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Abstract: Ensemble clustering combines different basic partitions of a dataset into a more stable and
robust one. Thus, cluster ensemble plays a significant role in applications like image segmentation.
However, existing ensemble methods have a few demerits, including the lack of diversity of basic
partitions and the low accuracy caused by data noise. In this paper, to get over these difficulties,
we propose an efficient fuzzy cluster ensemble method based on Kullback–Leibler divergence or
simply, the KL divergence. The data are first classified with distinct fuzzy clustering methods.
Then, the soft clustering results are aggregated by a fuzzy KL divergence-based objective function.
Moreover, for image segmentation problems, we utilize the local spatial information in the cluster
ensemble algorithm to suppress the effect of noise. Experiment results reveal that the proposed
methods outperform many other methods in synthetic and real image-segmentation problems.

Keywords: fuzzy clustering; ensemble learning; KL divergence; spatial information; image segmentation

1. Introduction

Image segmentation has become increasingly important in a wide variety of applications like
biomedical image analysis [1–4] and intelligent robotics [5]. Unfortunately, due to the variations and
noise of images, finding a good image partition is still a great challenge, especially when we want to
stress the semantic meanings of different regions. There is a growing number of methods available
for image-segmentation problems over recent years [1–8]. Fuzzy approaches show considerable
advantages among these methods by carefully handling the ubiquitous uncertainty and unknown
noise in images. In contrast to hard segmentation methods, the fuzzy ones could retain much more
information from the original data [9–11].

The fuzzy c-means (FCM) clustering algorithm is the best known one in fuzzy segmentation
methods [12]. FCM derives the segmentation by iteratively minimizing a cost function that is
dependent on the distances of image pixels to cluster centers in the feature domain. However,
the standard FCM does not consider any spatial information in the image context, and hence suffers
from high sensitivity to noise. Many extensions of the standard FCM have been proposed to suppress
the effects of noise in images [9,10,13,14]. For example, the spatial neighborhood information is
incorporated into the membership function of FCM for clustering in [9,10]. With so many available
algorithms, one may obtain very different clustering results for a given dataset. Without ground truth,
it is difficult to select the most suitable method for a given problem. In addition, most of existing
algorithms require the specification of some parameters to obtain a decent grouping of the data.

Instead of choosing a decent setting of parameters, a particular algorithm, a good clustering
configuration, or a special similarity measure that best suits a given problem, ensemble clustering
can integrate results from multiple weak partition algorithms into a single robust and stable solution.
The inputs of ensemble clustering are a set of data partitions. Previously, ensemble approaches for
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clustering problems have been studied extensively [15–23]. These ensemble methods generate many
partitions by using the same method with various parameter settings, distinct methods, different inputs,
or divergent feature sets. The final merged partition is obtained by approaches like majority voting or
evidence accumulation [20].

For the fuzzy c-means and its extensions, their outputs are soft partitions of data. A soft partition
assigns a degree of association of each instance to every cluster. So instead of a label vector for all the
instances, in soft partition we have a matrix of memberships in which each instance has a membership
vector that represents its belongingness to all clusters. Many ensemble methods have been proposed
for the soft partitions [16,17,21], in which the most straightforward approach is conducting the fuzzy
c-means over the membership matrices of different soft partitions. However, FCM uses squared
Euclidean distance to measure the similarity of a membership vector to a cluster center. This is
inappropriate for the situation when one data’s memberships to all clusters usually sum to one [21].
A better solution is to regard the membership vector as some discrete probability function and use the
statistical distance like KL divergence as the similarity measure [24].

In this paper, we first propose an efficient fuzzy cluster ensemble method based on KL divergence
(FCE_KL). This algorithm is similar to the fuzzy c-means, differing only in the fact that it uses the KL
divergence to handle the memberships like discrete probabilities. Theoretically, we have developed
an optimization algorithm for the proposed FCE_KL. For image-segmentation problems, because it is
well known that the comparative performance of different clustering methods can vary significantly
across datasets, we first utilize heterogeneous center-based soft clustering algorithms to categorize the
pixels in the image. The soft clustering results obtained by different methods guarantee the diversity
of partitions. Then, the fusion of soft partitions is provided by applying FCE_KL. Although FCE_KL
basically outperforms individual clustering methods, it still classifies noisy pixels in wrong segments
sometimes. So, we further use the local spatial information in the calculation of membership values
for FCE_KL to enhance the accuracy of image segmentation and propose the spatial FCE_KL (FCE_sKL).
Experimental results on synthetic and real image segmentation demonstrate that the proposed methods
perform better than some widely used fuzzy clustering-based approaches.

The remainder of this paper is organized as follows. In addition to several standard fuzzy
clustering methods, Section 2 presents related ensemble clustering methodology that includes the
ensemble clustering generator and consensus function. In Section 3, we propose the fuzzy cluster
ensemble method based on KL divergence (FCE_KL). For the image-segmentation problems, we utilize
the local spatial information of the image to handle the membership values for the proposed clustering
ensemble algorithm and propose FCE_sKL. In Section 4, the numerical experiments demonstrate the
good performance of the proposed algorithm for image segmentation. Section 5 gives the discussion
of our methods. At last, the conclusion and future work are given in Section 6.

2. Related Work

2.1. Fuzzy C-Means

Fuzzy c-means (FCM) [12] divides a set of n datapoints xk (k = 1, 2, ..., n) into c clusters by
minimizing the weighted summation of distances from the datapoints to the cluster centers:

J =
n

∑
k=1

c

∑
i=1

(uik)
m ‖ xk − vi ‖2, (1)

where ‖ · ‖ denotes the Euclidean distance, m > 1 is the fuzzification coefficient, which usually takes
the value of 2, uik is the membership value of data xk to the i-th cluster center vi and ∑c

i=1 uik = 1,
uik ∈ [0, 1]. The FCM algorithm iteratively updates vi and uik as follows:

vi =
n

∑
k=1

(uik)
mxk/

n

∑
k=1

(uik)
m (2)
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and

uik = 1/
c

∑
j=1

(
‖ xk − vi ‖
‖ xk − vj ‖

)2/m−1

, (3)

until the stop criterion like maximum number of iterations is satisfied.

2.2. Local Spatial Fuzzy C-Means

To deal with noise and segment images better, one extension to FCM is incorporating the
local spatial information into the standard FCM. In [25], the membership uij is updated by the
weighted average value of its neighbors’ membership values, which exploits the spatial information as
the following:

ûik = ( ∑
ω∈NB(xk)

1
| NB |uiω + uik)/2, (4)

where NB(xk) denotes a local square window centered on pixel xk in the spatial domain, and | NB | is
the size of the neighborhood.

On the one hand, clustering algorithms, such as FCM and its extensions, are effective for
image segmentation. They could show good performance in some problems. On the other hand,
cluster ensembles based on different clustering methods are more robust and stable. So, the proper
combination of different fuzzy clustering algorithms could produce more reliable and accurate results.

2.3. Cluster Ensemble

Basically, there are two parts in the cluster ensembles. One is the ensemble clustering generator,
and another is the consensus function. The first part concentrates on producing more diverse clustering
results, while the second part concentrates on finding a good consensus function to improve the
accuracy of the results. For the first part of cluster ensembles, Rathore et al. [17] proposed that multiple
partitions can be obtained using the fuzzy c-means clustering algorithm on a randomly projected
dataset. According to [18], Fred and Jain focused on running k-means several times by using different
initializations to obtain various partitions. In [16], Zou et al. utilized different clustering algorithms to
generate base partitions. For the second part of cluster ensembles, many methods have been proposed
to fuse multiple partitions into a consensus one. The ensemble clustering method in [26] constructs the
co-association matrix obtained by reliable data pairs in the same cluster among multiple partitions,
and then applies the spectral clustering on the completed co-association matrix to obtain the best
partition. In [27], the authors introduced an ensemble approach for categorical data by finding the
best partition that minimizes an objective function. Similarly, ensemble clustering in [28] was cast into
a problem that selects a consensus partition by maximizing the within-cluster similarity. Recently,
Wu et al. proposed the utility function based on the fuzzified contingency matrix to measure the
similarity multiple partitions. They established a framework for fuzzy consensus clustering by vertical
and horizontal segmentation schemes to deal with big data clustering [23].

To solve the ensemble clustering problem, we can work on two basic operating units: the data
objects and the basic clusters. Many effective algorithms have been proposed to handle the ensemble
clustering problem at the object level [16,18,29] and cluster level [21,24]. In [24], each instance in
a soft ensemble is represented by the concatenation of membership probability distributions. Then,
a distance measure between two instances was defined using the Kullback–Leibler (KL) divergence.
As the ensemble size becomes larger and the total number of clusters increases, the distance measure
between clusters will be a computational burden. In contrast to cluster level, the data objects are used
as basic operating units in this paper. We measure the similarly of a membership vector to a cluster
center using the Kullback–Leibler (KL) divergence.
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3. KL Divergence-Based Fuzzy Cluster Ensemble

In this section, we illustrate the problem of combining multiple clustering operations and
propose an efficient fuzzy cluster ensemble method based on KL divergence. Then, when solving
image-segmentation problems, we utilize the local spatial information of the image to handle the
membership values for the proposed ensemble approach.

3.1. Formulation of the Fuzzy Cluster Ensemble Problem

In this paper, to build the ensemble, we first apply some heterogeneous center-based soft clustering
algorithms to generate membership matrices as basic partitions {UT

f }
r
f=1, where r is the number of soft

clustering algorithms, and UT
f is the transposed membership matrix obtained by the f -th clustering

method. In the membership matrix, each entry denotes the degree of data belonging to a cluster. Here,
the number of basic partitions is the same as the one of clustering algorithms, and any clustering
algorithm that generates membership matrices can be applied.

These partition matrices are then concatenated to Ucon = [UT
1 , ..., UT

r ] ∈ Rn×s. Here, n is the
number of the data and s is the number of memberships derived for data from different algorithms.
If each partition has c clusters, we have s = cr for brevity. However, this is not a necessity,
and we can have different number of clusters in different partitions. Let Ûcon = 1

r Ucon for the
normalization of matrix Ucon and we define ûcon

kj as the entry of Ûcon, where k = 1, 2, ..., n; j = 1, 2, ..., s.

Let ûcon
k· = (ûcon

k1 , ûcon
k2 , · · ·, ûcon

ks ), we have ‖ûcon
k· ‖1 = 1, ∀k, which implies each row of Ûcon as

a probability vector. {ûcon
kj } is the input data of the FCE_KL algorithm.

As an illustrated example, Table 1 demonstrates two soft basic partitions derived from two
algorithms, and their concatenation Ucon and normalization Ûcon. From this example, it is easy to
know that we do not arrange lexicographically the different soft cluster solutions. In the proposed
ensemble method, we simply concatenate and normalize all membership values of different fuzzy
clustering methods and take them as the new representation of the data. The new representation sums
to one and can be regarded as a discrete distribution. Therefore, the entropy-based KL divergence is
a better measurement of a discrete distribution.

Table 1. Concatenation Ucon and normalization Ûcon.

U1 U2 Ucon Ûcon

x1 0.7 0.2 0.1 0.1 0.7 0.2 0.7 0.2 0.1 0.1 0.7 0.2 0.35 0.10 0.05 0.05 0.35 0.10
x2 0.9 0.1 0.0 0.0 0.8 0.2 0.9 0.1 0.0 0.0 0.8 0.2 0.45 0.05 0.00 0.00 0.40 0.10
x3 0.2 0.6 0.2 0.1 0.1 0.8 0.2 0.6 0.2 0.1 0.1 0.8 0.10 0.30 0.10 0.05 0.05 0.40
x4 0.1 0.9 0.0 0.2 0.1 0.7 0.1 0.9 0.0 0.2 0.1 0.7 0.05 0.45 0.00 0.10 0.05 0.35
x5 0.1 0.2 0.7 0.6 0.2 0.2 0.1 0.2 0.7 0.6 0.2 0.2 0.05 0.10 0.35 0.30 0.10 0.10

We aggregate the soft clustering results by a fuzzy KL divergence-based objective function.
For a new set of n probability vectors, FCE_KL is applied to divide them into a desired number of
clusters again. Specifically, FCE_KL use KL divergence to measure the distance of a membership
vector to a cluster center. Moreover, for the image-segmentation problems, we utilize the local spatial
information for calculating the membership value of the proposed FCE_KL and developed FCE_sKL.
In the long run, we can get the ensemble clustering results by FCE_KL and FCE_sKL. Figure 1 illustrates
the framework of the two methods we proposed.
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Figure 1. The framework of FCEKL and FCEsKL.

3.2. Fuzzy Cluster Ensemble Based on KL Divergence (FCE_KL)

The KL divergence is used to measure variation in the discrete probability distributions of
attributes P and Q. It is defined by

DKL = ∑
j
= P(j) log

P(j)
Q(j)

. (5)

Let {ykj} = {ûcon
kj }(k = 1, 2, ..., n; j = 1, 2, ..., s). The FCEKL divides a set of n probability vectors

ykj with s dimension into c clusters by minimizing the following objective function,

J =
n

∑
k=1

c

∑
i=1

um
ik DKL(ykj ‖ oij), (6)

subject to

c

∑
i=1

uik = 1, k = 1, 2, . . . , n, (7)

s

∑
j=1

oij = 1, i = 1, 2, . . . , c, (8)

where uik presents the membership of the k-th probability vector in the i-th cluster oi (oi = [oi1, ..., ois]),
and DKL(ykj ‖ oij) denotes ∑s

j=1 ykj log
ykj
oij

. The vectors close to the centroid of their clusters based on
KL divergence are assigned high membership values, and low membership values are assigned to
datapoints far from the centroid to minimize the objective function.

Next, we take an iterative way for solving the modified membership and cluster centers here.
Let the Lagrangian of formula (6) be

J̄ =
n

∑
k=1

c

∑
i=1

um
ik DKL(ykj ‖ oij) +

n

∑
k=1

αk(
c

∑
i=1

uik − 1) +
c

∑
i=1

βi(
s

∑
j=1

oij − 1). (9)
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Letting the first derivatives of J̄ with respect to u and o equal to zero yields the two necessary
conditions for minimizing J̄. Thus, we obtain

∂ J̄
∂oij

=
n

∑
k=1

um
ik(−

ykj

oij
) + βi = 0, (10)

∂ J̄
∂uik

= mum−1
ik DKL(ykj ‖ oij) + αk = 0, (11)

respectively.
Using (10),

oij =
∑n

k=1 um
ikykj

βi
. (12)

By formula (8), we have

1 =
s

∑
h=1

oih =
s

∑
h=1

∑n
k=1 um

ikykh

βi
, (13)

βi =
s

∑
h=1

n

∑
k=1

um
ikykh. (14)

Hence,

oij =
∑n

k=1 um
ikykj

∑s
h=1 ∑n

k=1 um
ikykh

. (15)

On the other hand, from (11),

uik = (−αk
m
)

1
m−1

1

(DKL(ykj ‖ oij))
1

m−1
. (16)

Therefore, by formula (7), it holds that

1 =
c

∑
`=1

u`k =
c

∑
`=1

(−αk
m
)

1
m−1

1

(DKL(ykj ‖ o`j))
1

m−1
, (17)

(−αk
m
)

1
m−1 =

1

∑c
`=1

1

(DKL(ykj‖o`j))
1

m−1

, (18)

uik =
1

∑c
`=1(

DKL(ykj‖oij)

DKL(ykj‖o`j)
)

1
m−1

. (19)

Therefore, the FCE_KL algorithm iteratively updates (15) and (19) until the stop criterion, like the
convergence of the objective function or the satisfaction of maximum iteration number.

3.3. Spatial Information-Based FCE_KL

The disadvantage of FCE_KL for image segmentation is the discarding of spatial information
in images. Since neighboring pixels are highly correlated, to suppress the noise and acquire better
segments, we include this property into the FCE_KL algorithm. The membership of k-th pixel in the
i-th cluster is summed over the weighted average value of the membership values of the user-specified
neighbors as following [25]:

ûik = ( ∑
ω∈NB(yk)

1
| NB |uiω + uik)/2, (20)

where NB(yk) denotes a local square window centered on pixel yk in the spatial domain, and | NB | is
the size of the neighborhood. The modified memberships can be used to get the cluster center by
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ôij =
∑n

k=1 ûm
ikykj

∑s
h=1 ∑n

k=1 ûm
ikykh

. (21)

Therefore, our spatial information-enhanced FCE_sKL algorithm for image segmentation is
presented in Algorithm 1. In the algorithm, the memberships and cluster centers are updated iteratively
according to Equations (19)–(21).

Algorithm 1 FCE_sKL

Input:
Normalized partitions Ûcon, values of the fuzzification coefficient m, maximum iteration number
ts and a small enough error ε

Output:

The consensus clustering;
1: Make initialization of cluster centers, ôij, i = 1, 2, ..., c, j = 1, 2, ..., s;
2: t← 1;
3: repeat
4: Calculate the membership uik by Equation (19);
5: Utilize the spatial information in membership function of uik and calculate new membership ûik

with Equation (20);
6: Update cluster centers ôij by Equation (21);
7: Calculate the objective function J(t) by (6);
8: t← t + 1;
9: until | J(t) − J(t−1) |< ε or t > ts

4. Experiment Results

In this section, we compare the newly proposed FCE_KL, FCE_sKL with SFCM [25], SSCM [25],
NLSFCM [16] and NLSSCM [16] on several synthetic and real images. For our clustering ensemble
approaches, to generate basic partitions, we directly use SFCM, SSCM, NLSFCM and NLSSCM
methods. Since r is the number of above-mentioned heterogeneous center-based clustering algorithms,
here we have r = 4. More specifically, the FCE_KL and FCE_sKL incorporate membership matrices
derived by SFCM, SSCM, NLSFCM and NLSSCM to get their soft partitions. The fuzzification
coefficient m is set to 2 for all the algorithms in our experiments. The size of square window
NB of FCE_sKL is set to 5× 5. More settings and their justifications are provided in the following
discussion section.

When the algorithms are tested on images with ground truth or reference partitions, the segmentation
accuracy (SA) is calculated as

Segmentation accuracy =
number o f correctly class f ied pixels

total number o f pixels
. (22)

The SA of algorithm i on class j is measured as

SAi
j =

Ai
j ∩ Are f j

Ai
j ∪ Are f j

, (23)

where Ai
j denotes the set of pixels belonging to class j that are found by algorithm i, and Are f j denotes

the set of pixels in class j which is in the reference segmented image. It should be noted that when we
have a soft partition based on a fuzzy approach, we need a defuzzification method to assign each pixel
to a segment. After we obtain the membership matrix uik, we calculate the argi(max(uik)) to obtain
the final results. In other words, we finally classify one pixel or data into the category where it takes
the largest membership value.
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4.1. Synthetic Images

We use a synthetic two-value image, the image ‘Trin’, and the synthetic magnetic resonance (MR)
images as testing images first. The synthetic two-cluster image shown in Figure 2b, with values 1 and
0, is similar to the image used in [14]. Its size is set to 50× 50 pixels. The synthetic image of ‘Trin’
contains four regions and its size is set to 64× 64 pixels. Both synthetic images add Gaussian noise and
Rician noise. Figures 2 and 3a present synthetic two-value images with 50% Gaussian noise and 50%
Rician noise. Figures 4 and 5a show ‘Trin’ with 15% Gaussian noise and 12% Rician noise, respectively.
For two sorts of noised images, Tables 2 and 3 show the segmentation accuracies (SAs) of six methods.
We obtain these results by running all methods on the same image (no matter the size or noise) for
fair comparison.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2. 50% Gaussian-noised synthetic two-value image: (a) original; (b) ground-truth image and
after segmentation into two regions with (c) SFCM; (d) SSCM; (e) NLSFCM; (f) NLSSCM; (g) FCE_KL;
(h) FCE_sKL.

For the synthetic two-value image, Table 2 shows that the performance of FCE_KL and FCE_sKL
are as good as that of SFCM, SSCM, NLSFCM and NLSSCM, which means that all of them can easily
remove the low-level noise from this image. When Gaussian noise reaches 30% and 50%, FCE_KL can
segment the image better than SFCM and SSCM but worse than NLSFCM and NLSSCM. FCE_sKL
can eliminate the noise better than the other five methods for the high-level noised images, and this
demonstrates its robustness.

The fuzzy clustering methods, SFCM and SSCM, adjust the memberships with the local information
of image. NLSFCM and NLSSCM update the membership values by the nonlocal information.
Then, the four methods are all affected by the setting of neighborhood size and weight values when
using the local or nonlocal information. In addition, NLSSCM and NLSFCM are affected much more
by the initial values in the iteration than SFCM, SSCM and the proposed methods. Then, the simple
setting of SFCM, SSCM and their robustness to the initialization may be the reason that some results of
SFCM and SSCM in our experiments are the same as the ones in [25] coincidentally.
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(a) (b) (c) (d)

(e)
(f) (g) (h)

Figure 3. 50% Rician-noised synthetic two-value image: (a) original; (b) ground-truth image and
after segmentation into two regions with (c) SFCM; (d) SSCM; (e) NLSFCM; (f) NLSSCM; (g) FCE_KL;
(h) FCE_sKL.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4. 15% Gaussian-noised synthetic images of ‘Trin’: (a) original; (b) ground-truth image and
after segmentation into four regions with (c) SFCM; (d) SSCM; (e) NLSFCM; (f) NLSSCM; (g) FCE_KL;
(h) FCE_sKL.

On the other hand, our experiments show different results of NLSFCM and NLSSCM when
compared to [16], for we may choose a different size of nonlocal window, a different initialization,
or a different computation of the nonlocal weights which are affected much by the similar measurement
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of patches in the nonlocal window. Some of our results of NLSSCM and NLSFCM are better than the
ones in [16], and some are not. However, the difference is not great. So, the superiority of the proposed
approach demonstrated in Table 2 is still trustworthy.

Table 2. Segmentation accuracies of different methods on noised two-value images.

SA SFCM SSCM NLSFCM NLSSCM FCE_KL FCE_sKL

1% Gaussian 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3% Gaussian 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5% Gaussian 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

10% Gaussian 0.9992 0.9992 0.9996 0.9996 0.9996 1.0000
15% Gaussian 0.9984 0.9980 0.9992 0.9992 0.9992 1.0000
20% Gaussian 0.9928 0.9932 0.9988 0.9988 0.9988 1.0000
30% Gaussian 0.9732 0.9760 0.9976 0.9976 0.9956 1.0000
50% Gaussian 0.9100 0.9148 0.9916 0.9916 0.9808 1.0000

1% Rician 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
3% Rician 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
5% Rician 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
10% Rician 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
15% Rician 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
20% Rician 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
30% Rician 0.9956 0.9960 0.9988 0.9988 0.9988 0.9996
50% Rician 0.8640 0.8664 0.9744 0.9828 0.9678 0.9968

Table 3. Segmentation accuracies of different methods on noised images of ‘Trin’.

SA SFCM SSCM NLSFCM NLSSCM FCE_KL FCE_sKL

10% Gaussian 0.9817 0.9878 0.9946 0.9951 0.9966 0.9968
12% Gaussian 0.9563 0.9712 0.9893 0.9817 0.9922 0.9951
15% Gaussian 0.8979 0.9348 0.9800 0.9670 0.9797 0.9907
18% Gaussian 0.8420 0.8896 0.9624 0.9138 0.9631 0.9836
20% Gaussian 0.8218 0.8457 0.9290 0.8937 0.9468 0.9785
25% Gaussian 0.7729 0.7773 0.7847 0.7813 0.9026 0.9558
30% Gaussian 0.6860 0.7446 0.7341 0.7539 0.7239 0.8569

10% Rician 0.9839 0.9917 0.9919 0.9934 0.9954 0.9973
12% Rician 0.8782 0.9768 0.9817 0.9888 0.9897 0.9951
15% Rician 0.7578 0.7136 0.9209 0.9670 0.9758 0.9905
18% Rician 0.7114 0.7112 0.7886 0.9526 0.9570 0.9832
20% Rician 0.6799 0.7085 0.7598 0.8413 0.9377 0.9729
25% Rician 0.6650 0.6775 0.7681 0.7531 0.8472 0.9263
30% Rician 0.6287 0.6406 0.6914 0.6818 0.7832 0.8472

For the synthetic image “Trin”, Table 3 demonstrates that individual clustering methods (SFCM,
SSCM, NLSFCM and NLSSCM) deteriorate dramatically with the increasing of noise rate. However,
FCE_KL and FCE_sKL can stop this trend and improve the performance. FCE_KL behaves better than
individual clustering methods handling this image with Gaussian noise except 15% and 30%. FCE_KL
removes all Rician noise better than SFCM, SSCM, NLSFCM and NLSSCM. It is obvious that FCE_sKL
can handle this image with heavy Gaussian and Rician noise more easily than the other five methods.
In order to visually compare the performance, the segmentation results of all of the six methods on the
noised two-value image and the image “Trin” are shown in Figures 2–5. All of these Figures illustrate
that FCE_sKL behaves better than the other five methods.

The synthetic MR images of the human brain and their reference segmentations are provided
by [30]. They are T1-weighted MR phantom with slice thickness of 1 mm, having various levels of
Rician noise, without intensity inhomogeneity. The Rician noise rates range from 25% to 50% added
to the synthetic MR images of the human brain. Since ground truth of the synthetic MR image is
available, Table 4 shows the SAs of the six methods. Both FCE_KL and FCE_KL segment these images
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better than SFCM, SSCM, NLSFCM and NLSSCM. Furthermore, according to the SAs, the superiority
of FCE_sKL can be verified easily. Figure 6a presents the synthetic synthetic MR images with 32%
Rician noise. We add the zoom of the image portion highlighted with a red rectangle. Segmentation
results in enlarged red rectangles reveal that FCE_KL and FCE_sKL can remove noise better and obtain
smoother regions than the other four methods. FCE_sKL behaves better than FCE_KL because the latter
still produces several misclassified pixels.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5. 12% Rician-noised synthetic images of ‘Trin’: (a) original; (b) ground-truth image and after
segmentation into four regions with (c) SFCM; (d) SSCM; (e) NLSFCM; (f) NLSSCM; (g) FCE_KL;
(h) FCE_sKL.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 6. 32% Rician-noised synthetic MR images: (a) original; (b) ground-truth image and after
segmentation into four regions with (c) SFCM; (d) SSCM; (e) NLSFCM; (f) NLSSCM; (g) FCE_KL;
(h) FCE_sKL.
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Table 4. Segmentation accuracies of different methods on noised synthetic MR images.

SA SFCM SSCM NLSFCM NLSSCM FCE_KL FCE_sKL

25% Rician 0.8523 0.8125 0.8438 0.9543 0.9692 0.9700
27% Rician 0.8473 0.8117 0.8411 0.8504 0.9669 0.9670
30% Rician 0.8405 0.8070 0.8391 0.8411 0.9605 0.9632
32% Rician 0.8373 0.8026 0.8393 0.8339 0.9559 0.9608
35% Rician 0.8321 0.7966 0.8390 0.8317 0.9485 0.9566
40% Rician 0.8160 0.7903 0.8395 0.8249 0.9361 0.9493
50% Rician 0.7804 0.7784 0.8610 0.7911 0.9074 0.9298

4.2. Real Images

The first real image is the MR brain image obtained from the Internet Brain Segmentation
Repository (IBSR) database [31]. This image should be partitioned into three regions corresponding to
cerebrospinal fluid (CSF), white matter (WM) and gray matter (GM). As mentioned in [32], one general
method of MR brain image segmentation involves two parts: the classification and the identification of
all of the voxels belonging to a specific structure. Since the CSF in the center of the brain is a continuous
volume, it can be well segmented by some contour-mapping algorithm. Therefore, this paper focuses
on the segmenting of WM and GM. Figure 7 illustrates one sample without noise. According to the
ground truth of the IBSR image, the SAs of different methods on the images having 12%, 15% and 18%
Rician noise are shown in the Tables 5–7, in which SA1 stands for SA for the cluster of WM, and SA2

is for the cluster of GM. The Tables 5–7 demonstrate excellent performance of FCE_sKL in terms of
various levels of noise.

(a) (b) (c)

Figure 7. (a) Original IBSR image; (b) WM; (c) GM.

The second real image is the positron emission tomography (PET) lung image of a dog. It is
demonstrated in Figure 8a, with 128× 128 pixels. The reference segmentations of these images are not
available. However, the segmentation results with six methods are illustrated in Figure 8b–g. Visually,
the results obtained by SFCM and SSCM contain many flakes, while the results using NLSFCM and
NLSSCM are more robust, such that some details of the lung are ignored. The Figure 8f,g reveals
that FCE_KL and FCE_sKL outperform the other four methods. FCE_sKL behaves better than FCE_KL,
for FCE_KL still produces several misclassified pixels.

Table 5. Segmentation accuracies of different methods on noised images of ‘IBSR12%’.

12% Rician Noise SFCM SSCM NLSFCM NLSSCM FCE_KL FCE_sKL

SA 0.7293 0.7400 0.7181 0.7163 0.7247 0.7526
SA1 0.7463 0.7530 0.7297 0.7247 0.7381 0.7663
SA2 0.7099 0.7256 0.7055 0.7073 0.7098 0.7372
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Table 6. Segmentation accuracies of different methods on noised images of ‘IBSR15%’.

15% Rician Noise SFCM SSCM NLSFCM NLSSCM FCE_KL FCE_sKL

SA 0.7079 0.7237 0.7023 0.7093 0.7098 0.7442
SA1 0.7281 0.7431 0.7248 0.7421 0.7369 0.7679
SA2 0.6844 0.7012 0.6758 0.6670 0.6763 0.7150

Table 7. Segmentation accuracies of different methods on noised images of ‘IBSR18%’.

18% Rician Noise SFCM SSCM NLSFCM NLSSCM FCE_KL FCE_sKL

SA 0.6744 0.7014 0.6879 0.7028 0.6953 0.7307
SA1 0.7031 0.7268 0.7205 0.7584 0.7338 0.7653
SA2 0.6395 0.6708 0.6467 0.6139 0.6438 0.6841

(a) (b) (c) (d)

(e) (f) (g)

Figure 8. Segmentation result of different methods on a PET image of the lung of dog: (a) original and
after segmentation into three regions with (b) SFCM; (c) SSCM; (d) NLSFCM; (e) NLSSCM; (f) FCE_KL;
(g) FCE_sKL.

Another medical image is shown in Figure 9b, which is a 540× 362 image of a healthy bone.
We add 10% Gaussian noise to this image. From Figure 9, it is obvious that the performance of
FCE_sKL is better than the other five methods. FCE_sKL can remove noise in the image and obtain more
homogeneous regions.

The last real image is demonstrated in Figure 10a, which is a 160 × 240 image of horses.
From Figure 10, SFCM and NLSFCM contain lots of misclassified pixels. In contrast, the segmentation
results obtained by FCE_KL and FCE_sKL have less flakes in the lower-left corner than the other four
methods. FCE_KL and FCE_sKL can well segment the horses from the background.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 9. 10% Gaussian-noised bone images: (a) original; (b) noise-free image and after segmentation
into two regions with (c) SFCM; (d) SSCM; (e) NLSFCM; (f) NLSSCM; (g) FCE_KL; (h) FCE_sKL.

(a) (b) (c) (d)

(e) (f) (g)

Figure 10. Segmentation result of different methods on an image of a horse: (a) original and after
segmentation into three regions with (b) SFCM; (c) SSCM; (d) NLSFCM; (e) NLSSCM; (f) FCE_KL;
(g) FCE_sKL.
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5. Discussion

In the previous section, compared with different clustering methods like SFCM, SSCM, NLSFCM
and NLSSCM, both FCE_KL and FCE_sKL have shown superior performance in segmentation of
low-level noised synthetic and real images. The possible explanation is that for image-segmentation
problems, the results obtained by SFCM and SSCM contain many flakes, while the results using
NLSFCM and NLSSCM are much more robust such that some details of the images are ignored easily.
The ensemble methods like FCE_KL and FCEsKL can avoid the weakness of a single clustering method.
Experiment results also demonstrate that FCE_sKL can eliminate the high-level noise better than all the
other five methods in synthetic and real image segmentation. This is the result of FCE_sKL’s inclusion
of spatial information for the purpose of noise suppression.

For the parameters of different clustering algorithms used by the ensemble, various settings
can be chosen. However, in this paper we applied some ad-hoc selections. For example, the fuzzy
coefficient m has huge influence on fuzzy clustering, notably in FCM. In contrast to k-means clustering,
in fuzzy c-means, the datapoint is not directly assigned to any cluster, but its fuzzy membership values
of all clusters are given as the final result. When m –> 1, FCM is similar to the k-means algorithm.
The larger m, the more clusters share their objects, and vice versa. The fuzzification coefficient m was
set to 2 in many studies. We also set m = 2 in this paper. This decision should not discourage the future
study on applying different fuzzy coefficients in fuzzy cluster ensembles, and more discussion on the
determining of parameters for fuzzy c-means cluster analysis can be found in [33,34]. Similarly, we do
not carefully select the parameters used in noise suppression of clustering algorithms. For example,
the size of the local square window NB of FCE_sKL is set to 5× 5 in our experiments. If we choose
a larger size of square window NB to include more local information and ignore the computing cost,
the performance of FCE_sKL may be better.

In unsupervised learning, the goodness-of-fit measure related to the number of cluster centers
can be obtained by many methods [35,36]. Because it is not the focus of our research, we set it as the
prior knowledge in this paper. For image-segmentation problems, the number of segmentation regions
is usually expected to be known or given by the image directly in the experiments [14]. Moreover,
in practical applications, it is not mandatory to get the same number of clusters across all different
clustering methods in the ensemble, especially in the process of obtaining the basic partitions by
different clustering methods for our proposed method. That is to say, different numbers of cluster
centers can be used by these different clustering methods to get the basic partitions. In Figure 1,
the obtained membership matrices, U1, U2, · · ·Ur, can be of different sizes in rows. However, in the
experiments, we use the ground truth and the measurement SA to do fair comparisons. Because the
number of clusters has great influence on the values of SA, the number of clusters must be set the
same across all different clustering methods when dealing with the specified picture. Furthermore,
we want to show the proposed ensemble methods outperform the other clustering methods in the case
of the exact same parameter settings. So, the same number of clusters are used in all methods of the
experiments.

6. Conclusions

In this paper, our main contribution is to propose an efficient fuzzy cluster ensemble method
based on KL divergence, (FCE_KL), considering that soft partitions are more suitable to be measured
by KL divergence. In order to obtain ensemble partitions as diverse as possible, the data are classified
using distinct clustering methods instead of a single method with different parameters. Theoretically,
we have developed an optimization algorithm for the proposed FCE_KL. For image-segmentation
problems, we further use spatial information in our method and propose FCE_sKL. According to
experimental results, the proposed methods perform better than many existing clustering methods in
synthetic and real image-segmentation problems.

In future work, we would explore more robust distance calculations instead of KL divergence
in ensemble clustering. Currently, we handle each base clustering equally, which could overlook the
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different reliabilities of base clusterings. So, we will also explore certain methods to calculate weights
of base clusterings for further consideration.
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