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Abstract: According to various estimates, only a small percentage of existing viruses have been
discovered, naturally much less being represented in the genomic databases. High-throughput
sequencing technologies develop rapidly, empowering large-scale screening of various biological
samples for the presence of pathogen-associated nucleotide sequences, but many organisms are yet to
be attributed specific loci for identification. This problem particularly impedes viral screening, due to
vast heterogeneity in viral genomes. In this paper, we present a new bioinformatic pipeline, VirIdAl,
for detecting and identifying viral pathogens in sequencing data. We also demonstrate the utility of
the new software by applying it to viral screening of the feces of bats collected in the Moscow region,
which revealed a significant variety of viruses associated with bats, insects, plants, and protozoa.
The presence of alpha and beta coronavirus reads, including the MERS-like bat virus, deserves a
special mention, as it once again indicates that bats are indeed reservoirs for many viral pathogens.
In addition, it was shown that alignment-based methods were unable to identify the taxon for a
large proportion of reads, and we additionally applied other approaches, showing that they can
further reveal the presence of viral agents in sequencing data. However, the incompleteness of viral
databases remains a significant problem in the studies of viral diversity, and therefore necessitates
the use of combined approaches, including those based on machine learning methods.
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1. Introduction

Viruses can spread very swiftly, as humanity has seen time after time—and again
in 2019, when SARS-CoV-2 struck and quickly disseminated internationally to cause the
COVID-19 pandemic worldwide. Statistical simulations, albeit speculative, estimate that
there may be over 320,000 different viruses [1], only about 200 of which have been reliably
connected to human infections [2]. Although the number of known pathogens has steadily
increased over the decades [3], emergence of novel viral infections has also been on the rise
during recent years, for example, SARS [4,5], Ebola [6], MERS [7,8], Zika [9], and the recent
COVID-19 outbreak [10]. Although it has not been reliably established [10,11], it is likely
that the new coronavirus infection was transmitted to humans from bats, possibly through
an intermediate host [12–14]. Thus, detailed studies of various types of biological samples
from previously ignored locations and sources may contribute to early detection of new
viral pathogens and better evaluation of the potential danger to human wellbeing.

High-throughput sequencing (NGS, next-generation sequencing) is a combination of
technologies that allow for simultaneous reading of a large number of genomic fragments
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with high accuracy and reliability, to the point where their incorporation in routine medical
practices is no longer seen as extravagant [15]. The idea of using NGS for the detection
of viral pathogens was proposed about 10 years ago [15–17], soon after the appearance
of sequencing techniques, and the concept has been gaining momentum rapidly as the
technology advanced. The use of NGS to study viral diversity is at this time undoubtedly
one of the most promising approaches, as suggested by its active application in such
projects in recent years [18–22]. Researchers are primarily implementing metagenomic
sequencing because it is a powerful tool for detecting a complete spectrum of viruses [23,24].
Due to its capabilities, the metagenomic approach has become more common in clinical
and environmental studies [25,26].

However, despite the advantages mentioned above, metagenomic sequencing has
apparent limitations inflicted by a plethora of factors: structures of pathogens, different
efficiency of nucleic acid (NA) isolation from different viruses, GC content of their genomes,
and others [27–29]. Separately, there is a question of determining the sensitivity of the
method, as well as the problem of excess NA from host cells, bacteria, and fungi. However,
the applicability of the approach has been repeatedly evaluated for the analysis of clinical
samples, predicting valuable benefits for clinical trials [30–32].

Another issue at hand concerns data analysis. The pathogen content in a sample is not
known in advance and can only be vaguely estimated by indirect evidence, for example,
on the basis of the severity of the onset of the disease [33]. Therefore, evaluation of the
minimum required number of sequencing reads per sample to ensure reliability of the
readouts becomes a challenge and, in a way, a minefield. For instance, underestimation
of this parameter results in a negligible and uninformative fraction of target sequences
in the final fastq sequencing data file, falling far behind 1% [34,35]. Because the metage-
nomic approach clearly focuses on relative amounts of NA rather than on absolute values,
setting the appropriate thresholds for quality estimation proves crucial for the reliability
of the method.

One more problem in the search for viral pathogens is the bioinformatic analysis
of NGS data, which is full of intricacies and tight spots. Pipelines for searching viral
sequences in metagenomic data most often follow the following sequence: preprocessing,
filtering, assembling, searching, and postprocessing [36]. In metagenomic sequencing, the
overwhelming majority of reads refer to the genomes of the host and various incidental
organisms. Therefore, taxon-based filtering saves processing time and computational
resources by removing “unnecessary” sequences from the data before performing further
steps. This approach has been ubiquitously introduced into processing pipelines, for
example VirusSeeker [37], PAIPline [38], LAZYPIPE [39], and ViroMatch [40]. The search
in the reference database can be conducted both for the raw reads and for the assembled
contigs. Longer fragments can be assigned to the corresponding taxonomic group with
greater accuracy. However, due to sequencing errors, chimeric sequences can sometimes
be mistakenly assembled. Contig assembly is used in pipelines such as VIP [41] and
virMine [42].

To determine the qualitative composition of metagenomic data, reads are classified
on the basis of their attribution to a particular organism. The relative content of reads
from a specific organism in the sample can also be assessed. The attribution of a read to
a particular organism is often performed with similarity search, i.e., comparing acquired
sequences against a reference database. BLAST is a popular tool for this task, but it is
computationally wasteful to classify millions of reads in NGS data without prior filtering.
To address this issue, more precise matches are searched. Examples of programs that
exercise this approach include Kraken [43], Kraken2 [44], Centrifuge [45], Diamond [46],
and megaBLAST [47]. These programs rapidly process input data; however, this is at
the cost of sensitivity, as opposed to BLAST [48]. Additionally, the speed of the utilities
decreases as sizes of reference databases expand—a problem which is yet to be solved.
Another approach is the use of hidden Markov model profiles for searching in databases of
protein domain profiles. This type of search allows for finding distant homologies and is
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resistant to sequence variability. An example of software that implements this approach
is the HMMER tool [49], also as a part of VirSorter [50], virMine [42], and METAVIRAL
SPADES [51].

The detection of viruses that significantly differ from known ones is a problem of
scientific and clinical significance. One way of solving it concerns the use of machine learn-
ing. Models are trained on control sets of known viral sequences and afterwards applied
to the unidentified sequences. The model predicts the likelihood that the reads belong
to viral sequences. Random forest models were used in VirFinder [52], VirSorter2 [53],
and MARVEL [53,54]. Deep learning models for virus identification were employed in
Seeker [55], DeepVirFinder [56], ViraMiner [57], and DeePaC-vir [58].

However, many experimental laboratories that plan to use NGS in the analysis of
clinical and environmental samples to search for fragments of viral genomes are bound to
stumble upon a lack of qualified bioinformaticians or the necessity to develop software
practically from scratch, which is unreasonable for episodic studies of individual samples.
In this work, we attempted to create a convenient pipeline (VirIdAl) for analyzing NGS data,
with the main task of identifying known viral pathogens. An important distinguishing
feature of the algorithm is the ability to select those sequences that lack noticeable homology
with reference sequences and require further investigation, for example, to verify their
attribution to pathogenic microorganisms utilizing machine learning. The Materials and
Methods section provides a detailed description of the pipeline operation and a brief
manual. During its development, we set our main focus on the performance, since the
alignment stage can take a very long time, becoming a critically limited resource during
unforeseen infection outbreaks.

We also demonstrate the use of our new VirIdAl pipeline for analyzing NGS data
obtained after processing biological material (feces) of bats collected in the Moscow region
in 2015 and present our findings with regard to our original goal. All samples were found
to contain genome fragments of the Coronaviridae and reads from other viral families.
Importantly, several samples indicated the presence of MERS-like betacoronavirus, further
indicating that bats are indeed a reservoir for many viral pathogens, some of which can
be of particular interest for genomic epidemiology [59,60]. Thus, we believe that our new
tool could be helpful for researchers using metagenomic NGS to study viral diversity,
and especially for those who occasionally use sequencing to detect viral agents, including
potentially new ones.

2. Materials and Methods
2.1. Pipeline Description

At the first stage of the pipeline, the input fastq files validity is verified using the
fastQValidator tool (https://github.com/statgen/fastQValidator, accessed on 23 April
2021). If the input files contain paired-end reads, the fastp tool [61] is used to merge the
overlapping reads, minimizing the amount of processed data and increasing the sequence
length for a more accurate and specific search. Fastp is used then for quality filtering to
trim adapters, discard reads with an average “Phred quality score” below a given value,
remove low-quality nucleotides from the 5’- and 3’-ends of the sequence applying a sliding
window, and discard sequences shorter than the specified length. The file obtained after
filtering “fastq” is sequentially aligned to a given list of genomes, which allows for quick
filtering out of host sequences and prokaryotic sequences that are uninformative for further
targeted search. Alignment is performed using the Bowtie 2 utility [62] in default mode.
Reads that are precisely aligned with the given genomes are attributed to the host and,
therefore, discarded.

The resulting fastq file is then converted to the fasta format, and the sequences in the
new file are clustered using the vsearch utility [63] with the cluster-fast option and with the
given identity. The resulting “centroid” sequences, i.e., representative sequences in each
cluster, are passed downstream of the pipeline.

https://github.com/statgen/fastQValidator
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The “search phase”, which consumes most of the processing time, accurately identifies
known (or similar to known) viral sequences from the sequencing data. The search for
known viral sequences consists of two sub-steps: (1) alignment of sequences from the
input files to the nucleotide and amino acid sequences of viruses, and (2) alignment of the
potential viral sequences identified at the first stage to the full NCBI nt and nr databases.
At the first step, the high sensitivity of the search allows for the selection of the sequences
that most likely belong to viruses. This stage reduces the number of sequences that will be
aligned to the full non-redundant NCBI nt and nr databases, thus significantly reducing
the duration of the next step. A search in exclusively virus-related databases proves much
faster than scanning against the whole nt/nr. At the first step, a search is carried out using
the megablast utility [47] and the Diamond utility [46] in the “sensitive” mode. A specific
E-value threshold can be set for the search. The higher the threshold value, the higher
the sensitivity of the assay, which allows for the detection of distant homology between
sequences, although at the cost of reduced specificity.

At the second step, the alignment is performed using the megablast tool for nucleotide
(nt) sequences and Diamond in “fast” mode for amino acid (nr) sequences. The NCBI nt
and nr databases contain a high number of nucleotide and amino acid sequences from a
wide variety of organisms, and this number is constantly growing. In this step, the E-value
threshold is adjustable: low threshold provides results with fewer false positives, and the
search identifies sequences with close homology. For each sequence, the most probable
search result is then selected (i.e., with the lowest E-value). On the basis of these results, it
is possible to select those sequences that have been identified as viral. The flow chart in
Figure 1 depicts the steps of the pipeline.
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Figure 1. Visual representation of the VirIdAl bioinformatics pipeline for analyzing high-throughput sequencing data for
searching DNA fragments of viral pathogens (virus reads), as well as detection of sequences that cannot be identified only
on the basis of homology with known genomes (unidentified reads).

2.2. Computation Details

In order to demonstrate the usage of the pipeline, we processed 23 datasets obtained
from 13 bat samples (see experimental details below). The preprocessing of the datasets
included quality control, merging, filtering, and clustering stages. The quality control stage
consists of removing adapters, low complexity sequences (complexity below 30%), and
sequences with an average PHRED quality score of less than 20 and with a length shorter
than 36. The sequences were trimmed at the start and the end with a sliding window size
of 9 bp and an average quality score of 20.
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The filtering stage included mapping the sequences to a set of bacterial and archaeal
genomes and the Pipistrellus pipistrellus reference genome (https://www.ncbi.nlm.nih.
gov/genome/?term=txid59474, accessed on 25 March 2021). The genomes of bacteria
and archaea were downloaded from the RefSeq database on 19 March 2021 and 23 March
2021, respectively, using genome_updater (https://github.com/pirovc/genome_updater,
accessed on 19 March 2021). Complete genome, chromosome, scaffold, and contig assembly
level sequences were included in the filtering dataset. Clustering was performed with the
default vsearch options and a “0.9” identity threshold.

The virus identification procedure included the virus search stage and the validation
of the results at the additional search stage. Virus hits from both analyses were added to
the results. For the first step of the virus search stage, the E-value threshold 1 × 10−3 was
used both for megablast and Diamond search in the virus nucleotide databases (RefSeq
and GenBank) downloaded from https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/ on
25 March 2021. Virus protein database featured RefSeq sequences and was downloaded
from https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/ on 25 March 2021. During the
second step of the virus search stage, the sequences were aligned to the NCBI nt and nr
databases. E-value threshold 1 × 10−10 was used both for nucleotide and protein search.
The additional search was performed using the 1 × 10−10 E-value threshold for megablast
and Diamond search in the nt and nr databases.

2.3. Sample Collection, Storage, and Library Preparation

In 2015 fecal samples were collected from 13 bats of the following species: Myotis
dasycneme (n = 2), Myotis daubentonii (n = 2), Myotis brandtii (n = 1), Nyctalus noctula (n = 2),
and Pipistrellus nathusii (n = 5), inhabiting on the territory of the Zvenigorodsky district of
the Moscow region (Sharapovskoe forestry). For one sample, species of the source bat could
not be established. The fecal pellets content was mainly of Arthropoda chitin remnants and
pellets matched in size, form, and consistence to pellets of small Vespertilionid family bat.
Fecal samples were placed in a transport solution with a mucolytic agent (TSM; Amplisens,
Russia) and were stored at −70 ◦C until the experiments began.

RNA extraction was performed using the QIAamp Viral RNA Mini Kit (Qiagen,
Hilden, Germany) and QIAcube automatic station (Qiagen, Hilden, Germany) according
to the manufacturer’s protocol with elution in 50 uL of AVE buffer (elution buffer). At
the same time, viral RNA extraction kits are also known to be applicable for metage-
nomic analysis of the DNA viruses [64]. Reverse transcription was performed using
Reverta-L (Amplisens, Moscow, Russia) to obtain the first strand. The following library
preparation steps were performed using the NEBNext Ultra II Directional RNA Library
Prep Kit for Illumina (NEB, Ipswich, MA, USA) according to the manufacturer’s proto-
col, excluding the first strand cDNA synthesis. We replaced the NEB First Strand cDNA
Synthesis step with Reverta-L (Amplisens, Moscow, Russia) since the RNA was expected
to be degraded during transportation. Adaptor Ligation and PCR Enrichment of Adap-
tor Ligated DNA were performed using NEBNext Multiplex Oligos for Illumina (NEB,
Ipswich, MA, USA). Paired-end sequencing was performed on the Illumina HiSeq 1500
platform using HiSeq Rapid SBS Kit v2 (500 cycles) and HiSeq PE Rapid Cluster Kit
v2. The raw fastq files were uploaded to NCBI sequence read archive and are avail-
able under the following IDs: SRR15508011 (Bat sample number-2), SRR15508267 (22),
SRR15508152 (6), SRR15524530 (20), SRR15524163 (16), SRR15524477 (19), SRR15525307 (21),
SRR15526222 (27), SRR15533060 (30), SRR15533116 (31), SRR15534018 (36), SRR15540904
(33), SRR15540905 (23).

3. Results

We performed high-throughput sequencing of 13 samples of bat feces collected in 2015
in the Moscow region and applied our newly developed analysis pipeline VirIdAl to detect
and identify viral DNA sequences. Taxonomic classification was assigned to each sequence
identified by the pipeline as viral. Retroviridae, Metaviridae, and phage-related sequences

https://www.ncbi.nlm.nih.gov/genome/?term=txid59474
https://www.ncbi.nlm.nih.gov/genome/?term=txid59474
https://github.com/pirovc/genome_updater
https://www.ncbi.nlm.nih.gov/labs/virus/vssi/#/
https://ftp.ncbi.nlm.nih.gov/refseq/release/viral/
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were discarded from further analysis. Figure 2 illustrates the presence of viruses belonging
to specific families found in the samples. The majority of the identified viral sequences can
be assigned to viruses hosted by bats, insects, protozoa, and plants, with bat and insect
viruses being the most prevalent in the readouts. Viral reads that belong to the Iflaviridae
family, hosted by insects, were found in almost all samples analyzed in this study. The
sequences of this family have been identified as Iflaviridae sp. and as various types of
Iflaviruses, such as Infectious flacherie virus, Sacbrood virus, Soybean thrips iflavirus, and Culex
Iflavi-like virus. Adintoviridae family viruses were found in almost all samples, and the
most common viruses were Spodoptera moth adintovirus, Megastigmus wasp adintovirus, Bos-
associated insect adintovirus, Drosophila-associated adintovirus, and Ladona dragonfly adintovirus.
Bracoviruses from the Polydnaviridae family were present in the vast majority of samples;
Cotesia sesamiae Mombasa bracovirus and Cotesia vestalis bracovirus were the most common
across all samples. Among the Poxviridae family viruses discovered, viruses hosted and
transmitted by insects predominate, such as Betaentomopoxvirus and Leporipoxvirus. Among
the viruses of the Iridoviridae family in the samples, the most common sequences are
detected as Armadillidium vulgare iridescent virus and Invertebrate iridescent virus. Another
family of insect viruses, Baculoviridae, was found in more than half of the samples, and the
most common viruses were Lambdina fiscellaria nucleopolyhedrovirus and Mamestra configurata
nucleopolyhedrovirus A. Nodaviridae family viruses were associated with bats (Bat nodavirus)
or insects (Flock House virus, Newington virus, Black beetle virus).

All samples were also shown to contain Phycodnaviridae viruses hosted by algae. The
most common alignments for Phycodnaviridae were Phaeocystis globosa virus, Yellowstone
Lake phycodnavirus, Organic Lake phycodnavirus, and Paramecium bursaria Chlorella virus.
Protozoa viruses of the Mimiviridae family were found in all samples. Klosneuvirus KNV1,
Bodo saltans virus, Cafeteria roenbergensis virus BV-PW1, and Hyperionvirus sp. were the most
often detected members of this family across all samples. More than half of the samples
contained Marseilleviridae viral sequences. CRESS-DNA viruses from Cressdnaviricota
phylum were present in almost all samples.

As follows from Figure 2, all the files contain reads from the Coronaviridae family,
which is not surprising as bats are well-known reservoirs of coronaviruses [65,66]. Figure 3
shows the viral genera found in the analyzed samples that bats can host. Coronavirus
sequences were discovered in all the analyzed samples. Alphacoronavirus reads were
detected in all the samples, except for 16 and 22, but sample 16 contained unclassified
Coronavirinae sequences.

The contigs in all samples were assembled with megahit [67]. The contig sequences
were searched in the nt database using megablast and in the nr database using Diamond.
The contigs aligned to Alphacoronavirus and Betacoronavirus sequences were selected
for further analysis. Alphacoronavirus contigs were assembled in samples 2, 21, 23, 31,
and 33. The longest contig of 28,448 bp was obtained from sample 21 and matched best
MN065811.1 Bat alphacoronavirus strain BtCoV/008_16/M.bra/FIN/2016, a viral genome de-
posited in 2016 by a research group from Finland [59], with 82.7% identity. Most of the con-
tigs from samples 23 and 33 had the top hit at MZ218060.1 Bat coronavirus isolate BtCoV/7542-
55/P.pyg/DK/2014 with percent identity higher than 80%, including the longest contig of
4276 bp long from sample 23. The contigs from sample 31 had the highest score alignments
with Alphacoronavirus Bat-CoV/P.kuhlii/Italy/206679-3/2010 (MH938450.1), Bat coronavirus iso-
late BtCoV/B40-5/P.pyg/DK/2013 (MN482242.1), Alphacoronavirus Bat-CoV/P.kuhlii/Italy/3398-
19/2015 (NC_046964.1), and BtNv-AlphaCoV/SC2013 (KJ473809.1). The contigs of sample
2 matched Bat coronavirus isolate BtCoV/7542-55/P.pyg/DK/2014 (MZ218060.1) with per-
cent identities of 93.3% and 91.2%, Bat coronavirus isolate Anlong-57 (KY770851.1) with
percent identities of 83.1% and 80.0%, and with Bat coronavirus isolate BtCoV/21164-6-
alt/M.dau/DK/2015 (MZ218052.1) with percent identity of 86.6%.
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Betacoronavirus genera sequences were found in samples 2, 21, 22, and 33. Sample 2
contained a single nucleotide sequence classified as Betacoronavirus and was therefore ex-
cluded from further analysis. Interestingly, the vast majority of Betacoronavirus sequences
were identified as the Middle East respiratory syndrome-related coronavirus. Contigs
identified as Middle East respiratory syndrome-related coronavirus by searching the nt
database using megablast or nr database by Diamond were selected. The length of the
largest MERS-related viral contig was 2762 bp (sample 22).
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In each sample, the largest number of contigs had the best match with sequences
MG596803.1 and MG596802.1 related to the Middle East respiratory syndrome-related coro-
navirus isolate Bat-CoV/H.savii/Italy/206645-40/2011 and Middle East respiratory syndrome-
related coronavirus isolate Bat-CoV/P.khulii/Italy/206645-63/2011, respectively. The percent
identity of these alignments varied from 74.5% to 87.8%. In sample 21, MG596803.1 had
the highest alignment score for 3 of the 16 contigs. Other alignments included Middle East
respiratory syndrome-related coronavirus isolate NL140455, complete genome (MG987421.1)
with 88.9% identity; Middle East respiratory syndrome-related coronavirus isolate Hu/Riyadh-
KSA-13984/2016, complete genome (MG011342.2) with 88.6% identity; and Bat coronavirus
Vs-CoV-1 genomic RNA, nearly complete genome (LC469308.1) with 83.4% identity. Be-
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sides MG596803.1 and MG596802.1, the contigs from sample 22 had the highest score
alignments to Middle East respiratory syndrome-related coronavirus isolate NL140455, com-
plete genome (MG987421.1) with 80.7% and 87.9% identities; Hypsugo bat coronavirus
HKU25 isolate YD131305, complete genome (KX442564.1) with 78.1% identity; and Bat
coronavirus Vs-CoV-1 genomic RNA, nearly complete genome (LC469308.1) with 87.3%
and 86.9% identities. Two out of six obtained contigs in sample 33 had the highest score
alignment with MG596802.1. Other highest score alignments included Middle East respira-
tory syndrome-related coronavirus strain Hu/Riyadh-KSA-18012493/2018, complete genome
(MK462249.1) with 88.7% identity, and Middle East respiratory syndrome-related coronavirus
strain Camel/Oman_1_2015, complete genome (KY673149.1) with 76.4% identity.

Two reads from sample 6 were identified as the L-protein (large structural protein,
a part of the RNA polymerase) sequence of Eptesicus fuscus rhabdovirus (QPO14166.1)
using diamond tool with percent identities of 72.7 and 68.0, respectively. Megablast was
then used to re-scan these reads without applying any E-value threshold. The identified
sequences were separately aligned to the nt database and ViPR Rhabdoviridae nucleotide
database using megablast. ViPR Rhabdoviridae database was downloaded from https:
//www.viprbrc.org on 29 September 2021 and included all the available sequences from the
Rhabdoviridae family. The nt database search revealed that the first sequence shared 87.8%
identity with the Rabies lyssavirus genomes MK598338.1, MK598339.1, MK598340.1, and
MK598341.1. The best matches in the ViPR database search were Rabies virus (KU055561)
and Rabies lyssavirus (KX148160, MK598338-MK598342) with 88.0% identity. At the same
time, megablast did not return any results for the second sequence. The two reads were then
translated into the amino acid sequences, and the corresponding proteins were scanned
using hmmscan and Pfam profile-HMM database. Hmmscan identifies both sequences
as Mononegavirales RNA dependent RNA polymerase with E-values 2.9 × 10−13 and
1 × 10−9, which is consistent with the megablast and diamond search results.

We also noticed that a significant part of the reads was not assigned to any taxon by
the pipeline from the analysis of the results. Table 1 shows the number and percentage
of sequences that have not been identified as belonging to known cellular organisms or
viruses. While fine-tuning the pipeline parameters would possibly increase the number
of reads attributed to known organisms, an inexorable rise in false positives would likely
follow. This result indicates rather clearly that, firstly, the used sequence databases are far
from complete, and secondly, other methods of analysis are definitely required to detect
very distant homologies. In addition, if the research aims to study the diversity of viral
agents, methods based on machine learning, an actively developing approach [55–57,68]
can also be useful. As a preliminary attempt, we used the LSTM model of DeePaC-vir
tool [58] to check if at least some of the remaining reads could belong to virus families.
The default DeePaC-vir model was trained to detect human-infecting virus sequences;
nonhuman virus sequences were used as a negative dataset. However, it also separates
human viruses from the host sequences and other organisms. Furthermore, some viruses
can be hosted by both humans and bats, including Betacoronaviruses. The analysis was
carried out on samples 21, 22, and 33, since MERS-related virus sequences were identified
in these samples. First, DeePaC-vir was applied to the two groups of sequences: the reads
that were not assigned to any organism by the pipeline and the reads that were identified by
the pipeline as Betacoronavirus sequences. The distributions of the proportion of sequences
depending on the likelihood that they are viral for these two groups are shown in Figures
S1 and S2. As can be seen from the shape of the distribution, most sequences from the first
group have a low probability of being classified as viral. At the same time, a relatively small
proportion of reads were still designated as likely belonging to viruses. The DeePaC-vir
score distribution for Betacoronavirus reads is very different: a much larger portion of
sequences receive a high likelihood score than the undefined sequences set.

https://www.viprbrc.org
https://www.viprbrc.org
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Table 1. The numbers of sequences in clustered fasta files and the numbers of sequences that were
not assigned to any taxon.

Sample
ID

Number of Sequences
in Clustered Fasta Files

Number of Unidentified
Sequences

Percentage of Unidentified
Sequences (%)

2 1,496,002 892,558 59.7
6 738,554 363,592 49.2
16 653,809 119,176 18.2
19 906,791 404,517 44.6
20 538,581 145,623 27.0
21 764,442 428,544 56.1
22 777,210 272,237 35.0
23 1,466,914 711,736 48.5
27 2,245,717 1,498,197 66.7
30 651,436 197,040 30.3
31 830,335 313,898 37.8

Unidentified sequences with scores > 0.5 in the LSTM model, i.e., that are likely
to be viral, were selected and re-analyzed using hmmscan search from HMMER 3.3.2
(http://hmmer.org/, accessed on 10 June 2021). The nucleotide sequences were translated
into the amino acid sequences by the transeq program [69]. Six sequences were obtained
using all the reading frames, and the longest protein sequence was selected. The resulting
protein sequences were compared against the Pfam profile-HMM database [70]. Virus
protein sequences were selected among the obtained results, excluding phage sequences.
These sequences were re-scanned using megablast and diamond with a default E-value
threshold; the identified sequences were discarded from the results. Table 2 shows the
number of sequences obtained at each stage of this procedure.

Table 2. The numbers of sequences in clustered fasta files and the numbers of sequences that were not assigned to any taxon.

Sample ID Unidentified Sequences Sequences with DeePaC-Vir
Score > 0.5

Virus Sequences Identified by HMMER
Hmmscan Only, E-Value < 10

21 428,544 63,969 177
22 272,237 38,413 82
33 482,033 35,361 69

Virus sequences that had been identified by hmmscan with the E-value below 0.01
were selected. Coronavirus protein sequences, such as Coronavirus nucleocapsid, Coron-
avirus M matrix/glycoprotein, Coronavirus non-structural protein NS4, and Coronavirus
nonstructural protein NS1, were found in samples 21 and 22. Among the found sequences,
proteins of viruses that can be hosted by bats were identified, such as Mamastrovirus p20
protein (PF12285.10), Adenovirus E3A (PF05248.14), Picornavirus 2B protein (PF01552.19),
Parvovirus non-structural protein NS1 (PF01057.19), and Amdovirus non-structural protein
(PF12475.10). Further, protein sequences of viruses that can be hosted by plants were de-
tected, such as Geminivirus putative movement protein (PF01708.18), Geminivirus AC4/5
conserved region (PF08464.12), Potato leaf roll virus readthrough protein (PF01690.19),
Luteovirus coat protein (PF00894.20), Carlavirus coat (PF08358.12), and Benyvirus P25/P26
protein (PF05744.13). Insect virus protein sequences were also detected: Baculoviridae
P74 N-terminal (PF08404.12), Baculovirus polyhedron envelope protein, PEP, C terminus
(PF04513.14), and Baculovirus 11 kDa family (PF06143.13).

Therefore, among the reads not determined by standard alignment methods, the
sequences of viral proteins were found. These results demonstrate that “traditional”
alignment-based methods do not identify viral sequences with 100% sensitivity. Other ap-
proaches for detecting remote homology can be used to discover sequences that are highly
distinct from the reference sequences in the reference database. This is especially important
for viruses due to their high mutation rate. One example of such a method is HMMER,

http://hmmer.org/
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which searches sequences against hidden Markov models profiles database [71]. Secondly,
machine learning techniques can be employed to identify viral sequences, including deep
learning models. The usage of various approaches can increase the efficiency of the search.

4. Discussion

The development of highly sensitive computational pipelines for detection of poorly
described or entirely unknown viral sequences in biological samples represents an impor-
tant milestone in epidemiological research. Frequently, upon the rise of an epidemic, the
investigation into a pathogen’s genetic and molecular features lags substantially behind
the rates of its dissemination. The loss of precious time results in an untimely and only a
moderately effective response. Likewise, conventional screening methods quickly become
outdated because a mere broad pinpointing of a pathogen’s taxonomy fails to supply
crucial data, such as markers of drug resistance, and other intricate details. Importantly,
precise mapping of a pathogen’s migration routes can only be done with high-resolution
tools, capable of detecting minute changes in its genome for tracking its circulation. To
date, only a single family of approaches grants all the important insights with high re-
producibility and reliability, namely, high-throughput sequencing, enhanced with highly
versatile and sensitive computational software.

In this article, we presented our new computational pipeline for detection and iden-
tification of viral reads in NGS data. As indicated in the introduction, the lack of skilled
bioinformaticians and the need for software development often restrict the widespread use
of NGS for detecting viruses and studying viral diversity. The new pipeline implements
standard alignment tools to search for viral sequences. The number of false positives is
reduced by running a two-stage search—first in the databases of virus sequences, then in
the full nt and nr databases. Our software also finds sequences that were not recognized by
the alignment tools to pass them to further stages of analysis. Additionally, the pipeline
considers the genomes of well-described organisms for preliminary data filtering, which
can contribute to a significant reduction in the amount of data for downstream processing.
Multiple analysis parameters can be tailored to increase the accuracy of viral NA detection.
VirIdAl is available at https://github.com/budkina/VirIdAl (accessed on 1 October 2021)
and can be built as a Docker image. Additionally, the repository contains instructions for
loading and formatting databases for searching.

Having provided a detailed description of the pipeline, we also demonstrated its
application using the data obtained by sequencing bat feces collected in the Moscow region
in 2015. A number of different viruses have been detected, including the alpha and beta
coronaviruses of bats. Among them, a MERS-like coronavirus was identified, which shares
74.5–87.8% identity with the known Middle East respiratory syndrome-related coronavirus isolate
Bat-CoV/H.savii/Italy/206645-40/2011 (MG596803.1) genome. These results again corroborate
that bats indeed harbor a plethora of viral pathogens, including coronaviruses. In addition
to identifying known viruses and viruses genetically resembling them, separate files can be
created as the pipeline’s output that would contain sequences that lack significant homology
with any of the sequences stored in the databases. For these reads, we used LSTM-based
methods for sequence prioritization in an attempt to identify more distant homologies
by applying hidden Markov models for those identified as likely viral by specialized
software. As a result, homology was found with several viral proteins, including those that
are coronavirus-related. We hope that our pipeline will be helpful to biologists who use
NGS to identify known and emerging viral pathogens. We believe that new methods and
approaches, in addition to alignment-based, could prove beneficial for identifying new
viruses that exhibit high sequence variability.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/v13102006/s1, Figure S1: Distribution of the DeePaC-vir LSTM model scores assigned to
unclassified sequences in samples 21 (A), 22 (B), and 33 (C). Figure S2: Distribution of the DeePaC-vir
LSTM model scores assigned to Betacoronavirus sequences from samples 21 (A), 22 (B), and 33 (C).

https://github.com/budkina/VirIdAl
https://www.mdpi.com/article/10.3390/v13102006/s1
https://www.mdpi.com/article/10.3390/v13102006/s1
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