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Abstract: Gene–environment interaction (G×E) studies are one of the most important solutions
for understanding the “missing heritability” problem in genome-wide association studies (GWAS).
Although many statistical methods have been proposed for detecting and identifying G×E, most
employ single nucleotide polymorphism (SNP)-level analysis. In this study, we propose a new
statistical method, Hierarchical structural CoMponent analysis of gene-based Gene–Environment
interactions (HisCoM-G×E). HisCoM-G×E is based on the hierarchical structural relationship among
all SNPs within a gene, and can accommodate all possible SNP-level effects into a single latent variable,
by imposing a ridge penalty, and thus more efficiently takes into account the latent interaction term of
G×E. The performance of the proposed method was evaluated in simulation studies, and we applied
the proposed method to investigate gene–alcohol intake interactions affecting systolic blood pressure
(SBP), using samples from the Korea Associated REsource (KARE) consortium data.

Keywords: gene–environment interactions; generalized structured component analysis (GSCA);
genome-wide association study (GWAS)

1. Introduction

Common genetic variants, identified by genome-wide association studies (GWAS), generally
explain only a very small proportion of the variance of complex diseases or traits [1,2]. This
may be because the genetic risk of single nucleotide polymorphisms (SNPs) is modified by
environment, gender, age, or other factors. Understanding those interaction effects can help us
to explain the “missing heritability” problem of complex diseases or traits [2]. Several studies
of gene–environment interactions (G×E) have been performed for a variety of human complex
diseases [3–5]. However, these studies have been mainly for candidate disease-associated genes.
Moreover, findings from G×E studies based on genome-wide scale investigations [6] are quite limited,
due to statistical power issues. An implementation of HisCoM-G×E can be downloaded from the
website http://statgen.snu.ac.kr/software/hiscom-gxe.

Several methods have been proposed to improve statistical power for identifying G×E. These
methods can be broadly categorized into two types. The first, which aims at increasing statistical power
by performing an SNP-based G×E test, is the two-stage approach [7,8]. In the first stage, filtering is
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conducted at the SNP level. In the next stage, SNP-based G×E tests are conducted, and correctional
procedures for multiple testing are performed only on the remaining SNPs.

The second type of method focuses on increasing statistical power by performing gene-based
(or set-based) G×E analysis. The gene-based G×E test has several advantages, including aggregating
multiple G×E signals within the same gene and reducing multiple-testing burdens. Furthermore,
the gene-based G×E test simplifies biologically meaningful interpretation of the disease. Ma et al.
proposed that gene-based gene–gene interaction (GGG) tests represent an extension of four existing
methods of combing p-values [9] as follows: (1) gene-based association test using extended Simes
(GATES) procedures [10]; (2) truncated tail strength [11]; (3) truncated p-value product [12]; and (4)
minimum p-value [13]. GGG tests have been introduced for gene–gene interaction assessments at the
gene level, and can also be applied to G×E studies.

Additionally, Lin et al. (2013) proposed a gene-based G×E test, i.e., the gene–environment set
association test (GESAT), by extending the SNP-set (sequence) kernel association test (SKAT) to a
G×E setting [14]. Furthermore, Lin et al. (2016) proposed the interaction sequence kernel association
test (iSKAT), for assessing rare variants by environmental interactions [15]. The GESAT and iSKAT
methods assume random G×E effects, following a distribution with mean zero and variant τ2; therefore,
testing for G×E effects is equivalent to testing for a zero variance of τ2. The iSKAT method can also
be applied to G×E studies, for common variants, using the weight parameter, w = Beta (minor allele
frequency (MAF), 0.5, 0.5) [15,16].

In this study, we present a novel statistical method for G×E analysis, namely the Hierarchical
structural CoMponent analysis of gene-based Gene–Environment interactions (HisCoM-G×E). The
proposed method is based on generalized structured component analysis (GSCA), which tests
hypothesized defined latent variables as components, using the weighted sums of observed
variables [17]. Taking that into account, Lee et al. (2016) proposed a pathway-based approach, using a
hierarchical structure of collapsed rare variants of high-throughput sequencing data (PHARAOH), by
extending GSCA to pathway analysis of rare variants [18]. Furthermore, Choi et al. (2018) proposed
the hierarchical structural component analysis of gene–gene interactions (HisCoM-GGI), an extension
of the PHARAOH method, for gene–gene interaction analysis [19]. The HisCoM-GGI method can
evaluate both gene-level and SNP-level interactions. The HisCoM-G×E method is an extension of
the HisCoM-GGI method for performing gene-based G×E analysis. HisCoM-G×E introduces latent
variables, such as a gene, and an environmental factor, which are defined as a weighted sum of the
observed variables, such as SNPs, and an environment factor. Accordingly, our proposed method can
efficiently account for the biological relationship between a gene and an environmental factor (e.g.,
alcohol intake), within the structured component.

Previous methods such as GGG tests, used for detecting G×E, integrate multiple p-values from
each SNP-level interaction test into a single p-value of gene-level interactions. By contrast, the
HisCoM-G×E method can evaluate G×E effects on the phenotype of interest, all at once. Moreover,
our proposed method can account for linkage disequilibrium (LD) between SNPs within a gene, by
imposing a ridge penalty.

In this report, using simulation studies, we show that the performance of the HisCoM-G×E method
is similar to or better than other traditional approaches. In addition, we applied the HisCoM-G×E
method to a GWAS dataset, as associated with systolic blood pressure (SBP), and an environmental
factor (alcohol intake frequency), via genotyping 2252 participants from the Korean Association
REsource (KARE) cohort study, using the Affymetrix Genome-Wide Human SNP Array 5.0 [20].
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2. Results

2.1. Type I Error Rate

Table S1 (Supplementary Materials) shows that the empirical type I error rates of the GESAT,
iSKAT, GE_minP, GE_GATES, GE_tTS, GE_tProd, and HisCoM-G×E methods were all well preserved,
at nominal significance levels for the three scenarios, when the gene size was 5, 50, and 100 SNPs.

2.2. Power Comparison

To evaluate the statistical power of the GESAT, iSKAT, GE_minP, GE_GATES, GE_tTS, GE_tProd,
and HisCoM-G×E methods, we varied gene and effect sizes of G×E, and then calculated the empirical
power for each parameter setting. The results in Figure 1a, when the gene size was 5 SNPs, showed that
the GE_GATES method was the most powerful, while the HisCoM-G×E method yielded comparable
power. As shown in Figure 1b, when the gene size was 20 SNPs, the iSKAT method was generally the
most powerful, and HisCoM-G×E yielded comparable power. In the case of the small effect size of
G×E, HisCoM-G×E was more powerful than any of the other methods.
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In summary, we can conclude that the HisCoM-G×E method performs reasonably well, regardless
of gene size. In other words, it can yield power that is quite comparable to those of the most powerful
methods, in the case of different gene sizes.

2.3. Real Data Analysis: KARE Dataset

We next applied the iSKAT, GE_GATES, and HisCoM-G×E methods to investigate gene–alcohol
intake interactions affecting systolic blood pressure (SBP), using samples from the KARE GWAS
dataset [20]. In all, 16,361 genes were included in the analysis. The p-values for G×E, using
HisCoM-G×E, were calculated via 5000 permutations. In Figure S1 (Supplementary Materials), the
quantile–quantile (QQ) plot of GE_GATES showed some evidence for deflation of p-values, whereas
iSKAT and HisCoM-G×E did not. Figure S2 (Supplementary Materials) shows the Manhattan plots for
the iSKAT, GE_GATES, and HisCoM-G×E methods, where the horizontal red line denotes the threshold
for 0.05 genome-wide significance level by a Bonferroni correction of 3.06 × 10−6 (α = 0.05/16,361
genes). Table 1 summarizes the 35 G×Es with p-values less than the nominal significance level of
0.001. The two genes, NUCB2 and ACE, identified by iSKAT, associate with SBP [21–23], and in fact,
the angiotensin-converting enzyme (ACE) is a long-held target of numerous antihypertensives [24].
Notably, the HisCoM-G×E method also successfully identified the gene UGDH, well known to relate
to peripheral arterial disease (PAD) [25]. Additionally, it has been reported that SBP associates with
significantly higher risks for a PAD event [26], and that FCAMR and PIGR, identified by HisCoM-G×E,
both significantly associate with coronary atherosclerosis disease [27]. It also has been reported that
elevated SBP can predict coronary atherosclerosis, and provides additional information for predicting
coronary calcification [28], and is also a risk factor for stroke, myocardial infarction, kidney dysfunction,
and aneurysm [29]. Unfortunately, there were no statistically significant interactions detected after
Bonferroni correction or the false discovery rate (FDR), using an adjusted p-value (q-value < 0.05) [30].

Table 1. Significant (p < 0.001; bold) gene–environment interactions that affect systolic blood pressure
(SBP), according to the interaction sequence kernel association test (iSKAT), the gene–environment
gene-based association test using extended Simes (GE_GATES), and HisCoM-G×E, using the Korea
Associated REsource (KARE) genome-wide association studies (GWAS) dataset.

No CHR GENE # of SNPs iSKAT GE_GATES HisCoM-G×E

1 1 NBPF14 54 0.5697 0.9902 6.00 × 10−5

2 19 TLE 7 0.2587 0.2491 1.00 × 10−4

3 4 COMMD8 116 0.0285 0.2064 1.40 × 10−4

4 4 UGDH 90 0.0141 0.0518 2.00 × 10−4

5 8 ZFAND1 91 0.1227 0.1713 2.20 × 10−4

6 2 RY1 8 0.1900 0.9966 2.60 × 10−4

7 9 GAPVD1 120 0.4700 0.6905 2.80 × 10−4

8 1 FCAMR 107 0.7512 0.9398 3.40 × 10−4

9 9 ADFP 78 0.6676 0.4259 4.20 × 10−4

10 1 PIGR 119 0.7613 0.9911 5.00 × 10−4

11 3 EIF1B 89 0.1935 0.2530 8.00 × 10−4

12 19 ZNF321 41 6.74 × 10−4 0.0262 0.0182

13 17 ACE 154 9.50 × 10−4 0.0051 0.0220

14 19 ZNF566 11 0.3003 5.46 × 10−4 0.0670

15 13 SMAD9 313 7.25 × 10−4 0.5510 0.0950
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Table 1. Cont.

No CHR GENE # of SNPs iSKAT GE_GATES HisCoM-G×E

16 8 LETM2 107 0.0027 5.51 × 10−4 0.0974

17 16 KATNB1 38 1.57 × 10−4 0.0011 0.1555

18 16 PARD6A 60 7.36 × 10−5 0.0010 0.1887

19 16 ACD 69 1.08 × 10−4 0.0014 0.2463

20 11 CALCB 62 0.8119 2.45 × 10−4 0.2515

21 14 RAD51L1 1199 2.71 × 10−4 0.1166 0.2515

22 11 TRIM5 53 9.48 × 10−4 0.0070 0.2633

23 16 C16orf86 68 3.30 × 10−5 0.0015 0.2787

24 4 SORCS2 1270 5.99 × 10−4 2.38 × 10−5 0.3954

25 11 NUCB2 134 8.16 × 10−5 0.0341 0.4232

26 21 DSCR3 230 3.35 × 10−4 0.0060 0.4502

27 16 RLTPR 82 3.30 × 10−5 8.65 × 10−4 0.4794

28 16 KIFC3 131 0.0393 9.48 × 10−4 0.5110

29 1 ST6GALNAC3 1212 6.51 × 10−4 0.2535 0.5270

30 7 YKT6 61 9.96 × 10−4 0.1369 0.5700

31 19 ZNF99 90 8.90 × 10−4 0.0154 0.5736

32 14 SSTR1 40 7.67 × 10−4 0.0249 0.8029

33 2 C2orf21 50 5.25 × 10−4 0.1123 0.8119

34 8 WHSC1L1 134 5.79 × 10−4 0.0020 0.8379

35 4 TNFRSF1A 57 0.5246 2.57 × 10−4 0.8798

3. Discussion

In this study, we proposed a new statistical model, namely the Hierarchical structural CoMponent
analysis of gene-based Gene–Environment interaction (HisCoM-G×E), to identify gene–environment
interactions. Like other hierarchical component models, HisCoM-G×E has several advantages. First,
HisCoM-G×E can easily incorporate the biological relationship between a gene and environmental
factor. Second, HisCoM-G×E can effectively summarize the interaction effect of a gene and its
environment, using structured components. Third, it greatly reduces the dimension of SNPs, in a gene,
using a latent variable, defined as a weighted sum of observed variables. In this study, we developed
the software for HisCoM-G×E (http://statgen.snu.ac.kr/software/hiscom-gxe). The basic framework of
the HisCoM-G×E software is based on the “Workbench for Integrated Superfast Association study
with Related Data” (WISARD) [31]. The HisCoM-G×E software was implemented in C++, and was
developed for Linux. When our simulation study was executed on a server having two Intel Xeon
E5-2620 processors with 128GB of RAM, the HisCoM-G×E program took 30–40 s and 50–60 s when
the total number of SNPs in a gene (K) was 5 and 20, respectively. Furthermore, HisCoM-G×E can be
extended to a statistical method that can take into account various distribution types (i.e., binomial,
Poisson, gamma, and inverse Gaussian distributions) by using the framework of generalized linear
models (GLMs) applied in the PHARAOH method [18].

One weakness of the study is that the method does not consider epigenetic events (e.g., DNA
and histone modifications). Such phenomena are well known to be affected by the environment and
exert gene regulation at an additional level, compared to gene sequence alone (e.g., SNPs, indels, copy
number, etc.) [32]. To address this shortcoming, future models will be able to consider both genomics
and epigenomics in gene regulation/dysregulation.

http://statgen.snu.ac.kr/software/hiscom-gxe
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4. Materials and Methods

4.1. HisCoM-G×E Method

Let yi denote the phenotype of the i-th subject (i = 1, . . . , N). Let cip denote the p-th covariate
of the i-th subject (p = 1, . . . , P). Let K be the number of SNPs in a gene. Let xik denote the k-th
SNP in a gene, for the i-th subject (k = 1, . . . , K). Let wk denote a weight assigned to xik. Let gi be
a latent variable representing the main effect of a gene, which is defined as a weighted sum of K
SNPs, such that gi =

∑K
k=1 wkxik. Let zi denote the environment of the i-th subject, and ei be a latent

variable representing the environmental effect, which is defined as a weighted sum of environmental
effects, such that eis = wEzi. Then, the latent interaction term between the gene and environment term
is represented by another latent variable, ri, which is obtained as the product of interacting latent
variables, such that ri =

(∑K
k=1 wkxik

)
· (wEzi)= gi · ei.

Let β1, β2, βp, and β12 denote the coefficients of the gene, the environment, the p-th covariate, and
latent interaction effects on yi, respectively. Then, the relationships between the phenotypes and latent
variables are established, such that:

yi= β1gi+β2ei+β12ri +
P∑

p=1

βpcip+εi, (1)

where εi is the error term for subject i.
Figure 2 shows a simple HisCoM-G×E model with two covariates (i.e., P = 2). Rectangles and

circles represent observed and latent variables, respectively. For illustrative purposes, we assume that
the gene consists of two SNPs (i.e., K = 2). The gene, then, is defined as a latent variable constructed by
a weighted sum of its SNPs, which in turn influence a phenotype, signified by single-headed arrows. A
G×E is similarly defined as a latent variable, constructed via the products of interacting latent variables.
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Figure 2. A schematic diagram of Hierarchical structural CoMponent analysis of gene-based
Gene–Environment interactions (HisCoM-G×E). The exemplary model is described with the number
of single nucleotide polymorphisms (SNPs) (xik) K = 2 and the number of covariates (cip) P = 2. The
variables ws denote the weights assigned to the latent variables and βs are coefficients of the latent
variables (gi and ei). The gi × ei term represents a latent interaction term (or effect) on the phenotype (yi)
and εi is the error term.
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Let W be a matrix of w1, w2, . . . , wk, wE, and B be a matrix of β1, β2, βp, and β12. To estimate
the unknown parameters for HisCoM-G×E, we adopted the alternating regulated least-squares
(ALS) algorithm [18,33]. To estimate unknown parameters in W and B, we sought to minimize the
following Equation (2), subject to the standardization constraint on each latent variable,

∑N
i=1 r2

i = N [34].
Therefore, the penalized least-squares equation is given as follows:

φ = SS
(
y−

^
y
)
+ λSSS(W) + SS(B), (2)

where λS is the ridge parameter for the gene. Before applying the algorithm, we used k-fold
cross-validation (CV) to select the values of λS automatically. In our analysis, the ridge parameter, λS,
is based on five-fold CV, using 15 different starting points of ridge parameters, ranging from 0 to 0.5.

Testing for interactions is equivalent to testing the null hypothesis for the G×E effect, as shown by
the following:

H0: β12= 0. (3)

We also adopted a permutation procedure, used in our previously developed PHARAOH
method [18], to test the statistical significance of the estimated effects of genetics, environment, and the
G×E gene–environment. By permuting the phenotype, the HisCoM-G×E method generates the null
distributions of weights and path coefficients. Thus, we can obtain empirical p-values of interactions
between gene and environmental factors.

4.2. Simulation Study

To investigate the performance of HisCoM-G×E, we conducted simulation studies to generate
human genomic data, with realistic linkage disequilibrium (LD) patterns. We employed a similar
simulation strategy that was suggested by Choi et al. [19] for the gene–gene interactions study. In the
gene–environment interaction analysis, various factors, i.e., minor allele frequency, haplotype block,
and many other factors, can affect the results of a simulation study. In order to reflect various factors,
we performed a simulation study by randomly extracting genome data from a real GWAS dataset. In
each simulation, we assumed that the phenotype data arose from the following Equation (4), defined
as a function of the sum of the genetic value of SNPs, under an additive model, environmental factor,
interaction effect, and a random error, following a standard normal distribution, as follows:

yi= β0+β1

 K∑
k=1

wkxik

+β2ei+β12

 K∑
k=1

wkxikei

+εi, (4)

where εi is the error term for subject i.

4.3. Type I Error Rate

To check whether the type I error rate is well controlled, we generated datasets under the null
hypothesis of no interaction between a gene and its environment. A dataset of N samples was generated
from the KARE GWAS dataset samples [20]. We considered the following three scenarios, with varying
number of SNPs, in a gene: (1) five SNPs (K = 5) in TNFRSF10C, (2) fifty SNPs (K = 50) in GPR120, or
(3) one hundred SNPs (K = 100) in PLA2G4C. In Figure 3, the LD pattern plots of those genes were
generated using Haploview v4.2 software (Broad Institute, Cambridge, MA, USA) [35].

For each simulated dataset, we randomly selected 500, 1000, and 2000 samples from the KARE
GWAS dataset, and generated 1000 simulated datasets, for each scenario. The empirical type I error
was estimated based on the significance levels α = 0.05, 0.01, and 0.005.



Int. J. Mol. Sci. 2020, 21, 6724 8 of 12
Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 8 of 11 

 
Figure 3. Linkage disequilibrium (LD) patterns of genes used in simulation studies: (a) TNFRSG10C 
gene (K = 5); (b) TNFRSF10C gene (K = 50); (c) PLA2G4C gene (K = 100). Numbers indicate the Dʹ 
values expressed as percentiles. A standard color scheme is used to display the LD pattern, with red 
for perfect LD (r2 = 1), white for no LD (r2 = 0) and shades of pink/red for intermediate LD (0 < r2 < 1). 

4.5. Real Data Analysis: KARE Dataset 

The participants of the KARE project were recruited from Ansung (rural) and Ansan (urban) 
cohorts in South Korea [20]. Among 8840 subjects, we excluded the subjects with a history of cancer 
(104 individuals), anti-hypertensive therapy (1019 individuals), drug treatments regulating blood 
pressure (1055 individuals), and individuals missing values for either body mass index (BMI) (4 
individuals) or systolic blood pressure (SBP) (1 individual). Among the female participants (4658 
individuals), the alcohol intake frequency was very low, but was relatively high for males, so only 
2252 males were included in this study. This study was approved by the Institutional Review Board 
of the Korean National Institute of Health (IRB No. E1908/001-004). All subjects provided written 

Figure 3. Linkage disequilibrium (LD) patterns of genes used in simulation studies: (a) TNFRSG10C
gene (K = 5); (b) TNFRSF10C gene (K = 50); (c) PLA2G4C gene (K = 100). Numbers indicate the D′

values expressed as percentiles. A standard color scheme is used to display the LD pattern, with red
for perfect LD (r2 = 1), white for no LD (r2 = 0) and shades of pink/red for intermediate LD (0 < r2 < 1).

4.4. Power Comparison

For power analysis, we varied the number of causal SNPs and the effect sizes of G×E. The
performance of HisCoM-G×E was compared to that of GESAT, iSKAT, and the following four GGG
methods: GE_minP, GE_GATES, GE_tTS, and GE_tProd [9,14,15]. Two scenarios were considered,
with different numbers of SNPs, in various genes as follows: (1) five SNPs (K = 5) in TNFRSF10C and
(2) twenty SNPs (K = 20) in ZNF616. For each simulated dataset, 500 samples were randomly selected
from the KARE GWAS dataset. The parameters were set as follows: total SNPs in a gene (K) = 5 and
20, sample size (N) = 500, the proportion of causal SNPs = 20%, an effect size, for each SNP (wk) =
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0.5, and the effect size of G×E was as follows: (1) five SNPs (K = 5) with β12 = 0.5, 0.6, 0.7, 0.8, 0.9,
or (2) twenty SNPs (K = 20) with β12 = 0.1, 0.2, 0.3, 0.4, 0.5. Since the phenotype was generated by
both the effect of SNP (wk) and the effect of interaction terms (β12) together, we tested situations in
which the effect size was smaller than 1. When the effect size was larger than 1, no difference in the
power between statistical methods was observed. The empirical power was estimated by counting the
number of associations below a specified significance level (e.g., α = 0.05), based on the total number
of tests within each set of 1000 simulated datasets.

4.5. Real Data Analysis: KARE Dataset

The participants of the KARE project were recruited from Ansung (rural) and Ansan (urban)
cohorts in South Korea [20]. Among 8840 subjects, we excluded the subjects with a history of
cancer (104 individuals), anti-hypertensive therapy (1019 individuals), drug treatments regulating
blood pressure (1055 individuals), and individuals missing values for either body mass index (BMI)
(4 individuals) or systolic blood pressure (SBP) (1 individual). Among the female participants
(4658 individuals), the alcohol intake frequency was very low, but was relatively high for males, so
only 2252 males were included in this study. This study was approved by the Institutional Review
Board of the Korean National Institute of Health (IRB No. E1908/001-004). All subjects provided
written informed consent to participate in this study, and were then anonymized. We used a detailed
genotyping and quality control process previously described [20], and missing genotypes were imputed
by IMPUTE2, using Phase 1 of the 1000 Genomes Project as a reference panel [36]. The genetic variants
with low IMPUTE2 INFO scores (< 0.8), high missing call rates (> 5%), low minor allele frequencies (≤
0.01), or of insignificant p-values by the Hardy–Weinberg equilibrium test (≤ 1 × 10−6) were excluded
from the study. Then, we assigned SNPs to genes if they were located within the gene body, or its 20
kb upstream or downstream sequences. As a result, 228,3615 SNPs were mapped to a total of 1,6361
genes. The gene–alcohol intake interaction was analyzed by the HisCoM-G×E method, assuming an
additive genetic effect, adjusted for age, recruitment area, and BMI.

5. Conclusions

Through the simulation study, we showed that HisCoM-G×E controlled type I error rates well in
various scenarios. In power comparison studies, there was only one of the most powerful methods
available for the cases of varying gene size. Only HisCoM-G×E yielded power comparable to that of
the most powerful methods, regardless of gene size. In the case of the small interaction effect size,
HisCoM-G×E yielded the most powerful statistic. Therefore, we recommend HisCoM-G×E as the best
choice for analyzing smaller-scale gene–environment interaction studies.

The real data analysis of the KARE GWAS dataset demonstrated that HisCoM-G×E successfully
identified genes previously reported for G×E interactions for SBP. Therefore, we fully expect
that HisCoM-G×E will help researchers understand environmental contributions to human
complex diseases.
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0.01, and 0.005 significance levels (α).
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