between each miRNA with the mean. Therefore, the 
result stays the same. Similar procedures were carried out, and 
results can be found in Tables 10 and 11. The normality test 
also showed that some genes were not normally distributed. 
However, gene significance matched for both the 2-sample t 
test and Wilcoxon rank-sum test.

Conclusion
In general, issues in plasma miRNA analysis cannot be 
neglected, and investigators should put effort into how to cor-
rect or minimize the error. We have demonstrated that varia-
tions such as batch effect and operator effect could potentially 
impact the outcome data, and thus lead to wrong statistical 
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analysis and conclusions. In addition, issues that involve dif-
ferent choices for the experiment, such as varying threshold 
and housekeeping genes, should also be addressed properly. 
Investigators should make the right choice when making deci-
sions. In terms of statistical analysis, statisticians should pay 
attention to the method of normalization and fold-change they 
are using. As demonstrated, different ways of calculating fold-
change and normalization will impact the results. Similarly, 
when doing classification, researchers should have a good sam-
ple size, and pick the most appropriate model depending on 
the data and experiment.
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Table 10. P value from normality test for mean normalization.

MicroRNAs MEAN NORMALIzATION

CRC + CAA BC + LC + PC

miR192 .0145 .0510

miR29c .5102 .1721

miR21 .7943 .0468

miR19a .1265 .7713

miR150 .1578 .6555

miR374 .1670 .2009

miR193a-5p .0012 .6890

miR346 .2017 .5728

miR372 .0040 .0978

miR122 .1909 .7966

Abbreviations: BC, breast cancer; CAA, colorectal advanced adenoma; CRC, 
colorectal cancer; LC, lung cancer; PC, pancreatic cancer.
Significance level = 0.05.

Table 11. Mean normalization fold-change and comparison of P value 
between 2-sample t test and Wilcoxon rank-sum test.

MicroRNAs MEAN NORMALIzATION

P VALUE FC1 FC2 WILCOxON 
P VALUE

miR192 .0530 1.2982 1.2687 .1746

miR29c .0005 0.6296 0.6266 .0015

miR21 .0004 0.5855 0.6065 .0007

miR19a .0038 0.728 0.6767 .0055

miR150 .0006 1.7068 1.6342 .0031

miR374 <.0001 0.3564 0.2399 .0001

miR193a-5p .0002 1.7073 1.6767 .0006

miR346 .2896 1.2759 0.5676 .2018

miR372 <.0001 3.121 3.0901 <.0001

miR122 .0807 0.5732 0.2223 .1343

Abbreviation: FC, fold-change.
Significance level = 0.05.
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