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Abstract

Throughout the life of animals and human beings, blood vessel systems are continuously adapting their structures – the
diameter of vessel lumina, the thickness of vessel walls, and the number of micro-vessels – to meet the changing metabolic
demand of the tissue. The competition between an ever decreasing tendency of luminal diameters and an increasing
stimulus from the wall shear stress plays a key role in the adaptation of luminal diameters. However, it has been shown in
previous studies that the adaptation dynamics based only on these two effects is unstable. In this work, we propose a
minimal adaptation model of vessel luminal diameters, in which we take into account the effects of metabolic flow
regulation in addition to wall shear stresses and the decreasing tendency of luminal diameters. In particular, we study the
role, in the adaptation process, of fluctuations in capillary flow distribution which is an important means of metabolic flow
regulation. The fluctuation in the flow of a capillary group is idealized as a switch between two states, i.e., an open-state and
a close-state. Using this model, we show that the adaptation of blood vessel system driven by wall shear stress can be
efficiently stabilized when the open time ratio responds sensitively to capillary flows. As micro-vessel rarefaction is observed
in our simulations with a uniformly decreased open time ratio of capillary flows, our results point to a possible origin of
micro-vessel rarefaction, which is believed to induce hypertension.
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Introduction

The blood vessel system of animals and human beings is

efficient in regulating blood flow according to metabolic demand

of the tissue. In response to a short-term change of tissue states,

metabolic flow regulation processes of the blood vessel system are

able to supply sufficient blood to tissues within a few seconds. The

metabolic flow regulation processes include the regulation of blood

pressure, the dilation or contraction of blood vessels, and

fluctuations in the capillary flow distribution [1–6]. Meanwhile,

in response to a long-term change of tissue metabolic demand,

chronic changes of blood vessel structures are also able to meet the

changes in blood delivery [7]. The chronic adaptation processes

include structural changes of luminal diameters [8–10], remodel-

ing of vessel walls (the change of vessel wall thickness without any

change in wall mass [11]), and generation and degeneration of

micro-vessels [12]. The chronic adaptation is crucial for physical

growth of individuals and their adaptation to their environment.

However, some diseases are also closely related to the adaptation,

such as hypertension and ischemic heart diseases [8,11–13].

Therefore, it is important to study the chronic adaptation of blood

vessel systems in order to achieve a clear understanding of the

pathogenesis of these diseases.

The blood vessel system can achieve an efficient blood delivery

within seconds by different means of metabolic flow regulation.

First, some proteins in the aorta can sense the concentration of

carbon dioxide (CO2), sodium ions (Na+), etc. In response to the

change of these concentrations, the nervous system can modulate

the heart pressure to supply more (or less) blood to the body.

Second, the vessels can sense the change of the wall shear stress by

endothelial cells, which are the inner layer of the blood vessel

walls. The response to these changes gives rise to regulation of the

luminal size within a few seconds [14–17]. This regulation is

achieved by contraction or relaxation of smooth muscle cells,

which are the middle layer of vessel walls. The regulation can

strongly control the peripheral resistance of the blood vessel

system. Finally, the circulation system can regulate the distribution

of capillary flows within a few seconds in response to the state of

the tissue, such as concentrations of CO2, O2, Na+, and K+ [1–

6,18]. As has been suggested in the work of [5], this regulation is

achieved by terminal arterioles and possibly the postcapillary

vasculature. The contraction of a terminal arteriole leads to a

decrease of the flow in its downstream capillary group or even

closes the downstream capillary flow. As a result of changes in the

capillary flow distribution, blood flow in large arteries is also

changed. For example, when the concentration of O2 becomes low

and that of CO2 becomes high in the tissue, the heart pressure
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increases, the blood vessels dilate, and the probability for capillary

flows to switch on increases. As a result, more blood is delivered to

the tissue to supply O2 and remove CO2. It has also been shown in

experiments that the vessels can also regulate their diameters by

the circumferential wall tensile stress, which is produced by the

pressure jump across the vessel wall [9,15]. For example, when the

blood pressure is higher than normal in the arteries, the vessel wall

becomes thicker, while the luminal diameter decreases and the

peripheral resistance increases. As a result, the blood pressure in

capillaries is maintained at a level so as to prevent the capillaries

from damage.

Chronic changes, such as the growth of tissues, the alteration of

metabolic consumption (e.g., through long-term physical exercis-

es), and the change of living conditions (e.g., the altitude), have

been observed to induce adaptive structural changes in vessel

diameter, wall thickness, and micro-vessel density [19–25]. About

one century ago, Thoma [26] noticed a cubic relation between the

diameters of the parent vessel and its daughter vessels. A few

decades later, Murray [27] used a minimal power principle to

explain this relationship and found that the optimal wall shear

stress is uniform for all the vessels. This conclusion is consistent

with later experimental observations [7,28] – the wall shear stress

varies within about one order of magnitude along the circulation

system. As suggested in the works of [8,9], a possible origin of the

differences in wall shear stress comes from the adaptation to blood

pressure. Murray’s law also suggests that the relatively uniform

wall shear stress along the circulation system is a consequence of

the chronic adaptation. As in the metabolic flow regulation, the

circumferential wall tensile stress also plays an important role in

the chronic adaptation. For example, arteries in hypertension

patients are found to have thicker vessel walls in small arterioles

[9,11,29]. It is believed that this phenomenon is the result of

chronic adaptation to the high blood pressure.

Based on the fact that blood vessels can sense the wall shear

stress by their endothelial cells, regulate their luminal diameters by

the wall shear stress, and adapt their diameters to maintain a

relatively uniform wall shear stress, it has been naturally assumed

in previous studies [9,30] that there is a chronic adaptation of the

luminal diameter to the wall shear stress. However, it is also found

that the adaptation to local shear stress alone is not sufficient to

maintain a stable equilibrium of the blood vessel trees [30–32].

Although the adaptation to the circumferential wall shear stress is

also an important process, it is not sufficient to account for the

stability [9]. To address this stability issue, in recent works of [8–

10,33,34], it has been realized that the vessel system must meet the

metabolic demand. In the works of [8–10], a reference blood flow

rate for each vessel is used to characterize the metabolic demand.

Additional metabolic stimulus are introduced to the adaptation

process based on the metabolic demand in the works of [8–

10,33,34]. By these assumptions, the resulting system becomes

locally stable. Nevertheless, the questions of how the large vessels

sense their reference flow rates and how the additional metabolic

stimulus is generated remain to be answered and there needs

further experimental evidence for such processes. Therefore, what

is the mechanism that stabilizes the vessel adaptation remains an

interesting question and deserves a further investigation.

To address this question, in this work, we propose a minimal

model for the adaptation of blood vessel systems. In this model, we

will neglect some of the detailed physiological processes that are

not important to the stability of the adaptation. As in the previous

works of [8–10,33,34], we also assume that the adaptation must

meet the metabolic demand. However, instead of introducing an

additional metabolic stimulus, we take into account the effects of

metabolic flow regulation, most importantly, the change in the

distribution of capillary flows. As suggested in the work of [5],

capillaries are fed in groups (with the size of 10–20 capillaries) by a

single terminal arteriole. In our model, capillary groups are

idealized to have two possible states – open and close states, which

characterize fluctuations in the capillary flow distribution. An

Open Time Ratio (OTR) which is the probability for a capillary

group to be open is introduced and assumed to describe the

response to the tissue state. As will be shown below, the model

system of chronic adaptation becomes locally stable after

incorporating the effects of this open-close switch. As will be

mentioned below, the graded control of capillary flows is expected

to have similar effects to that of the idealized open-close switch in

generating a locally stable chronic adaptation. It is important to

pursue the investigation of detailed effects of graded responses in

future studies. However, we will mainly focus on the open-close

switch of capillary groups. In our model, we do not explicitly

invoke metabolic demand as stimulus. Instead, we assume that the

metabolic flow regulation gives rise to changes in both the blood

flow rate and wall shear stress. This process, in turn, induces an

effective additional stimulus. In the following, it will be further

shown that, the OTRs and the sensitivity of capillary flows

introduced in the model may be important for understanding the

pathogenesis of vascular diseases, such as hypertension. As is well

known, micro-vessel rarefaction may induce hypertension

[9,11,29]. However, the detailed origin of the micro-vessel

rarefaction remains to be elucidated. In our minimal model, a

global decrease of the OTRs can induce a micro-vessel

rarefaction. This observation may provide some insight to the

relationship between the behavior of OTR and hypertension.

Previous Studies and the Stability Issue
We first briefly describe some important physiological facts

about the blood vessel system. We then review a model [8,30] of

chronic adaptation of vessels, which takes into account these

physiological facts, and recall the stability property of the model

for simple vessel systems. This model will be a starting point for

our study.

Resistance and wall shear stress. For small vessel trees

(e.g., for those whose luminal diameters are smaller than 0.6 mm),

the Reynolds number is very low. As a result, the blood flow within

a small vessel is well approximated by the Poiseuille flow [8]. In

addition, the vessel wall can be viewed as a fixed cylinder because

fluctuations of the blood pressure are small. Under these

approximations, for a single vessel, we can obtain the volumetric

flow rate Q and the wall shear stress tw

Q~
DPpD4

128gL
, ð1Þ

tw~
32gQ

pD3
~

DPD

4L
, ð2Þ

where g is the blood viscosity, DP is the pressure drop, L is the

vessel length, and D is the luminal diameter. By an analogy to an

electrical circuit, the resistance R of the vessel can be defined as

R~
DP

Q
~

128gL

pD4
: ð3Þ

Note that the resistance depends only on the length and the

diameter of the vessel and is very sensitive to the change of

Vessel Adaptation with Capillary Flow Fluctuations
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diameter because of the inverse quartic power in Eq. (3). As a

result, the vessel system can regulate the blood flow efficiently by

controlling luminal diameters. Clearly, for large vessels, the fluid

dynamics of blood flow can be much more complex.

We now consider complicated vessel systems with many vessels,

such as an arterial tree or a network with arteries, capillaries and

veins. For a given pressure drop DP, luminal diameters Di, and

vessel lengths Li of each vessel i, all the quantities (Qi , Pi, twi ) can

be easily obtained by an analogy of the blood vessel system to a

corresponding electrical circuit [8], in which, the blood pressure

corresponds to the voltage, the flow rate to the electrical current,

and the vessel resistance to the electrical resistance. Eq. (3) can be

used to calculate the resistance of all the vessels. As in an electrical

circuit, Kirchoff’s law can be invoked to determine the blood flows

and pressures in all vessels. Finally, Eq. (2) can be used to calculate

the wall shear stress.

Vessel adaptation to wall shear stress. As is mentioned

above, our circulation systems can respond to both short-term and

long-term changes of tissue demand. The short-term response,

which is the so-called metabolic flow regulation, is achieved by

multiple means – regulating the heart blood pressure, changing

vessel luminal diameters, and modulating the distribution of

capillary flows [14–18]. Meanwhile, the long-term response, which

is the chronic adaptation, also includes multiple structural changes

in luminal diameters, vessel wall thicknesses, and micro-vessel

densities [19–25]. Both short-term and long-term responses can

benefit the efficiency of blood delivery and help to maintain the

blood pressure in capillaries. Furthermore, the two responses

appear to be similar in some aspects. For example, a short-term

increase of blood flow can induce a dilation of blood vessels,

whereas a long-term increase of blood flow can induce a structural

increase of vessel luminal diameters [15,16,19–21].

The wall shear stress plays an important role in both metabolic

flow regulation and chronic adaptation. On the one hand, the

short-term change of luminal diameter is experimentally observed

to be related to the wall shear stress: the vessel dilates when the

blood flow increases and it contracts when the blood flow

decreases, in such a way that the wall shear stress is maintained

at a relatively steady level [14–17]. In these experiments [14–17],

endothelial cells are found to be responsible for sensing the wall

shear stress. On the other hand, a long-term increase or decrease

of blood flow can also induce a structural increase or decrease of

vessel liminal diameters [10]. It has been long discovered that

there is a cubic relation between the vessel diameter and the blood

flow within the vessel [26]. As is noted above, this relationship is

later explained by Murray [27] by minimizing a cost function.

Murray’s analysis suggests an optimal wall shear stress in the

circulation system. Later, it has been further shown in experiments

[7,28] that the wall shear stress does not have large variations

along the circulation.

Based on the above experimental observations [7,14–17,28], it

has been assumed in previous studies that vessels can adapt their

luminal diameters to maintain a preset wall shear stress [8,30]. In

general, this can be described as

dDi

dt
~C twi{teð ÞDi, ð4Þ

where C is a positive constant corresponding to the growth rate of

diameters and te the expected uniform wall shear stress in the

circulation. The term {CteDi characterizes an intrinsic decreas-

ing tendency due to cell death and other effects, and the term

CtwiDi describes the increasing tendency stimulated by the wall

shear stress. From experimental observations, it is suggested that

the coefficient C might be a constant for different sizes of vessel.

However, it has not been sufficiently verified. In theoretic analysis,

it does not have to be strictly a constant. A slightly varying

coefficient C will not affect the stability of a vessel system.

Therefore, we assume this coefficient C to be a constant in the

following stability analysis.

The blood pressure also plays an important role in the

metabolic flow regulation and chronic adaptation. It is directly

related to the adaptation of vessel wall thickness by the

circumferential wall stress. In general, the preset wall shear stress

tw can be dependent on pressure, i.e., tw~tw Pð Þ. These effects

have been shown to have no strong impact on the stability issue

[8]. Therefore, we will not include these effects in our current

work.

Stability of vessel system. We begin with a brief review of

the stability analysis of some simple vessel systems for the above

model. The first two cases have been considered in detail in the

work of [30–32]. We recapitulate the main points of these results

and emphasize some important issues related to the stability.

Case 1. In Fig. 1 (A), a vessel with adaptable diameter D and

fixed length L is in series with a fixed resistor R0. The pressure

drop on the vessel system is fixed to be DP. When the pressure

drop on the vessel system is sufficiently large, the adaptation of the

vessel with a fixed resistor in series has two equilibrium diameters,

D1 and D2 (D1vD2). The larger equilibrium diameter, D2, has

been shown to be locally stable, namely, when the initial diameter

is greater than D1, the diameter adapts to D2 eventually. For the

adaptation of a single vessel without fixed resistance in series, it is

stable in the case of constant flow (fixed flow in the vessel), whereas

unstable in the case of constant pressure (fixed pressure drop along

the vessel).

Case 2. In Fig. 1 (B), two parallel vessels, with adaptable

diameters and fixed lengths D1,L1ð Þ and D2,L2ð Þ, respectively, are

in a serial connection with a fixed resistance R0. In this case, at

least one of the diameters will decrease to zero eventually, due

mainly to the fact that the vessel with a smaller value of D=L in a

parallel system always has a smaller wall shear stress. Even if there

are more vessels in parallel, at most one of the vessels can survive

in the end. Similar to the instability of parallel vessels, this vessel

Figure 1. Illustration of simple systems in the vessel network.
The icons are borrowed from the electrical circuit [30]. (A) A vessel is in
series with a fixed resistance R0 . (B) The parallel part of two vessels is in
series with a fix resistance. (C) The parallel part is controlled by the
open-close switches.
doi:10.1371/journal.pone.0045444.g001
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adaptation process is not stable for a vessel network which contains

parallel parts in their sub-components. The adaptation process is

shown in phase plane in Fig. 2.

It has been realized in the works of [8–10,33,34] that the

structural adaptation must meet the metabolic demand. From this

point of view, a reference blood flow rate was introduced for each

vessel and an additional metabolic stimulus was added to the

adaptation system [8–10]. Metabolic stimulus is also introduced in

the works of [33,34] to study responses to the local state of the

tissue. In these studies, the metabolic stimulus gives rise to a locally

stable adaptation system.

In the following, we will discuss a possible physiological

mechanism for the origin of the metabolic stimulus. In fact, the

blood vessel system can meet the metabolic demand by metabolic

flow regulation. As a result of the change in blood flow due to flow

regulation, the wall shear stress in vessels is changed, resulting

effectively in an extra stimulus in the adaptation. We will take into

account the effects of metabolic flow regulation in our new

adaptation model. In this model, we incorporate fluctuations of

capillary flows in the form of an open-close switch of capillary

flows.

Results

Analysis of Stability with an Open-close Process
In this section, we present the details of our model for

adaptation of vessel systems and show that the short-term

metabolic flow regulation of blood flow is able to stabilize the

long-term adaptation of vessels after taking into account the effects

of the open-close switch of capillary flows.

Fluctuations in the distribution of capillary flows are important

in the metabolic flow regulation of blood flow [1–6]. As is reported

in [5], capillaries are controlled in groups by single upstream

terminal arterioles. Blood flow in a capillary group can be switched

on or off by its upstream arteriole and possibly the post-capillary

vasculature [4–6]. We model the phenomenon of fluctuations of

capillary flow by an open-close switch and this switch process is

sensitive to the state of the tissue, such as the concentration of O2,

CO2, and K+. A low concentration of O2, or a high concentration

of CO2 and K+ tends to relax smooth muscle cells of the terminal

arterioles, allowing the blood to flow through the capillaries,

whereas a high concentration of O2, or a low concentration of

CO2 and K+ leads to contraction of smooth muscle cells, cutting

off the blood flow in capillaries [1–4]. The variation in the number

of flowing capillaries in response to change of tissue state is

referred to as capillary recruitment. In other words, the open-close

switch of capillaries can play a controlling role in regulating the

blood flow in response to the tissue states. A graded contraction of

arterioles leads to a decrease of blood flow in the downstream

capillary group. In this case, the capillary flow is not closed

completely but the effects in adaptation should be similar. We will

first focus on the open-close switch of capillary groups in the

following, and graded contractions will be discussed afterwards.

Although the concept of capillary recruitment, which is widely

accepted, is implemented in this work, we note that for regulation

of blood flow in skeletal muscles during exercise, the role of

capillary recruitment has yet to be clarified [35].

In order to incorporate into the adaptation model the effects of

fluctuations in capillary flows, each capillary group in the vessel

system is assumed to have two states – open and close. The

resistance is calculated according to Eq. (3) when the capillary

group is open, whereas the resistance is set to be infinite when the

capillary group is closed. In comparison to the electrical circuit,

the effect of the open-close switch is similar to that of an electrical

switch. We make no modification on the adaptation equation (4) in

our new model, but the blood flows in the vessel network are now

controlled also by the open-close process (see Fig 3).

Clearly, the blood flow in an vessel network depends on the

open-close state of the capillary flows. In our model, we assume the

time-averaged stimulus of the wall shear stress is the effective

stimulus for the increase of vessel diameter. The time scale of the

open-close switch, which is on order of seconds, is much smaller

than that of the vessel adaptation, which is on order of weeks [36–

38]. This fact allows us to calculate the time-averaged stimulus by

the average stimulus of all states of different open-close configu-

rations. Therefore, we turn to a detailed description of the open-

close switch. The Open Time Ratio (OTR), f , is introduced to

characterize the mean effect of the open-close process on

adaptation, where OTR is the percentage of the time in which

the capillary flow in a group is switched on. The characteristic

value of the OTR depends on tissue types and their states. When

surrounding tissues are in their rest state, it has been estimated in

experiments [37,38] that the OTRs of capillary flows are about

0.2. This characteristic value can also be examined from a

different perspective, namely, it can be regarded statistically as the

Figure 2. Illustration of adaptation in the phase plane. Squares
denote the stable equilibrium states. Arrows starting at point D1,D2ð Þ
stand for the rate of change of the two diameters. (A) phase plane of a
parallel vessel system. In the three stable equilibrium states, at least one
diameter is zero, i.e., at most one vessel can survive. (B) phase plane of a
parallel system with switches (fixed OTRs). There is a new stable
equilibrium in which neither diameter vanishes, i.e., both vessels
survive.
doi:10.1371/journal.pone.0045444.g002

Figure 3. A vessel network and the corresponding electrical
circuit. There is a switch at the inlet of each capillary group in the
middle layer.
doi:10.1371/journal.pone.0045444.g003
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characteristic percentage of capillary groups that are open, or the

probability that a capillary group is in an open state. As will be

seen below, it is conceptually convenient to regard the OTR as the

open probability in the model. Although the open-close process of

neighboring capillary groups may be weakly correlated due to

mass diffusion in tissue, for simplicity, we will assume that the

open-close switches are statistically independent. To develop

intuition about the effect of the open-close switch and to obtain

insight into the role of the switch in regulating vessel systems, we

consider the stability of a parallel vessel system with switches. We

assume that OTRs are uniform in this case. In our model, we will

use a single vessel to represent a capillary group. The adaptation

stability of parallel capillary groups may involve the stimulus that

comes directly from the local tissue and will not be addressed in

this work.

Case 3. In contrast to Case 2, as shown in Fig. 1 (C), each

parallel part has a switch. Assume the OTRs of the two switches

are f1 and f2, respectively. There are four different states of the

vessel system under the independence assumption, as tabulated in

Table 1, in which the state s~ s1,s2ð Þ denotes the open-close states

of the two capillary groups, where

si~
1,

0,

�
if the i{th capillary group is open,

otherwise,

where i~1,2, and t1 sð Þ and t2 sð Þ are the wall shear stress of the

two capillary groups at state s, respectively. In the adaptation

process, the effective stimulus of the fluctuating flow due to the

switch among different states is assumed to be the average of the

wall shear stress in our model. Therefore, the wall shear stress in

the adaptation equation (4) is replaced by a weighted average of

the wall shear stress over the four states according to their time

ratio p sð Þ

�tti~
P

s

p sð Þti sð Þ: ð5Þ

In case of 1{fi being much greater than fi, as shown in Table 1,

the time ratio f1 1{f2ð Þ for the case in which only capillary group

1 is open is much greater than the time ratio f1f2 for the case in

which both capillary groups are open. In other words, for a large

portion of time, the two vessel groups are not parallel to each

other, but directly in series with the fixed resistance R0. As a result,

the stability behavior of the system should be similar to that of a

serial system, which has been shown to be stable as summarized in

Case 1. We note that the typical value of fi*0:2. Therefore, our

argument above can be valid approximately.

The adaptation process for the case f1~f2~0:2 is illustrated in

the phase plane as shown in Fig. 2 (B). Arrows starting at the point

D1,D2ð Þ stand for the rate of change
dD1

dt
,
dD2

dt

� �
, which is

obtained using Eq. (4) in the average sense, i.e., the wall shear

stress is obtained using Eq. (5). Fig. 2 (B) also suggests the stability

of the equilibrium state for co-existing parallel vessels with

switches. A detailed analysis of the stability for a symmetric

parallel system is presented in Section Methods – when the OTR

is smaller than a critical value, 6=7, and the pressure drop on the

vessel system is sufficiently large, the adaptation has a stable co-

existing equilibrium state.

Now we turn to consideration of the effect of the open-close

switch on the stability of vessel trees. The vessel tree is assumed to

be in series with a fixed resistance. We further assume that there is

a constant pressure drop along the vessel system. In our model, the

‘‘leaves’’ (i.e., the smallest vessels) of the vessel tree represent

capillary groups that have two states – open or close.

For a vessel system with N capillary groups, there are 2N different

states of configurations. In this case, the wall shear stress in the

adaptation equation (4) is replaced by its weighted average over all the

different states using Eq. (5). In this case, the state variable

s~ s1,s2, � � � ,sNð Þ denotes the state of all the capillary groups

si~
1,

0,

�
if the i{th capillary group is open,

otherwise,

and p sð Þ is the probability of the state s

p sð Þ~ P
N

i~1
pi sið Þ, where pi sið Þ~

fi,

1{fi,

�
when si~1,

when si~0:

Clearly, the average blood flow rate in the vessel tree is

�QQ~
X

s

p sð ÞQ sð Þ, ð6Þ

which allows us to compute the average wall shear stress as

�tti~
32g �QQi

pD3
: ð7Þ

Using similar arguments to those in Case 3, one can see that when

a vessel tree is small (i.e., the number N of capillary groups is

small), the adaptation of vessels allows the parallel ‘‘crowns’’ (i.e.,

subtrees of the vessel tree, as shown in Fig. 3) to co-exist. For

example, when all the OTRs are set to be 0:2, a 3-level complete

binary vessel tree is locally stable in our simulation of vessel trees

according to the adaptation equation (4) (for details, see below).

Essentially, the stability of parallel crowns also arises from the

serial property induced by the open-close switches. However,

when the number of capillary groups becomes large (e.g., there are

16 capillary groups in a 5-level complete binary vessel tree), the

results of our simulations indicate that the adaptation of the system

becomes unstable. In fact, the larger crowns are less likely to be in

serial connections with the constant resistance, and they become

effectively parallel to each other, because there are open capillary

groups in both crowns for majority of time. As a result, the

Table 1. Wall shear stress in different states.

state s time ratio p(s) t1 (s) t2 (s)

(1, 1) f1f2 32�gDPD1

128gLzpR0 D4
1zD4

2

� � 32�gDPD2

128gLzpR0 D4
1zD4

2

� �
(1, 0) f1 (12f2) 32�gDPD1

128gLzpR0D4
1

0

(0, 1) f2 (12f1) 0 32gDPD2

128gLzpR0D4
2

(0, 0) (12f1) (12f2) 0 0

The state s~ s1,s2ð Þ denotes the open-close states of the two capillary groups,
where si~1 i~1,2ð Þ when the i-th capillary group is open and si~0 when it is
closed. t1 sð Þ and t2 sð Þ are the wall shear stresses of the two capillary groups at
state s, respectively.
doi:10.1371/journal.pone.0045444.t001
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adaptation of a large vessel system with fixed OTRs is unstable.

This conclusion is similar to that of Case 2. In our simulations for

large vessel systems, we find that the vessel diameters are adapted

to a state nearly satisfying Murray’s law at first, then the vessels in

one of the largest sub-trees that has a smaller wall shear stress are

narrowed almost proportionally. Eventually, all the vessel diam-

eters of this crown becomes zero (we will refer to this phenomenon

as global degeneration). Furthermore, one of the daughter crowns of

the surviving sub-tree will become also degenerate if the size of the

crown is still large. Finally, only a small vessel crown (e.g., a four-

level vessel crown) can survive during the adaptation process of the

vessel system.

So far, we have only taken into account the open-close switch by

a fixed value of the OTRs in our discussion above. Therefore, the

effects of metabolic flow regulation are not yet incorporated into

our model, which allows the open-close switch to modulate blood

flows according to tissue demand. Next, we model the effects of

metabolic flow regulation through a constitutive relation of the

OTR with the blood flow, and discuss the effect of this metabolic

flow regulation in the adaptation of large vessel systems. As will be

shown below, the adaptation of large vessel systems becomes stable

after incorporating this type of metabolic flow regulation, that is,

through the coupling between the blood flow and the OTRs.

As is mentioned above [1–6,18], when the average flow in a

capillary group decreases, the concentration of O2 (CO2) in the

tissue over which the capillary group perfuses becomes lower

(higher). As a result, the capillary groups automatically opens

more, i.e., the OTR increases. In this sense, the micro-vessels can

modulate the blood flow in response to the local tissue demand.

Therefore, we introduce a reference blood flow rate for each

capillary group (Q0j , where j is the index of the capillary group).

We define the normalized flow rate qj~Qj=Q0j , where Qj is the

blood flow in the j-th capillary group. We model the OTR, fj , as a

function of qj . We define the sensitivity, lj qj

� �
, of the j-th switch as

lj qj

� �
~{

dfj qj

� �
dqj

:

According to the metabolic flow regulation behavior discussed

above, an increase of blood flow results in a decrease of OTR.

Therefore, we have

lj qj

� �
~{

dfj qj

� �
dqj

w0: ð8Þ

As we mentioned above, the stability of the adaptation of two

large parallel vessel crowns are similar to that of two parallel

vessels as summarized in Case 2. Hence, we re-examine this issue

using our model of metabolic flow regulation, i.e., by coupling the

change of the OTRs with the change of blood flow rate. We will

describe important relevant results of the parallel vessel system as

shown in FIG. 1 (B). These results will facilitate our understanding

of the stability property of large vessel trees.

Case 4. We consider the vessel system shown in Fig. 1 (B), in

which the parallel effective vessels represent parallel vessel crowns.

For simplicity, an initial perturbation DD is introduced to only one

effective vessel (vessel 1 in Fig. 1 (B)) of the parallel part, where DD
is the deviation from the equilibrium diameter Deq. Since the

resistance of the blood vessel is changed by the perturbation, the

blood flow in it also changes, giving rise to a change in the OTRs

of the capillaries in the vessel crown. As a result, the change in the

resistance of the effective vessel has a component DRf that is

induced by metabolic flow regulation. Note that, for a positive (or

negative) DD, the change of blood flow is positive (or negative).

Thus the change of resistance DRf induced by metabolic flow

regulation has an opposite sign to DD. From Eq. (3), the resistance

Ra of the vessel after the perturbation can be written as

Ra~ReqzDR~Req{4Req

DD

Deq

zDRf zO DDð Þ2
� �

,

where Req is the resistance of the vessel at the equilibrium state.

From our discussion above, we can see that the change of

resistance DRf due to metabolic flow regulation has an opposite

sign to the change of resistance {4Req

DD

Deq

due to the

perturbation. In other words, the metabolic flow regulation-

induced change of resistance DRf gives rise to a compensation to

the change of resistance arising from the perturbation. Hence, a

compensation to the flow in the vessel. Clearly, in the critical case

that DRf ^4Req
DD
Deq

, the compensation is so large as to maintain

the blood flow at the value of equilibrium. Hence, the system is

stable, which is similar to the case of constant flow rate as we

mentioned in Case 1. This suggests that the system should be

stable as long as the compensation is sufficiently large, even if it

does not fully compensate the blood flow.

In the following, we describe the condition for DRf that renders

the system stable. For Fig. 1 (B), according to the Kirchoff’s law,

we can obtain the blood flow and wall shear stress for vessel 1

QeqzDQ~
DP
0

DP
0
eq

Qeq 1z4
DD

Deq

{
DRf

Req

� �
zO DDð Þ2

� �
,

tezDtw~
DP
0

DP
0
eq

te 1z
DD

Deq

{
DRf

Req

� �
zO DDð Þ2

� �
, ð9Þ

where Qeq is the blood flow in vessel 1 before perturbation, and

DP
0
eq and DP

0
are the pressure drop on the parallel part before

and after the perturbation, respectively. Due to the perturbation,

the blood flow in vessel 2 also changes because the blood pressure

changes from DP
0
eq to DP

0
, which can also induce metabolic flow

regulation. However, the change of blood pressure in large crowns

due to the perturbation is generally very small. Therefore, we

ignore the change of resistance in vessel 2, and obtain the wall

shear stress

te2~
DP
0

DP
0
eq

te:

As a consequence of the argument employed in Case 2, we

observe that the key point for the system to be stable is that the

smaller one of the two parallel vessels should have a greater wall

shear stress. Therefore, on the order of DD, we obtain

approximately the necessary condition for the system to be stable
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DRf

Req

				
				 *> DD

Deq

				
				,or

DRf

Req

				
				 *> DQ

3Qeq

				
				: ð10Þ

We can see that according to Eq. (10), in order to stabilize the

adaptation of parallel systems, at least 1=4 of the change in

resistance (or in blood flow) should be compensated. In the work of

[8], a flow-dependent metabolic stimulus is introduced to stabilize

the adaptation. A similar analytical result on the metabolic

stimulus obtained in the work of [8] provides a lower bound of the

metabolic stimulus for adaptation stability.

We will further examine the condition (10) by direct numerical

simulations after we discuss the relation between DRf and the

sensitivity l (see below). The result of our simulations suggest that

the conditions (10) are approximately valid.

When the capillary flow is regulated gradually, the strength of

the regulation and the probability for the graded regulation to

switch on may respond to the local tissue states. This graded

regulation also induces a change of the effective resistance.

Therefore, the compensation effect of effective resistance of graded

regulation is similar to that of open-close switch. When the

compensation is large enough, the adaptation process of large

vessel systems also becomes stable with graded regulation of

capillary flow.

Aside from the metabolic flow regulation as we modeled here, in

general, other means of metabolic flow regulation, such as

responses to the wall shear stress and to blood pressure [15,16],

have similar effects in the compensation of blood flow, thus

helping to maintain a stable adaptation. For example, when a

vessel is initially smaller than its equilibrium state, the resistance of

the vessel is larger than that of the equilibrium state. Therefore,

the blood pressure in its downstream vessels becomes lower. The

metabolic flow regulation to the decreasing blood pressure results

in a non-structural dilation of the vessels, leading to an increase of

blood flow as a compensation. This similar compensatory effect

can likely help to stabilize the adaptation of the system.

Finally, for later discussions, we mention other factors that can

affect the OTRs. These factors include the tissue activity, A, the

capillary density, d, (the number of capillaries in unit volume of

tissue) and the partial pressure, Po, of Oxygen in the blood. When

the tissue is in an excitory state (e.g., when the muscle tissue is at

work), the tissue activity A is larger than the rest state, and the

consumption of Oxygen in tissue is faster. According to the

response of the open-close process to the tissue state as discussed at

the beginning of this section, the OTR becomes greater.

Therefore, we have

Lf

LA
w0:

Similarly, we further have

Lf

Ld
v0, and

Lf

LPo

v0:

For an animal living at high altitude plateau, the partial pressure

of Oxygen in the air is low, leading to a low partial pressure of

Oxygen in its blood. As a result, the OTRs becomes greater, which

helps to deliver more blood to the tissue. From this point of view,

the multi-function of the open-close process is not only important

in maintaining the stability of the vessel adaptation, but also

important in the acclimatization to living conditions.

Now we turn to comparison of the new model with previous

models. In the work of [8–10], a reference blood flow rate for all

vessels (including the high order vessels) is introduced. A metabolic

stimulus related to the flow rate is incorporated into the adaptation

process. This additional stimulus can stabilize parallel vessel

systems. In the modeling work of vascular remodeling in tumors

[33,34], the large vessels that are distant from the tumor are not

allowed to collapse, thus the stability issue of these vessels are

avoided. Vessels inside the tumor are adapted according to the

local tissue Oxygen concentration, which acts as a metabolic

stimulus and stabilizes the adaptation process of small vessels. In

both models, metabolic stimulus is crucial for the stability in

adaptation process. In contrast to the works of [8–10], in our new

model, the reference blood flow rate is introduced only for

capillary groups. We do not explicitly introduce metabolic

stimulus. The short term metabolic flow regulation according to

the capillary flow is incorporated to modulate the blood flow. As a

result of the change in blood flow, wall shear stresses in large

vessels also change. The change of shear stress results in an

additional effective stimulus, which stabilizes the adaptation of

large vessels. For small vessels near the tissue that they superfuse,

additional metabolic stimulus may come directly from the tissue

and can be important in their adaptation. In particular, such

stimulus may be important in the stability of parallel capillaries in

a group.

In the modeling work of [39], capillaries are generated or

removed according to the tissue states at each time step, and the

diameters of higher order vessels are modified according to

Murray’s law. Therefore, an infinite adaptation speed of the vessel

diameters and fixed flow rates in capillaries in each step are

assumed in this model. As summarized in Case 1, the constant flow

case is stable. In other words, the change of the blood flow is

assumed to be fully compensated by the metabolic flow regulation

process. As discussed above, when the compensation of the change

of blood flow is partially compensated (more than 1=4 of the

original change) by the metabolic flow regulation, it is sufficient to

render a stable adaptation.

Numerical Results for Stability of Vessel Trees
In Section Methods, we provide a simple but efficient numerical

method for the simulation of large vessel systems. The simulation is

helpful for understanding the stability behavior of the adaptation

of large vessel trees.

Vessel System. We simulate the vessel adaptation of an n-

level M-tree. As defined in Section Methods, an M-tree is a

complete symmetric binary vessel tree, whose diameters satisfy

Murray’s law and the vessel length of each vessel is proportional to

its diameter. We add perturbations at random to the initial value

of diameters. The constant C and the preset wall shear stress te in

Eq. (4) are assumed to be uniform in the vessel tree, and the

pressure drop DP along the vessel system is fixed at a constant

value. The sensitivity of the OTRs is assumed to be a constant,

which is the same for all the switches. Hence, the constitutive

relation of the OTRs is

fj qj

� �
~fj0{l qj{1

� �
, qj~

Qj

Q0j

ð11Þ

where fj0 is the reference OTR, Qj and Q0j are the flow rate of the

j-th capillary group and its reference value, respectively, and l is
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the constant sensitivity. When fj is greater than 1 (or less than 0),

the OTR is simply set to be 1 (or 0).

Stability. Now we consider the validation of the condition (10)

for stability of parallel vessel crowns. Note that, for large vessel

trees, we don’t have the value of DRf and Req yet, since there are

too many different states.

In order to consider the average effect of the many different

states, we define the effective resistance, Reff , of a vessel tree (or a

vessel crown) by

1

Reff
~
X

s

p sð Þ
R sð Þ , ð12Þ

which is a weighted harmonic mean resistance of all different

states. If the pressure drop DP on the vessel tree (or a vessel crown)

were independent of the state s, this effective resistance could be

used to compute the average blood flow in the root vessel by

�QQ~
X

s

p sð ÞDP sð Þ
R sð Þ ~

DP

Reff
: ð13Þ

The pressure drop generally depends on the state. For a large

vessel tree, however, it varies within a relatively small range for

most states (see detailed discussion in Section Methods). This

implies that Eq. (13) holds approximately and allows us to

compute the effective resistance of a large vessel tree (crown)

approximately by that of its two daughter crowns

Reff~Rrootz
Reff1Reff2

Reff1zReff2

, ð14Þ

where Rroot is the resistance of the root vessel of the vessel tree

(crown), and Reff1 and Reff2 are the effective resistance of its

daughter crowns respectively. The validity of Eq. (13) suggests that

we can use the effective resistance Reff to replace Req and calculate

DRf in the stability condition (10).

Next we consider the relation between DRf and the sensitivity l.

As discussed in Section Methods, when the vessel crowns are large,

we can compute the effective resistance recursively according to

Eq. (14), until the daughter crowns are sufficiently small (e.g., a 5-

level tree). In other words, we can compute the effective resistances

of small vessel crowns by definition, then use these effective

resistances to compute the resistances of large vessel crowns and

eventually the entire vessel tree. For a 5-level M-tree with uniform

OTR f , the profile of the effective resistance, R5 fð Þ, of the 5-level

M-tree is shown in Fig. 4.

Using Eq. (14), we can recursively compute an approximate

effective resistance, Rn fð Þ, of an n-level (nw5) vessel crown

Rn fð Þ&2{n n{5z25R5 fð Þ
� �

,

where Rn fð Þ is normalized by the resistance of the capillaries.

Therefore, from Eq. (11), we have

DRn

Rn

&
lR
0
5 fð Þ

n{5z25R5 fð Þ
DQ

Q0
: ð15Þ

The condition (15) leads to the following condition that the

sensitivity l satisfies.

l§lmin&
n{5z25R5 fð Þ
3|25 R

0
5 fð Þ

		 		 ð16Þ

for a locally stable n-level M-tree.

In our numerical simulations, we first add 5% random

perturbations on the vessel diameters of a 7-level M-tree initially

Di~Di0z0:05riDi0,

where Di0 is the vessel diameter before perturbation and ri is a

random number uniformly distributed in the interval {1,1½ �.
Then we evolve the vessel diameters according to the adaptation

equation (4). To maintain the stability, the lower bound of the

sensitivity lmin estimated from Eq. (16) is about 0:095 for f ~0:2

(R5 0:2ð Þ&0:385 and R
0
5 0:2ð Þ&1:570). In our simulation, the

adaptation is stabilized when l *> 0:091. This is in good agreement

with the estimate value. Therefore, the numerical simulation

confirms that the condition (10) is valid as an approximate stability

condition for large vessel trees (vessel crowns).

It can be seen from Eq. (16) that the lower bound of the

sensitivity is an increasing function of the level n of the vessel tree.

Therefore, a sensitivity l that can stabilize a relatively small vessel

tree may not be able to stabilize a large vessel tree. For example,

with l~0:091, a 7-level vessel tree is stable, but an 8-level vessel

tree is not stable. When the sensitivity l is not large enough, the

stability behavior of the adaptation is similar to the case in which

the OTRs are fixed, i.e., there is also a global degeneration. For

greater sensitivity l, the surviving vessel crown can be larger.

The total number of capillaries in our body is of an order of

1010, which corresponds to a lower bound of the sensitivity

lmin&0:269 estimated from the M-tree. The modeling study in

the work of [40] shows that 20–30% increase in Oxygen demand

results in an increase by 25–42% of perfused capillaries. This result

is in good agreement with the experimental data in the works of

[41,42], which shows that a comparable increment in Oxygen

demand is associated with an increment of capillary filtration

coefficient at about 18–43%. According to these studies, we can

estimate the sensitivity of the open-close switches, which is about

0:30. It is worthwhile to point out the following: First, for animals

Figure 4. Effective resistance of a 5-level M-tree. The resistance
and its derivative are decreasing functions of the OTR. The values in the
ordinate are normalized by the resistance of a capillary group.
doi:10.1371/journal.pone.0045444.g004
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that have bigger size than human beings, the lower bound of

sensitivity for adaptation stability is also greater; Second, other

means of metabolic flow regulation can have similar effects on the

compensation of blood flow. This can help to decrease lmin;

Third, further experiments which aim directly at the measurement

of the sensitivity hopefully can help us to obtain a more accurate

value of the sensitivity.

Micro-Vessel rarefaction. Micro-vessel rarefaction [43–48]

is a phenomenon in the adaptation of real vessel networks, i.e.,

some small arterioles, small venules, and capillaries become

degenerate in many different vessel crowns. Micro-vessel rarefac-

tion is closely connected with the pathogenesis of hypertension

[43–45]. Micro-vessel rarefaction induces an initial increase of

heart blood pressure in a hypertension patient, then the adaptation

processes generate a vicious circle between the increased blood

pressure and increased peripheral resistance [43–45], resulting in

thickened vessel walls and narrowed vessel lumens. In order to

understand the pathogenesis of hypertension, it is important

[43,49] to understand the origin of rarefaction in hypertension

patients.

Furthermore, experimental observations [46–48] suggest that

decreased tissue activity can also result in micro-vessel degener-

ation, whereas increased tissue activity can prevent micro-vessel

degeneration or even increase the number of micro-vessels. It is

also suggested [25,50,51] that a low partial pressure of oxygen in

arterial blood can slow micro-vessel rarefaction or prevent

rarefaction from occurring in the vessel system. Based on our

discussion on the behavior of the open-close process, decreased

tissue activity results in lower OTRs, whereas increased tissue

activity, or low partial pressure of oxygen, results in greater OTRs.

This leads us to hypothesize a scenario that, a global decrease of

OTRs (which means all OTRs in the vessel network decrease) can

induce micro-vessel rarefaction, whereas a global increase of

OTRs can help to prevent micro-vessel rarefaction.

This scenario is also confirmed in our numerical simulation. In

our simulation, we made a 10% random perturbation to the

reference blood flow rate of capillary groups Q0j (or to the

reference OTR f0j ). As a result, some of the capillaries have

smaller OTRs than the others. In the simulation, in different vessel

crowns, we have observed degeneration of capillary groups that

have small OTRs, but the entire vessel crowns are stabilized by a

sufficiently large sensitivity l (e.g., l~0:2 for the 7-level M-tree).

Furthermore, as we decrease the reference blood flow rate

proportionally throughout the entire system, more vessels become

degenerate, i.e., a global decrease of the OTRs can induce

rarefaction. In FIG. 5, we show the stability behavior of a parallel

system. The two capillary groups of the system have different

OTRs. As we decrease the OTRs of the two capillary groups

proportionally, the co-existing stable equilibrium may disappear.

This example suggests that a global decrease of the OTRs is a

possible origin of the micro-vessel rarefaction. This is consistent

with the experimental observations [25,46–48,50,51]. Because

there is also micro-vessel rarefaction in patients who are

susceptible to hypertension, it may be important to study the

behavior of OTRs in those patients.

Discussion

We have proposed a model of vessel adaptation taking into

account the minimal effects – the wall shear stress, the preset

decreasing tendency, and the open-close process of capillary

groups. The central assumption of our model is that the open-close

switch of capillary flow responds to local tissue states, and enables

the vessel system to meet the local tissue demand. An OTR is

defined for each capillary group to characterize the mean effect of

the open-close switch. For a large vessel system, the adaptation

stability is achieved when the sensitivity of the open-close switch to

blood flow is sufficiently large. Other means of metabolic flow

regulation can also help to achieve the adaptation stability.

Comparing to the previous works of [8–10,33,34], our model does

not introduce additional reference flow rate and metabolic

stimulus in large vessels. In our model, such an additional stimulus

is induced by the change of blood flow (hence, wall shear stress)

through the metabolic flow regulation of the low level vessels. In

other words, it is the short term response (metabolic flow

regulation) of the vessel system that stabilizes its long term

adaptation. We point out that our model allows for the

degeneration of vessels through vessel adaptation.

Our numerical studies on large vessel trees suggest that a global

decrease of OTRs can lead to micro-vessel rarefaction. This result

is consistent with the existing experimental observations. Because

the pathology of hypertension also involves the micro-vessel

rarefaction process, it might be important to study the behavior of

OTRs in patients who are susceptible to hypertension.

The effects manifested in our minimal model are already able to

achieve the adaptation stability of arterial trees by responding to

tissue demand. However, other effects can also be important in the

vessel adaptation. For example, (1) although we have idealized the

flow regulation by the on-off control of capillary flows, the effects

of flow regulation by arterioles upstream of the terminal arterioles,

which modulate flow without shutting it off, can also be important

for maintaining the adaptation stability. (2) The circumferential

wall stress is important in remodeling the wall-to-lumen ratio

[10,11]. Chronic high pressure may result in hypertrophy, which is

also a characteristics of hypertension [10,11]; (3) The existence of

parallel capillaries and capillary loops in a capillary group suggests

the existence of additional possible stimulus in the capillary bed.

Figure 5. Global decrease of OTRs leads to vessel rarefaction.
For the parallel system shown in Figure 1 (C), the OTRs of the two
switches are different. When the OTRs decrease with the ratio f1=f2

fixed, the stable co-existing equilibrium state becomes unstable.
Similarly, for complex vessel systems, when there is a global decrease
of the OTRs, the vessels with small OTRs may become degenerate and
micro-vessel rarefaction occurs. If the OTRs decrease too much, there
can be a global degeneration of the vessel system.
doi:10.1371/journal.pone.0045444.g005
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This additional stimulus may directly respond to local tissue states;

(4) The generation of new vessels [52] is important for the growth

of individuals and is important for chronic increase of tissue

activity.

Methods

Stability of the System in Case 3
For simplicity, we assume that in Fig. 1(C) two capillaries have

the same vessel length L and the same fixed OTR f0. The mean

wall shear stresses of the two vessels are obtained from Table 1 by

a weighted sum

ti~
m1f 2

0 Di

m2zD4
1zD4

2

z
m1f0 1{f0ð ÞDi

m2zD4
i

, i~1,2,

where m1~
32gDP

pR0
and m2~

128gL

pR0
. At the co-existing equilibri-

um state, the two vessels have the same diameter D0, which

satisfies

te~
m1f 2

0 D0

m2z2D4
0

z
m1f0 1{f0ð ÞD0

m2zD4
0

: ð17Þ

The Jacobian matrix at the equilibrium can be obtained from the

adaptation equation (4)

J~

C

D0

m1f 2
0 m{2D4

0

� �
m2z2D4

0

� �2
z

m1f0 1{f0ð Þ m{3D4
0

� �
m2zD4

0

� �2
{

4m1f 2
0 D4

0

m2z2D4
0

� �2

{
4m1f 2

0 D4
0

m2z2D4
0

� �2

m1f 2
0 m2{2D4

0

� �
m2z2D4

0

� �2
z

m1f0 1{f0ð Þ m2{3D4
0

� �
m2zD4

0

� �2

0
BBBBB@

1
CCCCCA
:
ð18Þ

The local stability of the co-existing equilibrium state implies

that both eigenvalues of the Jacobian matrix (18) are negative.

This is equivalent to

7f0{6ð ÞD8
0zm2 3f0{1ð ÞD4

0zm2
2v0: ð19Þ

For f0v6=7, if te is sufficiently small, the solution of D0

obtained from Eq. (17) satisfies the condition (19), and the co-

existing equilibrium state for the two vessels is stable.

Numerical Methods
Here, we provide a simple but efficient numerical method for

the simulation of the adaptation of vessel trees. The numerical

method can be further generalized to study more complicated

models and more complex vessel networks.

The general numerical methods for evolving ordinary differen-

tial equations, such as the Euler method and the Runge-Kutta

method, can be directly applied to the adaptation system described

by Eq. (4). At each time step, for a general vessel network, with all

the vessel diameters (Di) known, we can obtain the wall shear stress

(ti) needed in Eq. (4) for all the vessels as follows: First, we compute

the resistance, Ri, of all vessels by using Eq. (3), using the known

diameters, Di; Second, using Kirchoff’s law, we obtain a system of

linear equations for the blood flows Qi in the vessels and the blood

pressures Pj at the vessel junctions. The coefficients of the linear

equations contain only resistances of the blood vessels. We solve

the system of linear equations for the blood flows, Qi, and blood

pressures, Pi, of all vessels; Third, now with blood flows Qi and

diameters Di known, we can compute the wall shear stress, ti, by

using Eq. (2). Then, we can evolve one time step to obtain the

diameters at the next time step using the adaptation equation (4).

When the vessel network has a tree structure as shown in Fig. 6,

there is a simple way to compute the wall shear stress: by using

Kirchoff’s law, we first recursively compute the resistance of all

vessel crowns by their daughter crowns

R~Rrootz
R1R2

R1zR2
, ð20Þ

where Rroot is the resistance of the root vessel of the crown. R1 and

R2 are the resistances of its two daughter vessel crowns,

respectively. Using the resistance of the entire vessel tree, which

is obtained through the above recursive process, we can obtain the

blood flow in the root vessel of the tree. As can be seen directly

from Kirchoff’s law, the blood flows in the daughter crowns of the

root vessel are

I1~
R2Iroot

R1zR2
, I2~

R1Iroot

R1zR2
, ð21Þ

respectively. Then, Eq. (21) allows us to compute the blood flows

in all vessels recursively.

When we take into account the effect of the open-close switch,

each capillary group in the vessel tree has two states – open and

close. In this case, the wall shear stress in the adaptation equation

(4) is replaced by the weighted average value in Eq. (5).

When the vessel tree is small, i.e., the level number N is small,

we can directly compute the average wall shear stress using all the

terms in Eq. (5). However, when N is large, the number of states is

too large to numerically evaluate Eq. (5) efficiently, since there are

2N different states. Therefore, we need to devise further a

numerical algorithm for computing �tti efficiently.

Clearly, we can compute the average blood flow rate in the

vessel tree (or vessel crown) as

�QQ~
X

s

p sð ÞQ sð Þ~
X

s

p sð ÞDP sð Þ
R sð Þ , ð22Þ

where R sð Þ is the resistance of the vessel tree at state s. If pressure

drop DP on a vessel crown were independent on the state s, the

effective resistance defined in Eq. (12) can be used to compute the

blood flow by using Eq. (13). For small vessel crowns, we can

compute the effective resistance exactly by using Eq. (12).

However, for large vessel crowns, the exact evaluation of Eq.

(12) has the same numerical difficulty as Eq. (22). To overcome

this difficulty, we use the following approximate method instead of

Eq. (12) to evaluate the effective resistance

Reff~Rrootz
Reff1Reff2

Reff1zReff2
, ð23Þ

where Reff1 and Reff2 are the effective resistance of the daughter

crowns or a root vessel, respectively. Eq. (23) is constructed by an

analogy to Eq. (20), aiming at a recursive evaluation of the

effective resistance for large crowns. In general, Eq. (23) is not

exact, mainly because the pressure drop across the parallel part
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depends on the state. If the pressure drops on the daughter crowns

were the same for different states, Eq. (23) would be exact. As can

be expected, if the pressure drops do not have a strong dependence

on the states, one can use Eq. (23) to compute the effective

resistance Reff approximately. Fortunately, when two parallel

crowns are large, the probability of extreme states in which nearly

all the capillary groups are open or nearly all are close is very

small. As a result, for most states, the blood pressure across the

parallel part varies within a relatively small range. By this

argument, Eq. (23) holds approximately for large vessel crowns.

The error between the exact effective resistance obtained via

Eq. (12) and the approximate resistance obtained by Eq. (23) by

using the exact effective resistance of its two daughter crowns, is

shown below in detail. This error becomes very small when a

vessel crown is large. For example, for a vessel crown with 16
capillaries (both of its two daughter crowns have Nc~8
capillaries), the relative error is about 1% for a typical vessel tree

with typical values of OTR.

Using Eq. (23), we can invoke the following numerical method

to compute the wall shear stress for a large vessel tree (see Fig. 6).

First, we compute the exact effective resistance of small crowns,

each of which has Nc capillaries; Second, we replace the vessel

crowns by effective vessels with the same effective resistance. This

allows us to compute blood flow and wall shear stress in the large

vessels and the effective vessel approximately, by the recursive

process discussed at the beginning of this section; Third, we use the

blood flow in the effective vessel to compute the wall shear stress in

small crowns. Using this numerical method, for a large vessel tree

with M crowns, each of which has Nc capillaries, the computa-

tional cost of each time step is reduced from O N2Nð Þ to O N2Ncð Þ,
where N~MNc is the total number of capillaries.

Error Analysis in Evaluating the Effective Resistance
Here we consider the computational error when we use Eq. (23)

to calculate the effective resistance for both symmetric (M-tree)

and asymmetric (Fibonacci Vessel Tree) binary vessel trees.

M-Tree. Let n be the level number of the vessel tree. An n-

level M-tree is a complete symmetric binary vessel tree, whose

diameters satisfy Murray’s law and the length of each vessel is

proportional to its diameter. The capillary (group) number and the

vessel number of the n-level M-trees are shown in Table 2.

For this tree, the diameters and resistances satisfy

D nð Þ~2 n{1ð Þ=3D0, R nð Þ~21{nR0,

where R0 is the resistance of the capillaries. Using Eq. (23), the

effective resistance of the (nz1)-level vessel tree Reff nz1ð Þ is

obtained from that of its two n-level crowns

Reff nz1ð Þ&Rnz1zReff nð Þ=2,

where Rnz1 is the resistance of the root vessel of the (nz1)-level

tree. At the same time, we can directly calculate the effective

resistance from the definition. In order to compare the values

obtained by these two methods, we define the relative error as

error nð Þ~ Reff nz1ð Þ{R
0
eff nz1ð Þ

Reff nð Þ ,

where R
0
eff nz1ð Þ is the exact effective resistance obtained from

the definition. The numerical results of the relative error in

percentage are shown in Table 3.

Fibonacci vessel tree. Since the real vessel tree is not

symmetric, to consider the asymmetric case we define a Fibonacci

tree (F-tree): a 1-level F-tree is a capillary with diameter D0; a 2-

level F-tree is a symmetric vessel tree with two daughter 1-level F-

trees; and an n-level F-tree (nw2) has an n{1ð Þ-level left daughter

F-tree and an n{2ð Þ-level right daughter F-tree. The tree is also

assumed to satisfy Murray’s law. We have Table 4 for the F-trees.

Similarly, the relative error is defined as

error nð Þ~
Reff nz1ð Þ{Rnz1{

Reff nð ÞReff n{1ð Þ
Reff nð ÞzReff n{1ð Þ

Reff nð Þ :

We tabulate the relative errors (in percentage) in Table 5.

Figure 6. A vessel tree, its flow circuit and its effective circuit. In
the simulation, in order to compute blood flows in all the vessels, small
vessel crowns are replaced by their corresponding effective resistances.
doi:10.1371/journal.pone.0045444.g006

Table 2. Vessel numbers and capillary numbers of M-trees.

(n)F-tree level 1 2 3 4 5

(2n{1)capillary number 1 2 4 8 16

(2n{1)vessel number 1 3 7 15 31

doi:10.1371/journal.pone.0045444.t002

Table 3. Relative errors in percentage for the effective
resistance of M-trees.

OTR error(1) error(2) error(3) error(4)

0.15 20.42 6.15 2.33 0.94

0.2 18.95 5.51 2.00 0.76

0.3 16.08 4.34 1.45 0.52

doi:10.1371/journal.pone.0045444.t003

Table 4. Vessel numbers and capillary numbers of F-trees.

F-tree level 1 2 3 4 5 6 7

capillary number 1 2 3 5 8 13 21

vessel number 1 3 5 9 15 25 41

doi:10.1371/journal.pone.0045444.t004
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The above error is that of resistance, which also represents the

error of the blood flow in the root vessel of the two crowns. Since

the position of the capillaries in the tree is also asymmetric, there is

an additional error due to the asymmetry, as in Table 6 (maximum

error in percentage of all capillaries).

In conclusion, the relative error in computing the effective

resistance using (23) decreases as the capillary number of the

crown increases. When a vessel has 8 downstream capillaries, the

relative error is about 1 for corresponding M-tree and F-tree.
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gefässsystems. Stuttgart: Enke Verlag.

27. Murray CD (1926) The physiological principle of minimum work. I. The

vascular system and the cost of blood volume. Proc Natl Acad Sci (USA) 12:

207–214.

28. Lipowsky HH, Zweifach BW (1974) Network analysis of micro circulation of cat

mesentery. Microvasc Res 7: 73–83.

29. Dobrin PB (1995) Mechanical factors associated with the development of intimal

and medial thickening in vein grafts subjected to arterial pressure: a model of

arteries exposed to hypertension. Hypertension 26: 38–43.

30. Hacking WJG, Vanbavel E, Spaan JAE (1996) Shear stress is not sufficient to

control growth of vascular networks: a model study. Am J Physiol –Heart 270:

H364–H375.

31. Rodbard S (1975) Vascular caliber. Cardiology 60:4–49.

32. Hudetz AG, Weigle CGM, Fenoy FJ, Roman R (1992) Use of fluorescently

labeled erythrocytes and digital cross-correlation for the measurement of flow

velocity in the cerebrocorticalmicrocirculation. Microuasc Res 43: 334–341.

33. Bartha K, Rieger H (2006) Vascular network remodeling via vessel cooption,

regression and growth in tumors. J Theor Biol 241: 903–918.

34. Lee DS, Rieger H, Bartha K (2006) Flow Correlated Percolation during

Vascular Remodeling in Growing Tumors. Phys. Rev. Lett 96: 058104.

35. Clark MG, Rattigan S, Barrett EJ, Vincent MA, Poole DC, et al. (2008)

Point:Counterpoint: There is/is not capillary recruitment in active skeletal

muscle during exercise. J Appl Physiol 104: 889–891.

36. Widmer RJ, Stewart RH, Young MF, Laurinec JE, Laine GA, et al. (2007)

Application of local heat induces capillary recruitment in the Pallid bat wing.

Am J Physiol Regul Integr Comp Physiol 292: R2312–R2317.

37. Folkow BO, Lundgren O, Wallentin I (1963) Studies on the relationship between

flow resistance, capillary filtration coefficient and regional blood volume in the

intestine of the cat. Acta Physiol Stand 57: 270–283.

38. Granger DN, Kvietys PR, Perry MA (1982) Role of exchange vessels in the

regulation of intestinal oxygenation. Am J Physiol 242: G570–G574.

39. Gödde R, Kurz H (2001) Structural and biophysical simulation of angiogenesis

and vascular remodeling. Dev Dyn 220: 387–401.

40. Granger DN, Granger HJ (1983) Systems analysis of intestinal hemodynamics

and oxygenation. Am J Physiol 245: G786–G796.

41. PawlikWW, Fondacaro JD, Jacobson ED (1980) Metabolic hyperemia in canine

gut. Am J Physiol 239: G12–G17.

42. Shepherd AP (1979) Intestinal capillary blood flow during metabolic hyperemia.

Am J Physiol 237: E548–E554.

43. Levy BI, Ambrosio G, Pries AR, Struijker-Boudier HA (2001) Microcirculation

in hypertension: a new target for treatment? Circulation 104: 735–740.

44. Prewitt RL, Chen I, Dowell R (1982) Development of microvascular rarefaction

in the spontaneously hypertensive rat. Am J Physiol 243: H243–H251.

45. Greene AS, Tonellato PJ, Lui J, Lombard JH, Cowley AW (1989) Microvascular

rarefaction and tissue vascular resistance in hypertension. Am J Physiol 256:

H126–H131.

46. Kano Y, Shimegi S, Takahashi H, Masuda K, Katsuta S (2000) Changes in

capillary luminal diameter in rat soleus muscle after hind-limb suspension. Acta

Physiol Scand 169: 271–276.

Table 5. Relative errors in percentage for the effective
resistance of F-trees.

OTR error(2) error(3) error(4) error(5) error(6)

0.15 8.89 3.57 1.65 0.75 0.36

0.2 8.11 3.16 1.44 0.65 0.30

0.3 6.65 2.48 1.08 0.47 0.22

doi:10.1371/journal.pone.0045444.t005

Table 6. Additional error due to asymmetry in percentage for
the effective resistance of F-trees.

OTR a error(2) a error(3) a error(4) a error(5) a error(6)

0.2 0 1.65 0.61 0.48 0.21

doi:10.1371/journal.pone.0045444.t006

Vessel Adaptation with Capillary Flow Fluctuations

PLOS ONE | www.plosone.org 12 September 2012 | Volume 7 | Issue 9 | e45444



47. Frisbee JC, Samora JB, Peterson J, Bryner R (2006) Exercise training blunts

microvascular rarefaction in the metabolic syndrome. Am J Physiol Heart Circ
Physiol 291: H2483–H2492.

48. Arvola P, Wu X, Kahonen M, Makynen H, Riutta A, et al. (1999) Exercise

enhances vasorelaxation in experimental obesity associated hypertension.
Cardiovasc Res 43: 992–1002.

49. Antonios TFT, Rattray FM, Singer DRJ, Markandu ND, Mortimer PS, et al.
(2003) Rarefaction of skin capillaries in normotensive offspring of individuals

with essential hypertension. Bri Med J 89: 175–178.

50. Prewitt PL, Cardoso SS, Wood WB (1986) Prevention of arteriolar rarefaction in

the spontaneously hypertensive rat by exposure to simulated high altitude.

J Hypertens 4: 735–740.

51. Banchero N (1987) Cardiovascular response to chronic hypoxia. Ann Rev

Physiol 49: 465–76.

52. Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6:

389–395.

Vessel Adaptation with Capillary Flow Fluctuations

PLOS ONE | www.plosone.org 13 September 2012 | Volume 7 | Issue 9 | e45444


