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Abstract: Six strawberry genotypes were examined for fruit yield and size, important chemical
traits (sugars, phenolics, anthocyanins, ascorbic acid, volatiles) and antioxidant properties (ferric
reducing power). In addition, we determined the expression of genes and transcription factors
(SAAT, FaNES1, FaFAD1, FaEGS2, FaEOBII and FaMYB10) controlling the main flavor and aroma
traits, and finally evaluated the effect of the genotype and harvest time on the examined chemical
and genetic factors, as well as their intercorrelations. The commercial varieties ‘Fortuna’, ‘Victory’,
‘Calderon’, ‘Rociera’, and two advanced selections Ber22/6 and Ber23/3 were cultivated under the
same conditions at Berryplasma World Ltd. plantations (Varda, Ilia, Region of Western Greece).
Strawberries were harvested at three different time points over the main harvest period in Greece,
i.e., early March (T1), late March (T2) and late April (T3). ‘Fortuna’ exhibited the highest early and
total yield, while ‘Calderon’, the highest average berry weight. General Linear Model repeated
measures ANOVA demonstrated that the interaction of the genotype and harvest time was significant
(p < 0.001) on all tested quality attributes and gene expression levels, showing that each genotype
behaves differently throughout the harvest period. Exceptions were observed for: (a) the volatile
anhydrides, fatty acids, aromatics and phenylpropanoids (all were greatly affected by the harvest
time), and (b) lactones, furaneol and FaEGS2 that were affected only by the genotype. We observed
significant intercorrelations among those factors, e.g., the positive correlation of FaFAD1 expression
with decalactone and nerolidol, of SAAT with furaneol, trans-cinnamic acid and phenylpropanoids,
and of FaEGS2 with decalactone and FaFAD1. Moreover, a strong positive correlation between SAAT
and FaMYB10 and a moderate negative one between SAAT and glucose were also detected. Those
correlations can be further investigated to reveal potential markers for strawberry breeding. Overall,
our study contributes to a better understanding of strawberry physiology, which would facilitate
breeding efforts for the development of new strawberry varieties with superior qualitative traits.

Keywords: Fragaria × ananassa; cultivars; sugars; anthocyanins; antioxidants; ascorbic acid; lactones;
furanones; phenylpropanoids; terpenes; gene expression

1. Introduction

The octoploid cultivated strawberry (Fragaria × ananassa (Duchesne ex Weston) Duch-
esne ex Rozier) is a typical non-climacteric, horticultural crop cultivated worldwide. Straw-
berry fruits satisfy the consumers’ preference due to their sweet and aromatic flavor,
nutritional value and health-promoting ingredients [1]. In the last decades, strawberry
breeding objectives have been focused on the development of new cultivars with high
yield, resistance to pathogens and transport damages, adaptation to different climatic
conditions and cultivation systems, season-wide production, fruit size and firmness [2].

Int. J. Mol. Sci. 2021, 22, 13499. https://doi.org/10.3390/ijms222413499 https://www.mdpi.com/journal/ijms

https://www.mdpi.com/journal/ijms
https://www.mdpi.com
https://orcid.org/0000-0002-0292-6793
https://orcid.org/0000-0002-6938-3500
https://doi.org/10.3390/ijms222413499
https://doi.org/10.3390/ijms222413499
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/ijms222413499
https://www.mdpi.com/journal/ijms
https://www.mdpi.com/article/10.3390/ijms222413499?type=check_update&version=1


Int. J. Mol. Sci. 2021, 22, 13499 2 of 27

In addition to the agronomic performance of the plant, the development of cultivars
with superior organoleptic quality and nutritional value is now a priority across many
breeding programs.

The term organoleptic quality refers to the core collection of qualities that are observ-
able through the consumer’s five senses and are typically connected to specific chemical
and physicochemical traits. Flavor perception arises from the integration of taste and
aroma co-exposure; strawberry sweetness primarily correlates to the amount and type
of sugars, but afterwards its perception involves aroma [3]. Aroma is the result of the
presence of hundreds of volatile organic compounds (VOCs), although not all of them are
responsible for the odor perception [4]. Consumer quality acceptance generally relies on
specific characteristics, e.g., fruit color, shape, acidity, and sweetness in combination with
flavor and aroma [5].

Strawberry aroma has been a topic of intense research since the mixture of straw-
berry VOCs is very complex. Nearly one thousand VOCs have been described so far [6];
380 compounds were described in the comprehensive review of Zabetakis and Holden [7]
and 567 VOCs were determined in the study of Cannon et al. [8]. Only few are con-
sistently present in all genotypes and determine the aroma; their concentration varies
by the genotype, fruit maturity and environmental conditions. The most frequent and
aroma determining VOCs are acids and esters—with butanoic and hexanoic acids and
their methyl- or ethyl-esters being consistently present—furanones like mesifurane and its
precursor furaneol, lactones with γ-decalactone and γ-dodecalactone being the predomi-
nant ones, and terpenoids like linalool [6]. Progress in the study of their metabolism has
revealed several key biosynthetic enzymes and their genes, e.g., the strawberry alcohol
acyl transferase (SAAT) that catalyzes the formation of esters, the fatty acid desaturase
(FaFAD1) that positively controls γ-decalactone production in ripening strawberry fruit,
and the nerolidol synthase (FaNES1), which is involved in the formation of nerolidol and
linalool and is mainly expressed in the receptacle tissue during ripening [9]. Eugenol
that is synthesized in fruits or flowers, contributes to their aroma, and plays a role as
floral attractant for pollinators [10]. A previous study demonstrated that the FaEGS2 gene
coding for eugenol synthase in strawberry was expressed in the receptacle during the
last stages of ripening [11]. FaMYB10, a R2R3-MYB transcription factor (TF), is a general
regulator of early and late anthocyanin biosynthetic genes and other structural genes in the
flavonoid/phenylpropanoid pathway during the ripening of strawberry [12,13]. FaEOBII,
encodes a R2R3-MYB TF and has been identified as a positive regulator of the metabolic
pathway that determines the production of the phenylpropanoid volatile eugenol in ripe re-
ceptacles [10,14]. FaEOBII regulates eugenol production through the activation of FaCAD1
and FaEGS2. These genes encode a cinnamyl alcohol dehydrogenase and an eugenol
synthase, respectively, which are part of this metabolic pathway [14,15].

Strawberry nutritional quality derives from all the macro- and micronutrients, vi-
tamins and bioactive compounds present in strawberries. The strawberries’ nutritional
quality is due to their high levels of both nutritive (vitamins, minerals, fibers) and non-
nutritive (polyphenols) bioactive ingredients. Human studies have demonstrated that
strawberry consumption confers antioxidant, cardioprotective, anti-inflammatory, anti-
hyperglycemic, anti-obesity, cancer chemopreventive, antimicrobial and neuroprotective
benefits and mediates the attenuation of metabolic syndrome [16]. Their potential to combat
chronic degenerative diseases derives from their phytochemical content. The fruits contain
high concentrations of vitamin C (ascorbic acid). It has been suggested that ascorbic acid
could be one of the selection targets in new breeding programs, since strawberry genotypes
containing a large amount of vitamin C (>12 mg/100 g) could bear the functional health
claims on vitamin C according to article 13.1 (EU Directive 1924/2006) [2]. Anthocyanins
are the predominant polyphenol class responsible for fruit color, whereas other bioactive
polyphenols present in the fruits are flavanols (catechins and procyanidins), ellagitannins,
flavonols and phenolic acids [16]. Those polyphenols confer significant antioxidant and
concomitantly anti-inflammatory protection, not only because they act as antioxidants
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themselves, but more importantly because they interact with cellular signaling cascades
regulating the activity of transcription factors and influencing the expression of genes essen-
tial in cellular metabolism and survival [17,18]. Bearing in mind the impact of the digestion
process on the structure of polyphenols and therefore on their antioxidant capacity, bioac-
cessibility and bioavailability, Cervantes et al. [19] compared raspberries, blueberries and
strawberries and demonstrated that although raw strawberries did not have the highest
phenolic/anthocyanin content or antioxidant capacity, they had the highest total phenolic
content and antioxidant capacity in the bioavailable fractions after digestion, possibly due
to their lower dietary fiber content. The content of total polyphenols, anthocyanins and
in vitro antioxidant capacity have been used in some breeding programs as markers for
the selection of genotypes that would offer more healthfulness [20–22].

Quality traits are controlled by a complex genetic background. A great variability of
strawberry quality is observed not only among the different genotypes, but also derives
from environmental (different latitude, soil conditions, light exposition, etc.), agronomic
factors related to the cultivation systems (fertilization, water stress and salinity), harvest
dates and processes, and shelf-life [5]. In addition, the plant vegetative growth pattern and
the crop load greatly affect fruit quality characteristics [23].

Our aim was to assess the fruit quality of four strawberry commercial cultivars
(‘Rociera’, ‘Calderon’, ‘Florida Fortuna’, ‘Victory’) and two advanced selections (Ber22/6
and Ber23/3) over the main harvest period in Greece (March–April), to describe and
understand the impact of harvest time and genotype on agronomic, nutritional and aroma
traits and the expression of key genes influencing flavor.

For this reason, the six strawberry genotypes were cultivated under the same condi-
tions in the same plantation, and their fruits were harvested at three different time points.
At each time-point and for each genotype, the fruit yield and weight, the content of total
sugars and glucose, total phenolics, anthocyanins, ascorbic acid, and ferric reducing antiox-
idant power as an index of antioxidant capacity were determined. Volatile composition
was recorded with GC-MS, whereas the expression of strawberry alcohol acyltransferase
(SAAT), nerolidol synthase-1 (FaNES1), omega-6 fatty acid desaturase (FaFAD1), eugenol
synthase 2 (FaEGS2) genes and of the transcription factors FaEOBII and FaMYB10 were
determined by qRT-PCR. Finally, statistical analysis was used to study the intercorrelations
among all these factors to define their possible interactions.

2. Results and Discussion
2.1. Fruit Yield and Weight

‘Fortuna’ exhibited the highest early (470 g) and total yield (750 g) compared to any
other genotype tested (Figure 1). Moreover, there was no significant difference in the
early yield between Ber23/3 and ‘Victory’; however, Ber23/3 had higher early yield than
Ber22/6, ‘Calderon’ and ‘Rociera’ by 17%, 30% and 96%, respectively. A similar trend was
observed in total yield values as measured up to 31/04. For example, Ber23/3 had higher
total yield than Ber22/6, ‘Calderon’ and ‘Rociera’ by 16%, 13% and 58%, respectively.

The highest average berry weight was observed in ‘Calderon’ as measured up to
31/03 and 30/04. The smallest average berry weight was observed in Ber23/3 as measured
in both time points. All genotypes dropped the average berry weight from 6–12% in April
(31/03–30/04), except Ber23/3 which had a stable average berry weight in both periods
despite the increase in yield.

2.2. Fruit Quality Parameters

General Linear Model (GLM) repeated measures ANOVA analysis demonstrated
that the interaction of genotype and harvest time was significant (p < 0.001) for all tested
quality attributes showing that each genotype behaves differently throughout the harvest
time (Table S1).
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2.2.1. Sugars

Total sugars were determined with the method of anthrone and were expressed as
mg glucose equivalent/g F.W. The values ranged from 36.21 ± 3.04 (‘Victory’, T1) to
61.01 ± 2.56 mg/g F.W. (Ber23/3, T2) (Figure 2). These values are in accordance with those
previously reported for strawberries cultivated in the same area by Zeliou et al. [24]; in
that study it was demonstrated that total sugars correlated positively with the ratio of total
soluble sugars/total acids that in turn correlated with the perception of sweetness.

Total sugar content at T2 was different from that at T1 and T3 (p < 0.001), whereas the
glucose concentration of strawberries was not significantly different at T1 and T2 (Figure 2).
Concerning glucose concentration, ‘Fortuna’, ‘Rociera’ and ‘Victory’ were constant across
all timepoints. The sugar content in ‘Rociera’ and ‘Calderon’ was also constant over the
harvest period, whereas the rest of the genotypes exhibited the highest values at T2 (bell-
shaped pattern). Glucose was nearly 50% of total sugars in all genotypes at T1 and T3,
whereas at T2 it represented on average 39% of total sugars, suggesting that other sugars
are produced in that time-point increasing the concentration of total sugars. This is further
evidenced by the low correlation of those two variables (0.415, p = 0.002). In the study of
Davik et al. [25], glucose determined with HPLC-RI was nearly 40% of total sugars, fructose
was nearly 50% and sucrose was 10%. Each of them contributes differently to the perception
of sweetness; glucose sweetness is only 55 to 60% that of fructose or sucrose [26,27]. Thus,
the results suggest that fructose and/or sucrose are overproduced at T2 contributing to a
significant increase of total sugars and sweetness.

With respect to the genotypic differences over all time points, the total sugars content
was lower in ‘Victory’ than ‘Calderon’, whereas ‘Fortuna’ had significantly lower content
than ‘Calderon’, ‘Rociera’ and Ber23/3 (p < 0.05); showing that the latter ones had a high
sugar content, although it was not constant through time. Accordingly, ‘Fortuna’ and
‘Victory’ fruits had lower glucose concentration than Ber23/3 and ‘Calderon’ fruits (p < 0.05).

2.2.2. Phenolics and Anthocyanins

The total phenolic content significantly increased during the harvest period in all
genotypes but not in ‘Victory’; the rise at T3 in comparison to T1 ranged from a 9% in
Ber23/3 to a 36% in Ber22/6 (Figure 3). The comparison of anthocyanin content at T3 and
at T1 (p < 0.001) showed an even greater rise from 30% in ‘Victory’ to the remarkable 84%
in ‘Rociera’; the difference was also significant (p < 0.001) from T2 to T3. However, antho-
cyanins in Ber22/6 did not differ significantly among the various time points. Kawanobu
et al. [28] had also demonstrated that anthocyanin content rises as the cultivation season
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of two cultivars ‘Nyoko’ and ‘Toyonoka’ progresses. Tomić et al. [29] investigated the
effect of harvest time in five-day intervals (from May 26 to June 16) on the phenolic and
anthocyanin content of three strawberry cultivars (‘Clery’, ‘Joly’ and ‘Dely’) and recorded
an increase of both parameters as the harvest time progressed.
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Figure 3. Total phenolics and anthocyanin concentration at each time-point for each genotype. Three
biological and at least three technical replicates per sample were used.

A medium but significant correlation of those two analytes was noted (0.426, p = 0.001),
which is not surprising since anthocyanins are a subcategory of phenolics particularly
responsible for the fruit color. Interestingly, a correlation was noted between pheno-
lics content and glucose concentration (0.533, p < 0.001), which might be attributed to
the biosynthesis of phenolics via the shikimate pathway deriving from intermediates of
glucose metabolism.

Taking all time points into account, Ber23/3 did not differ from ‘Calderon’ (the highest
values), followed by Ber22/6 from ‘Rociera’; notably, ‘Fortuna’ fruits had the lowest
phenolics concentration. Accordingly, Ber23/3 fruits had significantly higher content of
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anthocyanins than those of Ber22/6, ‘Calderon’, ‘Rociera’, and ‘Victory’, whereas ‘Victory’
had lower values than Ber23/3, ‘Calderon’ and ‘Fortuna’.

Our results confirm previous studies [29,30] and show that phenolic and anthocyanin
production is a quality parameter greatly dependent on the genotype.

2.2.3. Ascorbic Acid and Antioxidant Activity

One of the key nutritional benefits of strawberries is their very high vitamin C level.
The vitamin C content of strawberry fruits varies between 0.1 and 1 mg g−1 FW (fresh
fruit) for several strawberry genotypes [31]. In our study, when considering all time points,
‘Calderon’ had the highest levels of vitamin C from all other genotypes and Ber22/6 the
lowest ones (p < 0.001) (Figure 4). However, the lowest Ferric-Reducing Antioxidant Power
(FRAP) values (index of antioxidant capacity) were noted in ‘Fortuna’ fruits, while those
in Ber22/6 were not different from those in Ber23/3, ‘Calderon’ and ‘Rociera’ (all of them
high) (Figure 4).
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Strawberries have a much higher antioxidant capacity than other fruits such as apples,
peaches, pears, grapes, tomatoes, oranges or kiwifruit, with vitamin C accounting for more
than 30% of the total antioxidant capacity, anthocyanins accounting for 25–40% (depending
on the cultivar), and other phenolics (ellagic acid derivatives and flavonols) accounting
for the remainder [32]. In our study, FRAP values correlated strongly with total phenolic
content (0.928, p < 0.001) and glucose concentration (0.502, p < 0.001), but not with ascorbic
acid, which could be attributed to the nature of the assay. Ascorbic acid had a moderate
correlation with total sugars content (0.515, p < 0.001) and followed a bell-shaped pattern
in most cultivars; it is biosynthesized from sugars.

A decrease in ascorbic acid content in midterm harvest time (up to early May in
Japan) followed by an increase later has been shown by Kawanobu et al. [28] in two
cultivars. Their results are in accordance with the significant increase we noticed at T2 and
differences in the dates probably stem from the difference in the geographic locations. It
has previously been demonstrated that the ascorbic acid concentration is influenced by the
effective cumulative temperature and sun radiation between flowering and harvest [33].
Fruit quality and antioxidant qualities of ten cultivars were higher in mid- (21 March) to
late-season (9 April) harvests in Spain [34]. Accordingly, in our study, fruit antioxidant
FRAP values at T3 were higher than those at T1 and T2 (p < 0.001); ‘Victory’ and Ber23/3
fruit FRAP values were constant throughout the harvest time (Figure 4).

2.3. Strawberry Volatiles

More than a hundred VOCs were identified, whereas other minor peaks were also
present; the identification range in terms of peak areas was 55–79%. The high abundance
of acids which eluted as tailing peaks in the apolar GC HP-5MS column hampered the
identification process on several occasions (Figure S1). Out of those, we selected the
ones that were at least 0.1% at one measurement to proceed with the comparison among
genotypes and harvest points (Table 1 and Table S2).

Table 1. List of abundant identified VOCs (>0.1% at least at one time point). The experimental and literature retention
indices (RIs) are presented along with the compound category, the range of % peak area percentages, references whether it
impacts flavor and references of previous occurrence in strawberries.

No RIexp RIlit Compound Compound
Category

Flavor
Impact

Range of
Peak Area

Percentages
Ref.

1 777 785 2-Methylpropanoic acid
(isobutyric acid) Acids a: rancid,

butter, cheese 0.08–0.94 b, c, d

2 799 802 2,3-Butanediol Alcohols a: fruit, onion;
f: creamy <0.31 e, f

3 803 802 Ethyl butanoate Esters
a: apple; b:

estery, fruity,
sweet; g

<0.33 b, c, d, g

4 805 790 Butanoic acid
(butyric acid) Acids

a: rancid,
cheese, sweat;

b: cheesy,
fruity; g

tr.<4.23 b, c, d, g

5 831 811b Methyl 2-hydroxybutanoate
(methyl 2-hydroxy butyrate) Esters <0.21 b

6 834 830/832/839 Furfural Furans a: bread,
almond, sweet <0.22 b, c, d

7 856 827 (Kovat’s
index)

Maleic anhydridestd

(cis-butenedioic anhydride;
2,5-furandione)

Furans/
Anhydrides 0.59–8.83

8 871 846/886 2-Methylbutanoic acid Acids b: cheesy,
stinky; g 0.03–4.86 b, c, d, g
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Table 1. Cont.

No RIexp RIlit Compound Compound
Category

Flavor
Impact

Range of
Peak Area

Percentages
Ref.

9 890 890 Styrene
(vinylbenzene)

Aromatic
compounds

a: balsamic,
gasoline <1.44 b

10 915 915/916/922 Butyrolactone
[dihydrofuran-2(3H)-one]

Furans/
Lactones

a:
caramel-sweet 0.12–0.66 c

11 925 924 Methyl n-hexanoate
(methyl caproate) Esters a: fruit, fresh,

sweet <0.12 b, c, d, g

12 947 949 (ZB-5) Citraconic anhydride
(3-methyl-2,5-furandione) Furans/Anhydrides 0.73–9.00 b

13 979 977 (VF-5MS) 3-Hydroxybutanoic acid Acids <6.49

14 990 981 Phenol Aromatic
compounds a: phenol <0.51 b,f

15 1001 996 Ethyl hexanoate
(ethyl caproate) Esters

a: apple, peel,
fruit; b: fruity,

sweet; g
<0.15 b, c, d, g

16 992 996/1001/1003/
1005/1006 α-Phellandrene * Terpenes a: dill <0.17 * d

17 992 987/994/970/988/
992/998/990/993 2-Pentylfuran * Furans a: green bean,

butter b, d

18 1006 977/981 Hexanoic acid
(n-caproic acid) Acids b: sour, cheesy 0.44–12.84 b, c, d, g

19 1016 995/1008/
1013-1018

Terpilene
(α-terpinene) Terpenes a: lemon <0.11 b, d

20 1026 1022
(non-polar)

Succinic anhydride std

(dihydro-2,5-furandione)
Furans/

Anhydrides 0.59–3.15 e

21 1028 1007/1020/1022/
1025–1033 Limonene Terpenes a: citrus, mint <0.30 b, c, d

22 1038 1020/1033–
1036/1042 Benzyl Alcohol Aromatic

compounds
a: sweet,
flower; g 0.43–1.39 b, c, d, g

23 1040 967 (DB-1)
Itaconic anhydride *

(dihydro-3-methylene-2,5-
furandione)

Furans/
Anhydrides 0.90–2.75 * e

24 1040 1014b

Pantolactone *
[dihydro-3-hydroxy-4,4-

dimethyl-2(3H)-furanone;
2-hydroxy-3,3-dimethyl-γ-

butyrolactone]

Furans/
Lactones a: cotton candy b

25 1049 1017/1020/1029/
1033/1037–1040

cis-Ocimene
(cis-3,7-dimethyl-1,3,6-

octatriene)
Terpenes a: citrus,

herb, flower <0.16 b

26 1057 1056

γ-Hexalactone
[γ-ethyl-γ-butyrolactone,

dihydro-5-ethyl-2(3H)-
furanone,

γ-caprolactone]

Furans/Lactones <0.27 b, c, d

27 1063 1065

Mesifurane
[2,5-dimethyl-4-methoxy-

3(2H)-furanone;
DMMF]

Furans
b: toffee,
sugary,
sweet; g

0.24–1.29 b, c, d, g
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Table 1. Cont.

No RIexp RIlit Compound Compound
Category

Flavor
Impact

Range of
Peak Area

Percentages
Ref.

28 1076 1055/1072/1097

Furaneol
[2,5-dimethyl-4-hydroxy-

3(2H)-furanone;
DMHF]

Furans
a: caramel; b:
sweet, candy,
caramellic; g

0.42–4.55 b, c, d, g

29 1088 1067/1071/1076/
1080/1085–1089

Terpinolene
[p-mentha-1,4(8)-diene] Terpenes <0.16 b, d

30 1089 1065/1069/
1087–1088/1091

trans-Linalool oxide
(furanoid)

[trans-5-ethenyltetrahydro-
α,α,5-trimethyl-2-
furanmethanol]

Terpenes a: flower <0.18 b, c

31 1098 1084 (DB-5)

δ-Hexalactone
(tetrahydro-6-methyl-2H-

pyran-2-one;
δ-caprolactone)

Lactones <0.26 b, c, d

32 1102
1079/1082/
1092/1094/
1097–1105

Linalool
(3,7-dimethyl-1,6-octadien-

3-ol)
Terpenes

a: flower,
lavender; b:

floral
0.06–0.63 b, c, d

33 1115 - Levoglucosenone * Ketones 0.20–1.03 * h

34 1115 1109/1114–
1119/1139

2-Phenylethyl Alcohol *
(benzeneethanol)

Aromatic
compounds

a: honey, spice,
rose, lilac b, c, d

35 1173 1163
(DB-5MS) 4-Ethylphenol Aromatic

compounds a: must 0.14–0.87

36 1180 1159/1178 Benzoic Acid Aromatic
compounds a: urine 0.09–0.45 b, c, d

37 1192 1187/1192 1-Dodecene Alkenes <0.20

38 1216 1197 (DB-5)
1,2-Benzenediol
(pyrocatechol;

2-hydroxyphenol; catechol)

Aromatic
compounds <0.52 i

39 1228 1223–1224
(SPB-5)

Coumaran
(2,3-dihydrobenzofuran)

Aromatic
compounds e: green tea 1.35–5.62 e

40 1319 1326
(VF-5MS)

Salicylic acid std *
(o-hydroxybenzoic acid;

phenol-2-carboxylic acid)

Aromatic
compounds 0.13–1.30 * c, d

41 1319 1314–1318 2-Methoxy-4-vinylphenol * Aromatic
compounds b, c, d

42 1386 1343b
cis-Cinnamic acid

[(Z)-3-phenyl-2-propenoic
acid)

Aromatic
compounds/
Phenylpro-

panoids

0.07–0.47 b, d, i

43 1442 1432
Tyrosol

(4-hydroxyphenylethyl
alcohol)

Aromatic
compounds <0.88 b, c, i

44 1471 1450/1462
(DB-1)

trans-Cinnamic acid std

[(E)-3-phenyl-2-propenoic
acid]

Aromatic
compounds/
Phenylpro-

panoids

a: honey 19.41–37.28 b, c, d, i

45 1472 1470
γ-Decalactone

[5-hexyldihydro-2(3H)-
furanone]

Furans/
Lactones

a: peach, fat; b:
sweet, peach,
lactonic; g

<2.49 b, c, d, g
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Table 1. Cont.

No RIexp RIlit Compound Compound
Category

Flavor
Impact

Range of
Peak Area

Percentages
Ref.

46 1553 1491 (LM-5)
Levoglucosan *

(1,6-anhydro-β-D-
glucopyranose)

Others 0.30–7.88 *

47 1553 1538
(VF-5MS)

p-Salicylic acid * std

(4-hydroxybenzoic acid;
paraben-acid;

4-carboxyphenol )

Aromatic
compounds

48 1566 1544/1561–1563/
1568/1569

trans-Nerolidol
[(E)-3,7,11-trimethyldodeca-

1,6,10-trien-3-ol]
Terpenes a: wax; g <0.57 b, c, d, g

49 1571 1559/1566/−1568/
1570/1573/1576

Dodecanoic acid
(lauric acid)

Acids/Fatty
acids <0.23 b, c, d

50 1659 1659

Homovanilic acid *
(4-hydroxy-3-

methoxybenzeneacetic acid;
vanilacetic acid)

Aromatic
compounds 1.08–2.69 * j

51 1659 1658 Bisabolol oxide II * Terpenes

52 1683 1675
γ-Dodecalactone

[dihydro-5-octyl-2(3H)-
furanone]

Furans/
Lactones

a: sweet,
flower, fruit; g <0.24 b, c, d, g

53 1765
1759/1767/1769/
1770/1777/1780/

1787/1790

Tetradecanoic acid
(myristic acid)

Acids/Fatty
acids <0.53 b, c, d

54 1864 1869/1878 Pentadecanoic acid Acids/Fatty
acids <0.44 c

55 1881 1871/1879/1882 1-Hexadecanol
(cetyl alcohol) Alcohols a: flower, wax <0.33

56 1888 1881 (DB-1)

Ferulic acid
[(E)-4-hydroxy-3-
methoxycinnamic

acid]

Aromatic
compounds/
Phenylpro-

panoids

<0.31 j, l

57 1944 1953 (HP-5) Z-11-Hexadecenoic acid Acids/Fatty
acids <0.89

58 1968

1962/1963/1969/
1971/1972/1975/
1977/1978/1991/

1995/2003

n-Hexadecanoic acid
(palmitic acid)

Acids/Fatty
acids g 0.66–3.70 b, c, d, g

59 2086 (HP-5) Heptadecanoic acid
(margaric acid)

Acids/Fatty
acids <0.11 c, d

60 2095/2104/2130/
2140/2144/2170

Linoleic acid
[(9Z,12Z)-octadeca-
9,12-dienoic acid]

Acids/Fatty
acids <0.32 b, c, d

61 2102/2141/
2152/2175

Oleic Acid
[(Z)-octadec-9-enoic acid]

Acids/Fatty
acids a: fat <1.65 b, c, d

62 2172/2178/
2180/2188

Stearic acid
(Octadecanoic acid)

Acids/Fatty
acids 0.16–1.60 c

The literature RI (RIlit) has been retrieved from the NIST database [35] based on van Dool and Kratz calculation [36] on a HP-5MS column,
unless otherwise stated. The superscript std in the third column denotes that an external standard compound has been used for the
identification. Asterisks in two adjacent rows denote that those compounds co-elute and thus the percentage is given in the first row. Small
letters indicate the references: a: [37]; b: [8]; c: [7]; d: [38]; e: [39]; f: [40]; g: [6]; h: [41]; i: [42]; j: [43]; k: [44]; l: [45].
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The predominant compound was trans-cinnamic acid with a total average of 26.4%
and was followed by citraconic anhydride (4.4%), maleic anhydride (3.9%), hexanoic
acid (3.9%) and coumaran (3.2%). Phenylpropanoids (trans- and cis-cinnamic acid and
ferulic acid) accounted for 27% of total peak area in all genotypes and were the major
aromatic compounds (in total 33%), whereas the average percentage of anhydrides (maleic,
citraconic, succinic and itaconic anhydrides) was higher than 10%. The abundance of
those non-volatiles and the determination of esters and terpenes in low relative amounts
(0.2 and 0.7%, respectively) can be explained by the nature of the cleanup process we
adopted, i.e., liquid–liquid extraction with ethyl acetate, since aromatic compounds are
highly soluble in that solvent. In addition, previous studies [46,47] have demonstrated
that liquid–liquid extraction is advantageous for lactone determination, and this is also
evidenced by our study in which lactones accounted for an average of 1.6%. Ulrich et al. [6]
have thoroughly presented the advantages (high number of extracted VOC, high recovery
rates, concentration) and the disadvantages (high workload, lack of automation, extraction
of non-volatiles) of the commonly used liquid–liquid extraction clean-up process.

The occurrence of all those compounds except maleic anhydride in strawberries has
been earlier reported [7,8,38]; and the exact references for every compound are presented
in Table 1. Regarding maleic anhydride we further certified its presence by a standard,
whereas when we injected maleic acid, the anhydride was not detected. Concerning
coumaran, its presence was earlier reported by Gaborieau et al. [39]. When we injected
standard p-coumaric acid in the GC-MS, we observed only the peak of coumaran, which led
us to the conclusion that coumaran does not exist naturally in strawberries but is formed
during the high temperature GC analysis. In accordance, the thermolability of p-coumaric
acid has earlier been described by Salameh et al. [48]; interestingly, those authors also
demonstrated its bioconversion to vinyl- and 4-ethylphenol, which might explain the
determination of 4-ethylphenol in the present study (probably a result of enzymatic action
in the homogenized fruits although an inorganic salt was added), since it has not been
earlier described in strawberries.

The rest of the identified compounds are presented in Table 1. A considerable portion
of those are the lactones with γ-decalactone being the major one, albeit in some genotypes
(‘Victory’ and Ber22/6) it was not detected. Short chain straight and branched acids (hex-
anoic, 3-hydroxybutanoic acid, butanoic, 2-methylpropanoic acid) and longer fatty acids
(from twelve to eighteen carbons including odd ones) were present in high percentages
(9.32 and 2.60%, respectively), whereas alcohols (mainly 2,3-butanediol) and alkenes were
in very low percentages (<0.3%).

When considering the available data of which compound affects aroma and flavor
(Table 1), ‘Rociera’ surpassed all other genotypes in the percentage of those compounds
that affect flavor (trans-cinnamic acid was subtracted), whereas Ber23/3 and ‘Fortuna’
ranked second (Table S3).

Effect of Genotype and Harvest Time on Volatiles

GLM repeated measures ANOVA was used to evaluate the impact of genotype and
harvest time on the major volatiles and volatile categories, and the F values are presented in
Table 2. Genotype, harvest time, and/or their interaction had a significant effect (p < 0.05)
on all major compounds except for benzyl alcohol and all volatile categories.

The genotype was the only source of variation for butanoic acid, 3-hydroxybutanoic
acid, hexanoic acid, furaneol and γ-decalactone, and for the category of lactones. In the
study of Jouquand et al. [47], apart from the great effect of the genotype, harvest time also
influenced lactone content in the sense that the lower temperatures in February increased
their content consecutively. Furaneol and γ-decalactone are characteristic strawberry
volatiles that impart a sweet flavor to strawberries (see Table 1), and the fact that they are
affected only by genotype suggests that their content should be considered as potential
target in breeding programs and cultivar selection. Interestingly, Samykanno et al. [49]
had demonstrated that predominantly the genotype (the environment to a lesser degree
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but their interaction was significant) affected γ-decalactone and furaneol in two different
strawberry cultivars (‘Albion’ and ‘Juliette’).

Table 2. Effect of genotype and the time of harvest on major strawberry volatiles (>1% including the two important terpenes
linalool and p-trans-nerolidol that exist in lower percentages) and volatile categories.

No Compound
F Value (Significance)

Genotype (G) Harvest Time (T) G × T

4 Butanoic acid 4.528 * 3.204 1.238
7 Maleic anhydride 5.622 ** 96.337 *** 3.126 *
8 2-Methylbutanoic acid 27.251 *** 3.782 * 4.455 **
9 Styrene 0.761 10.253 ** 0.772
12 Citraconic anhydride 0.511 41.542 *** 1.421
13 3-Hydroxybutanoic acid 14.102 *** 3.226 1.885
18 Hexanoic acid 6.905 ** 2.516 1.162
20 Succinic anhydride 18.202 *** 71.895 *** 1.754
22 Benzyl Alcohol 2.106 2.725 1.245
27 Mesifurane 4.238 * 9.043 ** 2.504 *
28 Furaneol 10.051 *** 0.678 2.087
32 Linalool 35.484 *** 5.703 ** 4.911 **
39 Coumaran 2.337 36.473 *** 1.749
44 trans-Cinnamic acid 1.845 7.947 ** 0.774
45 γ-Decalactone 15.220 *** 0.088 2.019
48 trans-Nerolidol 10.032 *** 21.210 *** 8.688 ***
58 n-Hexadecanoic acid 1.814 13.736 *** 3.986 **
61 Oleic Acid 1.830 11.371 *** 2.079
62 Stearic acid 0.815 5.865 * 1.503
I Esters 9.828 *** 28.988 *** 9.912 ***
II Terpenes 57.438 *** 33.892 *** 26.161 ***
III Phenylpropanes 2.761 15.185 *** 1.226
IV Aromatics 1.411 17.622 *** 1.183
V Short-chain Acids 6.215 ** 8.228 ** 2.515 *
VI Fatty Acids 2.079 16.449 *** 4.047 **
VII Alcohols 13.772 *** 8.754 ** 2.426
VIII Alkenes 3.289 * 78.197 *** 4.270 **
IX Furans/Lactones 0.450 62.117 *** 1.601
X Lactones 7.724 ** 1.354 0.650
XI Anhydrides 1.558 79.254 *** 1.484

The numbers of compounds in the 1st column (No) are the same as those of Table 1. * Significant at 0.05 ≥ p > 0.01, ** significant at 0.01 ≥ p
> 0.001, *** significant at p ≤ 0.001.

Only the harvest time affected phenylpropanes, aromatics, furans/lactones and anhy-
drides; the effect on furans/lactones seems to derive from their high content in anhydrides.
In accordance, styrene, citraconic anhydride, coumaran, trans-cinnamic acid, oleic and
stearic acid were affected only by harvest time. The interaction of both factors was signifi-
cant (p < 0.05) for esters, terpenes, short-chain acids, fatty acids and alkenes, showing that
harvest time might affect the volatile composition in a different way for each genotype;
however, the effect of harvest time on esters, fatty acids and alkenes overshadowed that of
genotype. With regards to volatile compounds, the effect of their interaction was significant
on maleic anhydride, 2-methylbutanoic acid, mesifurane, linalool, trans-nerolidol and
hexadecenoic acid with an overwhelming effect of genotype on 2-methylbutanoic acid and
linalool, and of harvest time on maleic anhydride and n-hexadecanoic acid. Noteworthy,
trans-nerolidol was determined only in ‘Rociera’ and ‘Fortuna’. Our results are in accor-
dance with those of Pelayo-Zaldívar et al. [50] on esters, linalool and furaneol although
they had examined two distant harvest points for three strawberry varieties (‘Aromas’,
‘Diamante’ and ‘Selva’), and those of Jouquand et al. [47] on esters and terpenes of eight
different genotypes over two seasons.
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2.4. Expression Analysis of Key Flavor Genes and Transcription Factors (TFs)

qRT-PCR studies were performed to determine the temporal expression levels (on
the three time points) of the six strawberry key genes (SAAT, FaFAD1, FaNES1, FaEGS2,
FaMYB10 and FaEOBII) involved in fruit aroma, among the selected strawberry genotypes
(‘Fortuna’, ‘Rociera’, ‘Victory’, Ber22/6, Ber23/3 and ‘Calderon’). GLM repeated measures
ANOVA was used to evaluate the impact of genotype and harvest time on the expression
of the six genes and the F values are presented in Table 3. Genotype, harvest time and their
interaction had a significant effect (p < 0.001) on all genes, except for FaEGS2 that was not
affected by harvest time.

Table 3. Effect of genotype and the time of harvest on expression of the six examined strawberry genes potentially involved
in biosynthesis of fruit aroma and flavor.

No Gene
F Value (Significance)

Genotype (G) Harvest Time (T) G × T

1 SAAT 86.308 ** 46.455 ** 7.211 **
2 FaFAD1 440.261 ** 164.941 ** 32.417 **
3 FaNES1 6.338 * 39.625 ** 8.138 **
4 FaEGS2 162.835 ** 0.280 8.875 **
5 FaMYB10 19.579 ** 119.515 ** 5.430 **
6 FaEOBII 107.590 ** 102.887 ** 202.098 **

* Significant at 0.01 > p > 0.001, ** significant at p < 0.001.

SAAT expression analysis revealed that ‘Fortuna’, ‘Rociera’, ‘Victory’ and Ber23/3
genotypes showed a similar pattern with a peak at T2 (Figure 5, Table S3). On the contrary,
Ber22/6 and ‘Calderon’ exhibited a different expression profile, showing a continuous
decrease across the three time points. Ber22/6 revealed the higher SAAT transcript level
at T1 (0.58), while ‘Calderon’—the lowest at T3 (0.17). In all genotypes we observed
statistically significant expression differences over time (p ≤ 0.006), excluding Ber23/3
(Figure 5). Considering all time points, we observed the highest expression level for SAAT
in the Ber22/6 genotype, while the lowest in the Ber23/3 and ‘Calderon’.
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Regarding the FaFAD1 transcript analysis, ‘Fortuna’, ‘Rociera’ and Ber23/3 genotypes
showed a similar expression profile revealing a peak at T2 followed by a significant decrease
at T3, although Ber23/3 exhibited a smaller reduction compared to the others (Figure 6,
Table S3). It is interesting to note that we did not detect any transcript titer neither in
‘Victory’ nor in Ber22/6 genotypes, while when considering all time points, the FaFAD1
transcript levels in ‘Calderon’ were significantly lower than the other three genotypes
(‘Fortuna’, ‘Rociera’ and Ber23/3). In all genotypes we observed statistically significant
different expression levels over time (p ≤ 0.001).
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Regarding FaNES1 expression analysis, there was no common trend for the genotypes
studied (Figure 7, Table S3). Nevertheless, all of them except Ber22/6 exhibited a peak at
T2. On the other hand, in Ber22/6 a strong decrease of the mRNA transcripts was detected
across the three time points (from 0.47 at T1 to 0.36 at T2, and finally to 0.14 at T3). We
observed statistically significant expression differences over time in all genotypes (p < 0.04),
except for ‘Calderon’ (Figure 7).

Although FaEGS2 expression levels were lower compared to the other genes, we
observed various expression patterns among the six genotypes (Figure 8, Table S3). More
specifically ‘Fortuna’ and Ber23/3 exhibited a decrease at T2, while Ber22/6 showed a
high peak at that time point. Additionally, the expression level in the ‘Calderon’ decreased
significantly through time. In all genotypes we observed statistically significant differences
in expression over time (p < 0.05), excluding ‘Rociera’ (Figure 8). Considering the transcript
levels of FaEGS2 at all time-points, the Ber22/6 genotype showed the lowest level (0.09),
followed by ‘Victory’ (0.12) and ‘Rociera’ (0.15), while ‘Fortuna’, Ber23/3 and ‘Calderon’
exhibited higher expression levels.
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In contrast with the above-mentioned genes, FaMYB10 exhibited a similar expression
pattern across all analyzed strawberry genotypes (Figure 9, Table S3). The trend was
an increase of gene expression at T2, followed by a decrease at T3. For all genotypes
the transcript level was the highest at T2, while the lowest was detected at T3. The
highest expression level (0.73) was observed in ‘Victory’, followed by ‘Fortuna’ (0.64). On
the other hand, the lowest transcript level was detected in ‘Calderon’. In all genotypes
we observed statistically significant different levels of expression over time (p < 0.001),
excluding Ber23/3.
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Regarding FaEOBII expression analysis, various expression profiles were observed
among the genotypes examined (Figure 10, Table S3). More specifically, in ‘Fortuna’,
‘Victory’, Ber23/3 and ‘Calderon’, the expression level showed a peak at T3; in ‘Victory’
increased more than seven-fold over the harvest period (from 0.42 at T1 to 1.09 at T2, and
finally to 3.00 at T3). In contrast, we detected a remarkable repression of FaEOBII gene
in Ber22/6 over time; from 3.28 at T1 to 0.86 at T2, and to 0.25 at the last time point. The
huge variance in the expression level among the different genotypes (ranging from 0.07 to
3.28), as well as within the same genotype (in Ber22/6 and ‘Victory’) is of great interest.
Considering all time points, FaEOBII transcript levels were the lowest in ‘Rociera’ (0.21),
followed by ‘Calderon’ (0.35) and ‘Fortuna’ (0.55), while in ‘Victory’ and Ber22/6 were
significantly higher (1.50 and 1.46, respectively). Multivariate analysis revealed statistically
significant expression differences over time in all genotypes studied (p < 0.025).
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2.5. Correlation of Chemical and Genetic Data

SAAT expression did not correlate with the volatile esters’ content in this study.
This lack of correlation is not in agreement with previous studies [51]. We believe that
this discrepancy stems from the analytical approach we adopted for volatiles, since the
percentage of esters was very small (<2%), whereas in other studies, e.g., on the headspace
volatile fraction, it reaches up to 80% [51]. Moreover, in a pivotal study by Beekwilder
et al. [52], it was shown that SAAT engineering in transgenic plants was not enough to
increase volatile esters and their content depended on substrate availability (especially
alcohols). Therefore, this lack of correlation might also be linked to the extremely low
alcohol levels in our study.

On the other hand, moderate significant (p < 0.001) correlations of SAAT expression
with furaneol (0.528), trans-cinnamic acid (0.519) and phenylpropanes (0.491) were observed
for the first time. Yauk et al. [53] demonstrated that SAAT, like other alcohol acyl trans-
ferases, can utilize both p-coumaryl and coniferyl alcohol to produce p-hydroxycinnamyl
acetates, and finally phenylpropanes, and is thus involved in their biosynthesis. In addition,
in the recent thorough study on 148 different strawberry genotypes [1] a candidate for the
quantitative trait locus for medium-chain volatile esters was a cinnamoyl-CoA reductase;
the authors suggested that reduction may provide substrates for esterification.

A low significant negative correlation (−0.361, p = 0.007) of SAAT was recorded with
decalactone; Although no such evidence exists for strawberry, the implication of peach
AAT in decalactone biosynthesis has recently been reported [54].

FaFAD1 expression had a strong correlation (0.716, p = 0.000) with decalactone levels
which is in accordance with previous studies [55–57]; more importantly, we confirm the pre-
vious findings that the FaFAD1 gene is present in every genotype where γ-decalactone has
been detected, and it is missing in non-producers. Recently, a deletion of 8262 bp was consis-
tently found in the FaFAD1 region of γ-decalactone non-producing varieties [58]. Another
interesting observation was the strong correlation of FaFAD1 expression with nerolidol
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levels (0.665, p < 0.001) and a low negative correlation with trans-cinnamic acid and phenyl-
propanes (−0.316 and −0.327, p < 0.05). Concerning the latter, Sanchez-Sevilla et al. [56]
comprised a list of the top 25 highly up-regulated genes in high decalactone-producing
germplasm and the number one gene was a cinnamyl alcohol dehydrogenase-like that
might decrease trans-cinnamic acid concentration in the fruits having high decalactone
content, but this suggestion needs to be further investigated.

It is also interesting that FaEGS2 expression is moderately correlated with decalactone
(0.536) and FaFAD1 expression (0.55). Eugenol was not quantified in our experimental setup
and thus we could not test its correlation with FaEGS2, but we observed a low significant
(p < 0.05) negative correlation with trans-cinnamic acid and phenylpropanes (−0.361 and
−0.326, respectively) that might be explained in the following way: trans-cinnamic acid
is a metabolic precursor of coniferyl acetate which is the substrate of EGS2, and thus the
more active the enzyme is, the lower the cinnamic acid concentration gets.

FaNES1 does not correlate with nerolidol and linalool; nerolidol was quantified only
in ‘Fortuna’ and ‘Rociera’ varieties and was absent in the other genotypes, whereas linalool
was produced in all of them. Post-translational modifications, including phosphoryla-
tion, ubiquitination and arginine monomethylation of enzymes, might help in explaining
situations where the mRNA level does not match with the metabolite or protein level,
suggesting that post-translational modifications provide an additional regulatory step in
determining the expression of key enzyme activities in secondary metabolic pathways [59].

FaMYB10 expression correlates positively with trans-cinnamic acid (0.398, p = 0.003),
phenylpropanes (0.35, p = 0.009), and volatile aromatics (0.311, p = 0.022). This associa-
tion confirms previous findings that FaMYB10 controls key genes involved either early
in the shikimate pathway, the phenylpropanoid biosynthesis or later in the flavonoid
biosynthesis [12,60].

FaMYB10 expression does not correlate with anthocyanin levels in our study. More-
over, in F. ananassa it does not regulate the anthocyanin synthase (ANS) gene [12], which
seems to be regulated by other transcription factors like MYB1 or MYB5 [61]. When Wang
et al. [62] silenced the gene encoding FaMYB5 in cultivar ‘Toyonaka’ (Fragaria × ananassa),
they observed that FaANS expression level and anthocyanins were decreased, while the
expression of FaMYB10 had no significant change. The expression of FaANS and of the
other genes involved in the flavonoid biosynthetic pathway is positively or negatively cor-
related with anthocyanin or total phenolics level in a genotype specific manner [63], which
might explain the lack of correlation we noticed with total anthocyanins and the negative
correlation with total phenolics in the six genotypes. Moreover, in the study of Lin-Wang
et al. [60], the volatile esters concentration was higher in 35S:MYB10 overexpressing F. vesca
fruits and decreased in the knockdowns. The latter association with esters explains the
strong positive correlation of SAAT expression with FaMYB10 (0.685, p < 0.001) which
we report here for the first time. Another interesting correlation was that of FaMYB10
expression and glucose concentration (−0.436, p < 0.001), but not with the total sugars. It
has been demonstrated that FaMYB10 regulates carbohydrate metabolism interacting also
with other TFs such as FaMYB44.2 [12,64]. However, the strongest correlation of FaMYB10
was noted with FaNES expression (0.824, p < 0.001), which might denote involvement of
FaMYB10 in the regulation of terpenoid biosynthesis as other R2R3-MYB TFs do [65]. We
also observed a significant but low positive correlation (0.288, p = 0.034) with FaEOBII.
According to Medina-Puche et al. [14], FaEOBII is under the control of FaMYB10 and plays
a regulating role in the volatile phenylpropanoid pathway gene expression that gives rise
to eugenol production in ripe strawberry receptacles.

Negative significant correlation was detected between FaEOBII and FaFAD1 (−0.383,
p = 0.004) and between FaEOBII and nerolidol (−0.418, p = 0.002). It has been found that a
similar R2R3-MYB TF (hcMYB2) is regulating floral volatile terpene production [66].

We were not able to detect any significant correlation between FaEOBII and FaEGS2
when we compared all the genotypes, although as it has been reported by Medina-
Puche et al. [14], these two genes present similar expression patterns during ripening.
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Nevertheless, we found positive correlation between these two transcripts in ‘Rociera’
(0.748, p = 0.020), in ‘Victory’ (0.650, p = 0.050) and Ber23/3 (0.683, p = 0.042), indicating
that activation of FaEGS2 promoter by FaEOBII could be genotype dependent. Medina-
Puche et al. [14] observed significant differences in EGS2 expression between F. vesca and
F. ananassa (more than 20-fold), whereas EOBII expression values were similar in both
species, suggesting that higher expression levels of EGS2 and eugenol content in F. vesca
could be the result of a higher degree of FvEGS2 promoter activation due to the presence of
a greater number of MBSII regulatory boxes compared to the FaEGS2 promoter. In addition,
other transcription factors may regulate FaEGS2 expression, synergistically with FaEOBII.
For example, FaDOF2 has been found to physically interact with FaEOBII, suggesting
that they could both act to regulate FaEGS2 expression and hence eugenol production in
red-ripe receptacles [15].

3. Materials and Methods
3.1. Plant Cultivation

The experiment was conducted during the growing season 2019/2020 at the Research
and Development (R&D) Department of Berryplasma World Ltd, Varda Ilias, Greece. Six
different genotypes were cultivated at the same plantation under the same conditions.
Four of them are commercial cultivars: ‘Rociera’ was developed by Nuevos Materiales
(FNM) in Spain and launched in 2017, ‘Calderon’ by Masiá Ciscar S.A. in Spain, Florida
‘Fortuna’ by the University of Florida and is widely cultivated in many areas of the world,
and finally ‘Victory’ by Plant Sciences/Berry Genetics. The rest (Ber22/6 and Ber23/3) are
advanced selections of BerryPlasma World Ltd. The experiment was carried in commercial
tunnels, each measuring 8.2 × 3.5 × 6.8 m (W × H × L). Mother plants of each variety
were planted in 10L pots in summer 2019 and grown until they produced runner tips. All
runner tips from each variety were harvested in July 2019 and plugged into trays. All
misted tips were grown under the same conditions until planting in plastic tunnels of the
R&D department. Strawberry plants were irrigated with a standard commercial nutrient
solution applied through a drip irrigation system via a Dosatron (Dosatron International,
Bordeaux, France) set at an electrical conductivity of 1.85 mS (N: 120 ppm, P: 50 ppm, K:
180 ppm, Mg: 30 ppm, Ca: 100 ppm, Fe: 5 ppm, Mn: 0.15 ppm, Zn: 0.15 ppm, B: 0.2 ppm,
Cu: 0.02 ppm, Mo: 0.015 ppm, pH: 6.00). Plug plants of all genotypes were planted in 1 M
coir growbags (Dutch Plantin, India) and were placed in raised beds at a density of 5 plants
per growbag and 60,000 plants per ha in total.

3.2. Fruit Measurements and Experimental Design

Strawberry fruits were harvested at 5-day intervals during the autumn/winter
(November–February) period and at 2-day intervals throughout the spring period (March-
May). The experiment was conducted as a randomized complete block design with
6 genotypes (‘Fortuna’, ‘Victory’, ‘Rociera’, ‘Calderon’, Ber23/3 and Ber22/6), replicated
4 times (n = 4). Each replication consisted of 120 plants. All harvested fruits were used for
the fruit number and fresh weights (g) analysis of each variety. The fruit yield and weight
data were subjected to analysis of variance (ANOVA). Statistically significant differences
among means were detected with the Least Significant Difference (LSD) method.

For the fruit quality parameters, samples for each variety and replication were taken
at three time intervals—T1: early March (1/3–15/3), T2: late March (24/3–31/3), and T3:
April (18/4–30/4). Each sample consisted of a minimum 500 g of fruit per replication. After
collection, the fruits were stored at −20 ◦C before extraction.

3.3. Determination of Total Phenolics, Sugars, Anthocyanins and Antioxidant Capacity

Strawberry fruits (20–25 fruits of about 500 g total weight per biological replicate) were
washed with deionized water and pulped with a hand mixer. The puree was collected in
falcons and was stored at −20 ◦C. Four grams of puree was extracted with pure methanol–
water (5:2, v/v) with stirring for 3 hours. Then, the mixture was centrifuged at 3000 rpm for
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8 min. The supernatant was collected and totally dried using a speed vacuum (LabConco
Corporation, Kansas City, MO, USA).

The total phenolic content (Folin–Ciocalteu method), ferric reducing antioxidant
capacity (FRAP) method, total sugars, and anthocyanins, were determined in the solid
extracts with colorimetric assays. The absorbance was measured in a UV/vis microplate
reader (Sunrise, Tecan Group Ltd., Männedorf, Austria) against blanks using 96-well
plates [24].

The total phenolic content was measured with the Folin–Ciocalteu reagent method and
was expressed as mg of gallic acid equivalents (GAE) per g of fresh weight (FW) [24,67]. The
absorbance was measured at 620 nm after one hour of incubation in the dark. A calibration
curve was plotted with gallic acid standard dissolved in pure water (0.025–0.3 mg/mL).

Total sugar content was measured with the anthrone-sulfuric acid method and ex-
pressed as mg glucose equivalents per g of FW [24,68]. A standard aqueous glucose solution
(0.08–1.00 mg/mL) was prepared to construct the calibration curve. The absorbance was
measured at 620 nm.

The antioxidant capacity was measured with the ferric reducing antioxidant power
(FRAP) method; when the [Fe(TPTZ)2]3+ complex reduces to the [Fe(TPTZ)2]2+ form in
the presence of antioxidants, an intense blue color with absorption maximum at 593 nm
develops [24,69]. The measurements were performed at 595 nm. An aqueous solution of
FeSO4 × 7H2O (0.0069–0.1112 mg/mL) was used for calibration of the instrument. The
results were expressed as mg of Fe2+ equivalents per g of FW.

Total monomeric anthocyanins were estimated by the pH differential method and
were spectrophotometrically determined at 540 nm and 620 nm. The anthocyanin con-
tent was expressed as mg pelargonidin-3-glucoside (P-3-G) equivalents per g of FW
(ε = 15,600 L/mol cm) [24,70].

3.4. Determination of Glucose and Ascorbic Acid Content

Glucose and ascorbic acid content in fruits of different strawberry varieties were
determined with Reflectometer RQflex®20 (Merck S.A. Hellas, Athens, Greece). For
this purpose, a part of the slurry was centrifuged at 4 ◦C at 13,000 rpm. The super-
natant was collected and was used to estimate ascorbic acid and glucose concentration by
reflectometric determination.

The Reflectoquant® Glucose test is appropriate for determining glucose in different
food matrices and fruits. Under the catalytic effect of glucose oxidase, glucose is con-
verted into gluconic acid lactone. In the presence of peroxidase, the hydrogen peroxide
formed in the process reacts with an organic redox indicator to form a blue-green dye that
is determined reflectometrically. Similarly, the Reflectoquant® Ascorbic acid test strips
quickly measure levels of natural ascorbic acid. Ascorbic acid reduces yellow molyb-
dophosphoric acid to phosphormolybdenum blue that is determined reflectometrically on
the Reflectometer RQflex®.

3.5. GC/MS Analysis of Strawberry Volatiles

The fruit puree was centrifuged at 13,000 rpm for 30 min at 4 ◦C. Approximately, 30 g
of supernatant were used to extract the volatile compounds of the strawberry. A quantity of
9.5 g of (NH4)2SO4 was added and dissolved by magnetic stirring [71]. Afterwards, 60 mL
ethyl acetate (HPLC analysis grade) was added, and the mixture was stirred magnetically
for 45 min. The extract was collected and filtered through absorbent paper. Afterwards,
60 mL ethyl acetate was added again in the puree and the extraction was performed as
before. The two extracts were combined and concentrated in the evaporator to final volume
1 mL. The solution was transferred in a 2 mL vial and the solvent was evaporated under air
nitrogen flow. The dry extract was stored at −20 ◦C. For the determination of the volatile
components, the dry extract was redissolved in tetrahydrofuran.

All samples were analyzed using a 6890 N Network GC System equipped with an
5975B mass selective detector (MSD) from Agilent Technologies (Santa Clara, CA, USA) in
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the electron impact (EI) mode of 70eV. The analysis of samples was performed according
to Ayala-Zavala et al. [72] with small modifications. The capillary column was HP-5MS
(30 m × 0.25 mm, 0.25 µm) with helium as carrier gas with flow 1 mL min−1, in a splitless
mode and the m/z range was 38–1050. The injection volume was 1 µL. The column
oven temperature was held for 1 min at 40 ◦C, then raised at 4 ◦C min−1 until it reached
230 ◦C. Furthermore, alkanes (C8–C15) were analyzed under the same conditions and
were used as reference points for the calculation of retention indices with the van Den
Dool and Kratz equation [36]. Compounds were identified by comparing the retention
indices and mass spectra with library entries (NIST/EPA/NIH Mass Spectral Library,
NIST) and Adams [73]. Finally, the program WSEARCH32 (Ver. 16/2005) was used for the
quantification of volatile compounds.

3.6. RNA Isolation and Gene Expression Analysis by Quantitative Real-Time PCR (qRT-PCR)

Total RNA was extracted from the collected samples (three biological replicates per
sample) through RNeasy Plant Minikit (Qiagen, Redwood City, CA, USA), according to
the manufacturer’s protocol. First-strand cDNA synthesis of 500 ng of RNA in a final
volume of 20 µL was performed using iScript cDNA synthesis kit (Bio-Rad Laboratories,
Hercules, CA, USA), according to the manufacturer’s protocol. The synthesized cDNA
was used as the template for qRT-PCR reactions in a total volume of 15 µL, consisting of
7 µL Sso Advanced Universal SYBR Green Supermix (Bio-Rad Laboratories, Hercules, CA,
USA), 0.28 µL of each primer (10 µM), 6.94 µL of water, and 0.5 µL of cDNA on a CFX
96™ Real-Time PCR Detection System (Bio-Rad Laboratories, Hercules, CA, USA). The
reaction was performed with an initial denaturation step at 95 ◦C for 5 min, followed by
39 cycles at 95 ◦C for 30 s, primer annealing temperature 59 ◦C for 30 s and extension
temperature 72 ◦C for 1 min, with a plate read between each cycle. A melting curve analysis
was conducted between 65 and 95 ◦C with a read every 0.5 ◦C held for 2 s between each
read, to verify specificity of primer amplification, based on the presence of a single and
sharp peak. Negative controls were included in all amplification reactions to check for
potential reagent contamination.

The Relative Standard Curve method was used to calculate the transcript levels of
the genes analyzed (SAAT, FaFAD1, FaNES1, FaEGS2, FaMYB10 and FaEOBII), using the
corresponding specific primers [14,56,74–77] (the primers are listed in Table S4), among
the analyzed strawberry genotypes. Expression data were normalized to the reference
gene glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an internal control gene.
Standard curves were prepared for all target genes, as well as the internal control gene, and
were included in all qRT-PCR reactions. For each experimental sample, we determined the
amount of target and internal reference gene from the appropriate standard curve. For each
qRT-PCR run we used two technical replicates per cDNA sample (biological replicate).

3.7. Statistical Analysis of Chemical Traits and Gene Expression Data

General Linear Model (GLM) repeated measures ANOVA and Tukey post hoc test
were used to statistically analyze (a) the chemical traits content (b) the VOCs, and (c) the
RNA expression levels, for each genotype and harvest time point, evaluating the impact
of the factors studied (genotype, harvest time and their interaction) on every variable.
Moreover, Spearman’s nonparametric correlation analysis was performed to examine
the correlation among the genetic and the chemical data. Significant differences were
accepted if the p-value was <0.05. All analyses were carried out with IBM SPSS Statistics
for Windows, version 27 (IBM Corp., Armonk, NY, USA).

4. Conclusions

The strawberry market is a high-value market with consumers expecting quality and
freshness. Moreover, the need to cover consumers’ preferences, as well as the increasing
demand for early production and at the same time constant supply, throughout the sea-
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son, made growers and researchers work closely together to develop and introduce new
varieties to meet the market needs.

The evaluation of new varieties is based on plant physiological measurements such
as plant architecture, appearance of the fruit, earliness, continuity of production, total
productivity, fruit size and marketability. In addition, fruit quality aspects such as fruit
color, glossiness, sugar-to-acid ratio during the harvest period, flavor and aroma, resistance
to diseases and postharvest life play a key role in strawberry acceptance. Finally, in recent
years, fruit phytochemical compounds that benefit human health due to antioxidant activity
also attracted attention as varietal quality attributes.

In this context, we evaluated fruit yield and size, sugars, phenolics and anthocyanins,
ascorbic acid, antioxidant properties, fifty-five major volatiles and the expression levels
of key enzymes in six strawberry genotypes (four cultivars and two advanced selections)
cultivated under the same conditions in Greece. Earlier studies highlighted the key role of
sugars and volatiles on final consumer acceptance, whereas phenolics, anthocyanins and
ascorbic acid contribute to antioxidant activity and therefore to the nutritional benefits for
human health. This is the first time, however, that all important agronomic, organoleptic
and nutritional characteristics of many strawberry genotypes were simultaneously eval-
uated, combined also with gene expression analysis; therefore, we were able to reach
meaningful observations. Using the appropriate statistical tools, we demonstrated signifi-
cant intercorrelations among the variables studied. The most profound ones were those of
FaFAD1 expression with decalactone and nerolidol, of SAAT with furaneol, trans-cinnamic
acid and phenylpropanes, and of FaEGS2 with decalactone and FaFAD1. In addition, a
strong positive correlation of SAAT expression was recorded with FaMYB10, and a moder-
ate negative with glucose concentration. These correlations may indicate a strong genetic
influence and therefore the responsible genes can be further investigated, as potential
markers in strawberry breeding schemes for better aroma and other organoleptic traits. We
further showed that both genotype and harvest time affected all traits, and gene expression
levels, except for (1) anhydrides, fatty acids, aromatics and phenylpropanes, that were
greatly affected by the harvest time, and (2) lactones, furaneol and FaEGS2 that were
affected only by genotype. Therefore, the most important traits are determined by the
genotype emphasizing the necessity and the potential of breeding programs.

The all-level comparison of the commercial varieties and the advanced breeding
selections enabled us to pinpoint their merits. Both ‘Rociera’ and ‘Calderon’ had a high
sugar content that was constant throughout the harvest period. ‘Calderon’ had the greatest
average fruit weight, phenolic content, vitamin C levels and furans/lactones content.
‘Rociera’ surpassed all genotypes in the percentage of volatile compounds that impact
flavor and particularly in the content of esters and short-chain acids. ‘Fortuna’ had many
interesting intermediate traits and the highest terpene content, whereas the selection
Ber23/3 presents a particular interest since it had a high sugar content, the highest phenolic,
anthocyanin and lactone concentration and a high content of short-chain acids.
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